Do not suggest bounds restrictions for synthesized RPITITs
Before this PR we were getting ...
```
warning: the feature `async_fn_in_trait` is incomplete and may not be safe to use and/or cause compiler crashes
--> tests/ui/async-await/in-trait/missing-send-bound.rs:5:12
|
5 | #![feature(async_fn_in_trait)]
| ^^^^^^^^^^^^^^^^^
|
= note: see issue #91611 <https://github.com/rust-lang/rust/issues/91611> for more information
= note: `#[warn(incomplete_features)]` on by default
error: future cannot be sent between threads safely
--> tests/ui/async-await/in-trait/missing-send-bound.rs:17:20
|
17 | assert_is_send(test::<T>());
| ^^^^^^^^^^^ future returned by `test` is not `Send`
|
= help: within `impl Future<Output = ()>`, the trait `Send` is not implemented for `impl Future<Output = ()>`
note: future is not `Send` as it awaits another future which is not `Send`
--> tests/ui/async-await/in-trait/missing-send-bound.rs:13:5
|
13 | T::bar().await;
| ^^^^^^^^ await occurs here on type `impl Future<Output = ()>`, which is not `Send`
note: required by a bound in `assert_is_send`
--> tests/ui/async-await/in-trait/missing-send-bound.rs:21:27
|
21 | fn assert_is_send(_: impl Send) {}
| ^^^^ required by this bound in `assert_is_send`
help: consider further restricting the associated type
|
16 | fn test2<T: Foo>() where impl Future<Output = ()>: Send {
| ++++++++++++++++++++++++++++++++++++
error: aborting due to previous error; 1 warning emitted
```
and we want this output ...
```
warning: the feature `async_fn_in_trait` is incomplete and may not be safe to use and/or cause compiler crashes
--> $DIR/missing-send-bound.rs:5:12
|
LL | #![feature(async_fn_in_trait)]
| ^^^^^^^^^^^^^^^^^
|
= note: see issue #91611 <https://github.com/rust-lang/rust/issues/91611> for more information
= note: `#[warn(incomplete_features)]` on by default
error: future cannot be sent between threads safely
--> $DIR/missing-send-bound.rs:17:20
|
LL | assert_is_send(test::<T>());
| ^^^^^^^^^^^ future returned by `test` is not `Send`
|
= help: within `impl Future<Output = ()>`, the trait `Send` is not implemented for `impl Future<Output = ()>`
note: future is not `Send` as it awaits another future which is not `Send`
--> $DIR/missing-send-bound.rs:13:5
|
LL | T::bar().await;
| ^^^^^^^^ await occurs here on type `impl Future<Output = ()>`, which is not `Send`
note: required by a bound in `assert_is_send`
--> $DIR/missing-send-bound.rs:21:27
|
LL | fn assert_is_send(_: impl Send) {}
| ^^^^ required by this bound in `assert_is_send`
error: aborting due to previous error; 1 warning emitted
```
r? `@compiler-errors`
Only implement Fn* traits for extern "Rust" safe function pointers and items
Since calling the function via an `Fn` trait will assume `extern "Rust"` ABI and not do any safety checks, only safe `extern "Rust"` function can implement the `Fn` traits. This syncs the logic between the old solver and the new solver.
r? `@compiler-errors`
Constrain const vars to error if const types are mismatched
When equating two consts of different types, if either are const variables, constrain them to the correct const error kind.
This helps us avoid "successfully" matching a const against an impl signature but leaving unconstrained const vars, which will lead to incremental ICEs when we call const-eval queries during const projection.
Fixes#109296
The second commit in the stack fixes a regression in the first commit where we end up mentioning `[const error]` in an impl overlap error message. I think the error message changes for the better, but I could implement alternative strategies to avoid this without delaying the overlap error message...
r? `@BoxyUwU`
not *all* retags might be explicit in Runtime MIR
In https://github.com/rust-lang/rust/pull/105317 I made Miri treat `Rvalue::Ref/AddrOf` as implicit retagging sites. This updates the MIR docs accordingly.
