Retire the `unnamed_fields` feature for now
`#![feature(unnamed_fields)]` was implemented in part in #115131 and #115367, however work on that feature has (afaict) stalled and in the mean time there have been some concerns raised (e.g.[^1][^2]) about whether `unnamed_fields` is worthwhile to have in the language, especially in its current desugaring. Because it represents a compiler implementation burden including a new kind of anonymous ADT and additional complication to field selection, and is quite prone to bugs today, I'm choosing to remove the feature.
However, since I'm not one to really write a bunch of words, I'm specifically *not* going to de-RFC this feature. This PR essentially *rolls back* the state of this feature to "RFC accepted but not yet implemented"; however if anyone wants to formally unapprove the RFC from the t-lang side, then please be my guest. I'm just not totally willing to summarize the various language-facing reasons for why this feature is or is not worthwhile, since I'm coming from the compiler side mostly.
Fixes#117942Fixes#121161Fixes#121263Fixes#121299Fixes#121722Fixes#121799Fixes#126969Fixes#131041
Tracking:
* https://github.com/rust-lang/rust/issues/49804
[^1]: https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Unnamed.20struct.2Funion.20fields
[^2]: https://github.com/rust-lang/rust/issues/49804#issuecomment-1972619108
- fix for divergence
- fix error message
- fix another cranelift test
- fix some cranelift things
- don't set the NORETURN option for naked asm
- fix use of naked_asm! in doc comment
- fix use of naked_asm! in run-make test
- use `span_bug` in unreachable branch
The latest versions of `memchr` experience LTO-related issues when
compiling for windows-gnu [1], so needs to be pinned. The issue is
present in the standard library.
`memchr` has been pinned in `rustc_ast`, but since the workspace was
recently split, this pin no longer has any effect on library crates.
Resolve this by adding `memchr` as an _unused_ dependency in `std`,
pinned to 2.5. Additionally, remove the pin in `rustc_ast` to allow
non-library crates to upgrade to the latest version.
Link: https://github.com/rust-lang/rust/issues/127890 [1]
Fix `break_last_token`.
It currently doesn't handle the three-char tokens `>>=` and `<<=` correctly. These can be broken twice, resulting in three individual tokens. This is a latent bug that currently doesn't cause any problems, but does cause problems for #124141, because that PR increases the usage of lazy token streams.
r? `@petrochenkov`
It currently doesn't handle the three-char tokens `>>=` and `<<=`
correctly. These can be broken twice, resulting in three individual
tokens. This is a latent bug that currently doesn't cause any problems,
but does cause problems for #124141, because that PR increases the usage
of lazy token streams.
Use the same precedence for all macro-like exprs
No need to make these have a different precedence since they're all written like `whatever!(expr)`, and it makes it simpler when adding new macro-based built-in operators in the future.
Ever since #125915, some `ast::AnonConst`s turn into `hir::ConstArgKind::Path`s,
which don't have associated `DefId`s. To deal with the fact that we don't have
resolution information in `DefCollector`, we decided to implement a process
where if the anon const *appeared* to be trivial (i.e., `N` or `{ N }`), we
would avoid creating a def for it in `DefCollector`. If later, in AST lowering,
we realized it turned out to be a unit struct literal, or we were lowering it
to something that didn't use `hir::ConstArg`, we'd create its def there.
However, let's say we have a macro `m!()` that expands to a reference to a free
constant `FOO`. If we use `m!()` in the body of an anon const (e.g., `Foo<{ m!() }>`),
then in def collection, it appears to be a nontrivial anon const and we create
a def. But the macro expands to something that looks like a trivial const arg,
but is not, so in AST lowering we "fix" the mistake we assumed def collection
made and create a def for it. This causes a duplicate definition ICE.
The ideal long-term fix for this is a bit unclear. One option is to delay def
creation for all expression-like nodes until AST lowering (see #128844 for an
incomplete attempt at this). This would avoid issues like this one that are
caused by hacky workarounds. However, this approach has some downsides as well,
and the best approach is yet to be determined.
