core: impl From<T> for Option<T>
First, the semantics of this `impl` seem spot on. If I have a value `T`, and I wish to make a `Option<T>`, then `Option::from(val)` should always give `Some(val)`.
Second, this allows improvement for several APIs that currently take `Option<T>` as arguments. Consider:
```rust
fn set_read_timeout(&mut self, timeout: Option<u32>) {
// ...
}
x.set_read_timeout(Some(30));
x.set_read_timeout(Some(10));
x.set_read_timeout(None);
```
With this `impl`:
```rust
fn set_read_timeout<T: Into<Option<u32>>>(&mut self, timeout: T) {
let timeout = timeout.into();
// ...
}
x.set_read_timeout(30);
x.set_read_timeout(10);
x.set_read_timeout(Some(10)); // backwards compatible
x.set_read_timeout(None);
```
The change to those methods aren't included, but could be modified later.
r? @sfackler
mk: Stop using cmake for compiler-rt
The compiler-rt build system has been a never ending cause of pain for Rust
unfortunately:
* The build system is very difficult to invoke and configure to only build
compiler-rt, especially across platforms.
* The standard build system doesn't actually do what we want, not working for
some of our platforms and requiring a significant number of patches on our end
which are difficult to apply when updating compiler-rt.
* Compiling compiler-rt requires LLVM to be compiled, which... is a big
dependency! This also means that over time compiler-rt is not guaranteed to
build against older versions of LLVM (or newer versions), and we often want to
work with multiple versions of LLVM simultaneously.
The makefiles and rustbuild already know how to compile C code, the code here is
far from the *only* C code we're compiling. This patch jettisons all logic to
work with compiler-rt's build system and just goes straight to the source. We
just list all files manually (copied from compiler-rt's
lib/builtins/CMakeLists.txt) and compile them into an archive.
It's likely that this means we'll fail to pick up new files when we upgrade
compiler-rt, but that seems like a much less significant cost to pay than what
we're currently paying.
cc #34400, first steps towards that
The compiler-rt build system has been a never ending cause of pain for Rust
unfortunately:
* The build system is very difficult to invoke and configure to only build
compiler-rt, especially across platforms.
* The standard build system doesn't actually do what we want, not working for
some of our platforms and requiring a significant number of patches on our end
which are difficult to apply when updating compiler-rt.
* Compiling compiler-rt requires LLVM to be compiled, which... is a big
dependency! This also means that over time compiler-rt is not guaranteed to
build against older versions of LLVM (or newer versions), and we often want to
work with multiple versions of LLVM simultaneously.
The makefiles and rustbuild already know how to compile C code, the code here is
far from the *only* C code we're compiling. This patch jettisons all logic to
work with compiler-rt's build system and just goes straight to the source. We
just list all files manually (copied from compiler-rt's
lib/builtins/CMakeLists.txt) and compile them into an archive.
It's likely that this means we'll fail to pick up new files when we upgrade
compiler-rt, but that seems like a much less significant cost to pay than what
we're currently paying.
cc #34400, first steps towards that
Add IpAddr common methods
Per https://github.com/rust-lang/rfcs/pull/1668#issuecomment-230867962 no RFC is needed here.
The generated documentation for these methods is being weird. It shows a deprecation message referencing #27709 for each of them even though two of the referenced methods were stabilized as part of that issue. I don't know how best to address that.
Add some warnings to std::env::current_exe
/cc #21889 @rust-lang/libs @semarie
I started writing this up. I'm not sure if we want to go into other things and in what depth; we don't currently have a lot of security-specific documentation to model after.
Thoughts?
Retry on EINTR in Bytes and Chars.
>Since Bytes and Chars called directly into Read::read, they didn't use any of the retrying wrappers. This allows both iterator types to retry.
Run base::internalize_symbols() even for single-codegen-unit crates.
The initial linkage-assignment (especially for closures) is a conservative one that makes some symbols more visible than they need to be. While this is not a correctness problem, it does force the LLVM inliner to be more conservative too, which results in poor performance. Once translation is based solely on MIR, it will be easier to also make the initial linkage assignment a better fitting one. Until then `internalize_symbols()` does a good job of preventing most performance regressions.
This should solve the regressions reported in https://github.com/rust-lang/rust/issues/34891 and maybe also those in https://github.com/rust-lang/rust/issues/34831.
As a side-effect, this will also solve most of the problematic cases described in https://github.com/rust-lang/rust/issues/34793. Not reliably so, however. For that, we still need a solution like the one implement in https://github.com/rust-lang/rust/pull/34830.
cc @rust-lang/compiler
The initial linkage-assignment (especially for closures) is a conservative one that makes some symbols more visible than they need to be. While this is not a correctness problem, it does force the LLVM inliner to be more conservative too, which results in poor performance. Once translation is based solely on MIR, it will be easier to also make the initial linkage assignment a better fitting one. Until then `internalize_symbols()` does a good job of preventing most performance regressions.
macros: fix bug in `stmt` matchers
Today, `stmt` matchers stop too early when parsing expression statements that begin with non-braced macro invocations. For example,
```rust
fn main() {
macro_rules! m { ($s:stmt;) => { $s } }
id!(vec![].push(0););
//^ Before this PR, the `stmt` matcher only consumes "vec![]", so this is an error.
//| After this PR, the `stmt` matcher consumes "vec![].push(0)", so this compiles.
}
```
This change is backwards compatible due to the follow set for `stmt`.
r? @eddyb
Do not resolve inherent static methods from other crates prematurely
Under some specific circumstances paths like `Type::method` can be resolved early in rustc_resolve instead of type checker. `Type` must be defined in another crate, it should be an enum or a trait object (i.e. a type that acts as a "module" in resolve), and `method` should be an inherent static method.
As a result, such paths don't go through `resolve_ufcs`, may be resolved incorrectly and break some invariants in type checker. This patch removes special treatment of such methods.
The removed code was introduced in 2bd46e767c to fix a problem that no longer exists.
r? @jseyfried
Added tokenstream parser procedure
A tiny PR that simply adds a procedure for parsing `TokenStream`s to the parser in `src/libsyntax`. This is to ease using `TokenStream`s with the current (old) procedural macro system.
Simplify librustc_errors
This is part 2 of the error crate refactor, starting with #34403.
In this refactor, I focused on slimming down the error crate to fewer moving parts. As such, I've removed quite a few parts and replaced the with simpler, straight-line code. Specifically, this PR:
* Removes BasicEmitter
* Remove emit from emitter, leaving emit_struct
* Renames emit_struct to emit
* Removes CoreEmitter and focuses on a single Emitter
* Implements the latest changes to error format RFC (#1644)
* Removes (now-unused) code in emitter.rs and snippet.rs
* Moves more tests to the UI tester, removing some duplicate tests in the process
There is probably more that could be done with some additional refactoring, but this felt like it was getting to a good state.
r? @alexcrichton cc: @Manishearth (as there may be breaking changes in stuff I removed/changed)
llvm, rt: build using the Ninja generator if available
The Ninja generator generally builds much faster than make. It may also
be used on Windows to have a vast speed improvement over the Visual
Studio generators.
Currently hidden behind an `--enable-ninja` flag because it does not
obey the top-level `-j` or `-l` flags given to `make`.