For `Rvalue::Ref` I think this makes a lot more sense: creating a new reference is their entire point, so we can avoid bloating the MIR with retags. Also this seems to be the best way to handle cases like `*ptr = &[mut] ...`, where doing a retag is somewhat questionable since maybe `*ptr` points to another place now?
For `Rvalue::AddrOf`, Stacked Borrows needs this because even raw ptrs need some retagging, but Tree Borrows doesn't do ant retagging here and I hope we'll end up with a model where raw pointers don't get retagged.
Custom MIR: Support aggregate expressions
Add support for tuple, array and ADT expressions in custom mir
r? `````@oli-obk````` or `````@tmiasko````` or `````@JakobDegen`````
Walk un-shifted nested `impl Trait` in trait when setting up default trait method assumptions
Fixes a double subtraction in some binder math in return-position `impl Trait` in trait handling code.
Fixes#109239
new solver: make all goal evaluation able to be automatically rerun
It is generally wrong to call `evaluate_goal` multiple times or `evaluate_goal` and `evaluate_all` for the same `QueryResult` without correctly handling rerunning the goals when inference makes progress. Not doing so will result in the assertion in `evaluate_goal` firing because rerunning the goal will lead to a more accurate `QueryResult`.
Currently there are lots of places that get this wrong and generally it is complex and error prone to handle correctly everywhere. This PR introduces a way to add goals to the `EvalCtxt` and then run all the added goals in a loop so that `evaluate_goal`/`evaluate_all` is not necessary to call manually.
There are a few complications for making everything work "right":
1. the `normalizes-to` hack that replaces the rhs with an unconstrained infer var requires special casing in the new `try_evaluate_added_goals` function similar to how `evaluate_goal`'s assertion special cases that hack.
2. `assemble_candidates_after_normalizing_self_ty`'s normalization step needs to be reran for each candidate otherwise the found candidates will potentially get a more accurate `QueryResult` when rerunning the projection/trait goal which can effect the `QueryResult` of the projection/trait goal.
This is implemented via `EvalCtxt::probe`'s closure's `EvalCtxt` inheriting the added goals of the `EvalCtxt` that `probe` is called on, allowing us to add goals in a probe, and then enter a nested probe for each candidate and evaluate added goals which include the normalization step's goals.
I made `make_canonical_response` evaluate added goals so that it will be hard to mess up the impl of the solver by forgetting to evaluate added goals. Right now the only way to mess this up would be to call `response_no_constraints` (which from the name is obviously weird).
The visibility of `evaluate_goal` means that it can be called from various `compute_x_goal` or candidate assembly functions, this is generally wrong and we should never call `evaluate_goal` manually, instead we should be calling `add_goal`/`add_goals`. This is solved by moving `evaluate_goal` `evaluate_canonical_goal` and `compute_goal` into `eval_ctxt`'s module and making them private so they cannot be called from elsewhere, forcing people to call `add_goal/s` and `evaluate_added_goals_and_make_canonical_resposne`/`try_evaluate_added_goals`
---
Other changes:
- removed the `&& false` that was introduced to the assertion in `evaluate_goal` in #108839
- remove a `!self.did_overflow()` requirement in `search_graph.is_empty()` which causes goals that overflow to ICE
- made `EvalCtxt::eq` take `&mut self` and add all the nested goals via `add_goals` instead of returning them as 99% of call sites just immediately called `EvalCtxt::add_goals` manually.
r? `````@lcnr`````
Split `execute_job` into `execute_job_incr` and `execute_job_non_incr`
`execute_job` was a bit large, so this splits it in 2. Performance was neutral locally, but this may affect bootstrap times.
migrate compiler, bootstrap and compiletest to windows-rs
This PR migrates the compiler, bootstrap, and compiletest to use [windows-rs](https://github.com/microsoft/windows-rs) instead of winapi-rs. windows-rs is the bindings crate provided by Microsoft, and is actively maintained compared to winapi-rs. Not all ecosystem crates have migrated over yet, so there will be a period of time where both crates are used.
windows-rs also provides some nice ergonomics over winapi-rs to convert return values to `Result`s (which found a case where we forgot to check the return value of `CreateFileW`).