In the meantime, this PR fixes the bug by delaying def creation for anon consts
whose bodies are macro invocations until after we expand the macro and know
what is inside it. This is accomplished by adding information to create the
anon const's def to the data in `Resolver.invocation_parents`.
Properly report error on `const gen fn`
Fixes#130232
Also removes some (what I thought were unused) functions, and fixes a bug in clippy where we considered `gen fn` to be the same as `fn` because it was only built to consider asyncness.
Fix `clippy::useless_conversion`
Self-explanatory. Probably the last clippy change I'll actually put up since this is the only other one I've actually seen in the wild.
Simplify some nested `if` statements
Applies some but not all instances of `clippy::collapsible_if`. Some ended up looking worse afterwards, though, so I left those out. Also applies instances of `clippy::collapsible_else_if`
Review with whitespace disabled please.
Don't make statement nonterminals match pattern nonterminals
Right now, the heuristic we use to check if a token may begin a pattern nonterminal falls back to `may_be_ident`:
ef71f1047e/compiler/rustc_parse/src/parser/nonterminal.rs (L21-L37)
This has the unfortunate side effect that a `stmt` nonterminal eagerly matches against a `pat` nonterminal, leading to a parse error:
```rust
macro_rules! m {
($pat:pat) => {};
($stmt:stmt) => {};
}
macro_rules! m2 {
($stmt:stmt) => {
m! { $stmt }
};
}
m2! { let x = 1 }
```
This PR fixes it by more accurately reflecting the set of nonterminals that may begin a pattern nonterminal.
As a side-effect, I modified `Token::can_begin_pattern` to work correctly and used that in `Parser::nonterminal_may_begin_with`.
Add `#[warn(unreachable_pub)]` to a bunch of compiler crates
By default `unreachable_pub` identifies things that need not be `pub` and tells you to make them `pub(crate)`. But sometimes those things don't need any kind of visibility. So they way I did these was to remove the visibility entirely for each thing the lint identifies, and then add `pub(crate)` back in everywhere the compiler said it was necessary. (Or occasionally `pub(super)` when context suggested that was appropriate.) Tedious, but results in more `pub` removal.
There are plenty more crates to do but this seems like enough for a first PR.
r? `@compiler-errors`
improve error message when `global_asm!` uses `asm!` options
specifically, what was
error: expected one of `)`, `att_syntax`, or `raw`, found `preserves_flags`
--> $DIR/bad-options.rs:45:25
|
LL | global_asm!("", options(preserves_flags));
| ^^^^^^^^^^^^^^^ expected one of `)`, `att_syntax`, or `raw`
is now
error: the `preserves_flags` option cannot be used with `global_asm!`
--> $DIR/bad-options.rs:45:25
|
LL | global_asm!("", options(preserves_flags));
| ^^^^^^^^^^^^^^^ the `preserves_flags` option is not meaningful for global-scoped inline assembly
mirroring the phrasing of the [reference](https://doc.rust-lang.org/reference/inline-assembly.html#options).
This is also a bit of a refactor for a future `naked_asm!` macro (for use in `#[naked]` functions). Currently this sort of error can come up when switching from inline to global asm, or when a user just isn't that experienced with assembly. With `naked_asm!` added to the mix hitting this error is more likely.
Rollup of 6 pull requests
Successful merges:
- #126908 (Use Cow<'static, str> for InlineAsmTemplatePiece::String)
- #127999 (Inject arm32 shims into Windows metadata generation)
- #128137 (CStr: derive PartialEq, Eq; add test for Ord)
- #128185 (Fix a span error when parsing a wrong param of function.)
- #128187 (Fix 1.80.0 version in RELEASES.md)
- #128189 (Turn an unreachable code path into an ICE)
r? `@ghost`
`@rustbot` modify labels: rollup
`#[naked]`: use an allowlist for allowed options on `asm!` in naked functions
tracking issue: https://github.com/rust-lang/rust/issues/90957
this is mostly just a refactor, but using an allowlist (rather than a denylist) for which asm options are allowed in naked functions is a little safer.
These options are disallowed because naked functions are effectively global asm, but defined using inline asm.