Optimize dep node backtrace and ignore fatal errors
This attempts to optimize https://github.com/rust-lang/rust/pull/91742 while also passing through fatal errors.
r? `@cjgillot`
Only expect a GAT const param for `type_of` of GAT const arg
IDK why we were account for both `is_ty_or_const` instead of just for a const param, since we're computing the `type_of` a const param specifically.
Fixes#109300
Fix generics_of for impl's RPITIT synthesized associated type
The only useful commit is the last one.
This makes `generics_of` for the impl side RPITIT copy from the trait's associated type and avoid the fn on the impl side which was previously wrongly used.
This solution is better but we still need to fix resolution of the generated generics.
r? ``@compiler-errors``
fix ClashingExternDeclarations lint ICE
Fixes#109334
First "real" contribution, please let me know if I did something wrong.
As I understand it, it's OK if a `#[repr(transparent)]` type has no non-zero sized types (aka is a ZST itself) and the function should just return the type normally instead of panicking
r? `@Nilstrieb`
fix: fix ICE in `custom-test-frameworks` feature
Fixes#107454
Simple fix to emit error instead of ICEing. At some point, all the code in `tests.rs` should be refactored, there is a bit of duplication (this PR's code is repeated five times over lol).
r? `@Nilstrieb` (active on the linked issue?)
The name of NativeLib will be presented
Fixes#109144
I was working on a quick fix, but found change the name from `Option<Symbol>` to `Symbol` make life a little bit easier.
fix: don't suggest similar method when unstable
Fixes#109177
Don't display typo suggestions for unstable things, unless the feature flag is enabled.
AFAIK, there are two places this occurs:
- `rustc_resolve`: before type checking, effectively just `FnCtxt::Free`.
- `rustc_hir_typck`: during type checking, for `FnCtxt::Assoc(..)`s.
The linked issue is about the latter, obviously the issue is applicable to both.
r? `@estebank`
Add `useless_anonymous_reexport` lint
This is a follow-up of https://github.com/rust-lang/rust/pull/108936. We once again show all anonymous re-exports in rustdoc, however we also wanted to add a lint to let users know that it very likely doesn't have the effect they think it has.
Add note for mismatched types because of circular dependencies
If you have crate A with a dependency on crate B, and crate B with a dev-dependency on A, then you might see "mismatched types" errors on types that seem to be equal. This PR adds a note that explains that the types are different, because crate B is compiled twice, one time with `cfg(test)` and one time without.
I haven't found a good way to create circular dependencies in UI tests, so I abused the incremental tests instead. As a bonus, incremental tests support "cpass" now.
related to https://github.com/rust-lang/rust/issues/22750
Use `size_of_val` instead of manual calculation
Very minor thing that I happened to notice in passing, but it's both shorter and [means it gets `mul nsw`](https://rust.godbolt.org/z/Y9KxYETv5), so why not.
Fix generics mismatch errors for RPITITs on -Zlower-impl-trait-in-trait-to-assoc-ty
This PR stops reporting errors due to different count of generics on the new synthesized associated types for RPITITs. Those were already reported when we compare the function on the triat with the function on the impl.
r? ``@compiler-errors``
Tweak implementation of overflow checking assertions
Extract and reuse logic controlling behaviour of overflow checking assertions instead of duplicating it three times.
r? `@cjgillot`
resolve: Improve debug impls for `NameBinding`
Print at least the Some/None/Ok/Err status of the nested bindings if not the bindings themselves.
Noticed while reviewing https://github.com/rust-lang/rust/pull/108729.
Pass the right HIR back from `get_fn_decl`
Fixes#109232
Makes sure that the `fn_id: HirId` that we pass to `suggest_missing_return_type` matches up with the `fn_decl: hir::FnDecl` that we pass to it, so the late-bound vars that we fetch from the former match up with the types in the latter...
This HIR suggestion code really needs a big refactor. I've tried to do it in the past (a couple of attempts), but it's a super tangled mess. It really shouldn't be passing around things like `hir::Node` and just deal with `LocalDefId`s everywhere... Anyways, I'd rather fix this ICE, now.
Do not ICE for unexpected lifetime with ConstGeneric rib
Fixes#109143
r? ````@petrochenkov````
Combining this test with the previous test will affect the previous diagnostics, so I added a separate test case.
- only borrow the refcell once per loop
- avoid complex matches to reduce branch paths in the hot loop
- use a by-ref fast path that avoids mutations at the expense of having false negatives
Use index based drop loop for slices and arrays
Instead of building two kinds of drop pair loops, of which only one will be eventually used at runtime in a given monomorphization, always use index based loop.
Install projection from RPITIT to default trait method opaque correctly
1. For new lowering strategy `-Zlower-impl-trait-in-trait-to-assoc-ty`, install the correct default trait method projection predicates (RPITIT -> opaque). This makes default trait body tests pass!
2. Fix two WF-checking bugs -- first, we want to make sure that we're always looking for an opaque type in `check_return_position_impl_trait_in_trait_bounds`. That's because the RPITIT projections are normalized to opaques during wfcheck. Second, fix RPITIT's param-envs by not adding the projection predicates that we install on trait methods to make default RPITITs work -- I left a comment why.
3. Also, just a small drive-by for `rustc_on_unimplemented`. Not sure if it affects any tests, but can't hurt.
r? ````@spastorino,```` based off of #109140
Fix riscv64 fuchsia LLVM target name
Currently, riscv64gc-unknown-fuchsia (added in #108722) sets riscv64*gc*-unknown-fuchsia as the LLVM target.
1716932743/compiler/rustc_target/src/spec/riscv64gc_unknown_fuchsia.rs (L5)
However, riscv64*gc*-\* is not a valid LLVM target and causes the following error.
```console
$ rustc --print cfg --target riscv64gc-unknown-fuchsia
error: could not create LLVM TargetMachine for triple: riscv64gc-unknown-fuchsia: No available targets are compatible with triple "riscv64gc-unknown-fuchsia"
```
As with other RISC-V targets, the LLVM target should use riscv64-\*, not riscv64*gc*-\*.
1716932743/compiler/rustc_target/src/spec/riscv64gc_unknown_freebsd.rs (L5)1716932743/compiler/rustc_target/src/spec/riscv64gc_unknown_linux_gnu.rs (L5)
I confirmed that riscv64-unknown-fuchsia is recognized as a valid LLVM target by using custom targets.
```console
# create a custom target with `"llvm-target": "riscv64-unknown-fuchsia" from no-std riscv64gc target.
$ rustc --print target-spec-json -Z unstable-options --target riscv64gc-unknown-none-elf | grep -v is-builtin | sed 's/"llvm-target".*/"llvm-target": "riscv64-unknown-fuchsia",/' > riscv64gc-unknown-fuchsia.json
$ rustc --print cfg --target riscv64gc-unknown-fuchsia.json
debug_assertions
panic="abort"
target_abi=""
target_arch="riscv64"
target_endian="little"
target_env=""
target_feature="a"
target_feature="c"
target_feature="d"
target_feature="f"
target_feature="m"
...
$ cat riscv64gc-unknown-fuchsia.json
{
"arch": "riscv64",
"code-model": "medium",
"cpu": "generic-rv64",
"data-layout": "e-m:e-p:64:64-i64:64-i128:128-n32:64-S128",
"eh-frame-header": false,
"emit-debug-gdb-scripts": false,
"features": "+m,+a,+f,+d,+c",
"linker": "rust-lld",
"linker-flavor": "ld.lld",
"llvm-abiname": "lp64d",
"llvm-target": "riscv64-unknown-fuchsia",
"max-atomic-width": 64,
"panic-strategy": "abort",
"relocation-model": "static",
"supported-sanitizers": [
"kernel-address"
],
"target-pointer-width": "64"
}
# Check the current master's LLVM target name causes an error
$ sed -i 's/riscv64-unknown-fuchsia/riscv64gc-unknown-fuchsia/' riscv64gc-unknown-fuchsia.json
$ rustc --print cfg --target riscv64gc-unknown-fuchsia.json
error: could not create LLVM TargetMachine for triple: riscv64gc-unknown-fuchsia: No available targets are compatible with triple "riscv64gc-unknown-fuchsia"
```
r? ````@tmandry````
Remove box expressions from HIR
After #108516, `#[rustc_box]` is used at HIR->THIR lowering and this is no longer emitted, so it can be removed.
This is based on top of #108471 to help with conflicts, so 43490488ccacd1a822e9c621f5ed6fca99959a0b is the only relevant commit (sorry for all the duplicated pings!)
````@rustbot```` label +S-blocked
Wrap the whole LocalInfo in ClearCrossCrate.
MIR contains a lot of information about locals. The primary purpose of this information is the quality of borrowck diagnostics.
This PR aims to drop this information after MIR analyses are finished, ie. starting from post-cleanup runtime MIR.
In cases where it is legal, we should prefer poison values over
undef values.
This replaces undef with poison for aggregate construction and
for uninhabited types. There are more places where we can likely
use poison, but I wanted to stay conservative to start with.
In particular the aggregate case is important for newer LLVM
versions, which are not able to handle an undef base value during
early optimization due to poison-propagation concerns.
Flatten/inline format_args!() and (string and int) literal arguments into format_args!()
Implements https://github.com/rust-lang/rust/issues/78356
Gated behind `-Zflatten-format-args=yes`.
Part of #99012
This change inlines string literals, integer literals and nested format_args!() into format_args!() during ast lowering, making all of the following pairs result in equivalent hir:
```rust
println!("Hello, {}!", "World");
println!("Hello, World!");
```
```rust
println!("[info] {}", format_args!("error"));
println!("[info] error");
```
```rust
println!("[{}] {}", status, format_args!("error: {}", msg));
println!("[{}] error: {}", status, msg);
```
```rust
println!("{} + {} = {}", 1, 2, 1 + 2);
println!("1 + 2 = {}", 1 + 2);
```
And so on.
This is useful for macros. E.g. a `log::info!()` macro could just pass the tokens from the user directly into a `format_args!()` that gets efficiently flattened/inlined into a `format_args!("info: {}")`.
It also means that `dbg!(x)` will have its file, line, and expression name inlined:
```rust
eprintln!("[{}:{}] {} = {:#?}", file!(), line!(), stringify!(x), x); // before
eprintln!("[example.rs:1] x = {:#?}", x); // after
```
Which can be nice in some cases, but also means a lot more unique static strings than before if dbg!() is used a lot.
Some cleanups in our normalization logic
Changed a match to be exhaustive and deduplicated some code.
r? ```@compiler-errors```
this pulls out the uncontroversial part of https://github.com/rust-lang/rust/pull/108860
make `define_opaque_types` fully explicit
based on the idea of #108389. Moved `define_opaque_types` into the actual operations, e.g. `eq`, instead of `infcx.at` because normalization doesn't use `define_opaque_types` and even creates it's own `At` with a different `define_opaque_types` internally.
Somewhat surprisingly, coherence actually relies on `DefineOpaqueTypes::Yes` for soundness which was revealed because I've incorrectly used `DefineOpaqueTypes::No` in `equate_impl_headers`. It feels concerning that even though this is the case, we still sometimes use `DefineOpaqueTypes::No` in coherence. I did not look into this as part of this PR as it is purely changing the structure of the code without changing behavior in any way.
r? ```@oli-obk```
error-msg: impl better suggestion for `E0532`
Fixes#106862
No test as there is already a test which is nearly identical to the example in the linked issue.
Revert #107376 to fix potential `bincode` breakage and `rustc-perf` benchmark.
#107376 caused `rustc-perf`'s `webrender` benchmark to break, by regressing on the `bincode-1.3.3` crate.
~~This PR is a draft revert in case we can't land a fix soon enough, and we'd like to land the revert instead~~
(Though I myself think it'd be safer to do the revert, and run crater when relanding #107376.)
cc `@aliemjay`
Implement checked Shl/Shr at MIR building.
This does not require any special handling by codegen backends,
as the overflow behaviour is entirely determined by the rhs (shift amount).
This allows MIR ConstProp to remove the overflow check for constant shifts.
~There is an existing different behaviour between cg_llvm and cg_clif (cc `@bjorn3).`
I took cg_llvm's one as reference: overflow if `rhs < 0 || rhs > number_of_bits_in_lhs_ty`.~
EDIT: `cg_llvm` and `cg_clif` implement the overflow check differently. This PR uses `cg_llvm`'s implementation based on a `BitAnd` instead of `cg_clif`'s one based on an unsigned comparison.
Sync rustc_codegen_cranelift
Bunch of bug fixes this time. Also an update to Cranelift 0.93 which adds a brand new optimization pass which cg_clif exposes when using `--release`. And various improvements to cg_clif's test suite, making it faster to run. And finally two small perf improvements.
r? `@ghost`
`@rustbot` label +A-codegen +A-cranelift +T-compiler
Rollup of 7 pull requests
Successful merges:
- #108991 (add `enable-warnings` flag for llvm, and disable it by default.)
- #109109 (Use `unused_generic_params` from crate metadata)
- #109111 (Create dirs for build_triple)
- #109136 (Simplify proc macro signature validity check)
- #109150 (Update cargo)
- #109154 (Fix MappingToUnit to support no span of arg_ty)
- #109157 (Remove mw from review rotation for a while)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Simplify proc macro signature validity check
Use an `ObligationCtxt` instead of `normalize_erasing_regions` + `DeepRejectCtxt`. This should both give us a more accurate error message, and also avoid issues like not-well-formed proc macro signatures. Also, let's fall back on the regular type mismatch error reporting for making these diagnostic notes, instead of hard-coding a bunch of specific diagnostics.
Fixes#109129
Use `unused_generic_params` from crate metadata
Due to the way that `separate_provide_extern` interacted with the implementation of `<ty::InstanceDef<'tcx> as Key>::query_crate_is_local`, we actually never hit the foreign provider for `unused_generic_params`.
Additionally, since the *local* provider of `unused_generic_params` calls `should_polymorphize`, which always returns false if the def-id is foreign, this means that we never actually polymorphize monomorphic instances originating from foreign crates.
We don't actually encode `unused_generic_params` for items where all generics are used, so I had to tweak the foreign provider to fall back to `ty::UnusedGenericParams::new_all_used()` to avoid more ICEs when the above bugs were fixed.
Ensure `ptr::read` gets all the same LLVM `load` metadata that dereferencing does
I was looking into `array::IntoIter` optimization, and noticed that it wasn't annotating the loads with `noundef` for simple things like `array::IntoIter<i32, N>`. Trying to narrow it down, it seems that was because `MaybeUninit::assume_init_read` isn't marking the load as initialized (<https://rust.godbolt.org/z/Mxd8TPTnv>), which is unfortunate since that's basically its reason to exist.
The root cause is that `ptr::read` is currently implemented via the *untyped* `copy_nonoverlapping`, and thus the `load` doesn't get any type-aware metadata: no `noundef`, no `!range`. This PR solves that by lowering `ptr::read(p)` to `copy *p` in MIR, for which the backends already do the right thing.
Fortuitiously, this also improves the IR we give to LLVM for things like `mem::replace`, and fixes a couple of long-standing bugs where `ptr::read` on `Copy` types was worse than `*`ing them.
Zulip conversation: <https://rust-lang.zulipchat.com/#narrow/stream/219381-t-libs/topic/Move.20array.3A.3AIntoIter.20to.20ManuallyDrop/near/341189936>
cc `@erikdesjardins` `@JakobDegen` `@workingjubilee` `@the8472`
Fixes#106369Fixes#73258