Previously an ExprLit was created *per byte* causing a huge increase in memory
bloat. This adds a new `lit_binary` to contain a literal of binary data, which
is currently only used by the include_bin! syntax extension. This massively
speeds up compilation times of the shootout-k-nucleotide-pipes test
before:
time: 469s
memory: 6GB
assertion failure in LLVM (section too large)
after:
time: 2.50s
memory: 124MB
Closes#2598
There's currently a fair amount of code which is being ignored on unnamed blocks
(which are the default now), and I opted to leave it commented out for now. I
intend on very soon revisiting on how we perform linking with extern crates in
an effort to support static linking.
For the benefit of the pretty printer we want to keep track of how
string literals in the ast were originally represented in the source
code.
This commit changes parser functions so they don't extract strings from
the token stream without at least also returning what style of string
literal it was. This is stored in the resulting ast node for string
literals, obviously, for the package id in `extern mod = r"package id"`
view items, for the inline asm in `asm!()` invocations.
For `asm!()`'s other arguments or for `extern "Rust" fn()` items, I just
the style of string, because it seemed disproportionally cumbersome to
thread that information through the string processing that happens with
those string literals, given the limited advantage raw string literals
would provide in these positions.
The other syntax extensions don't seem to store passed string literals
in the ast, so they also discard the style of strings they parse.
Replaces existing tests for removed obsolete-syntax errors with tests
for the resulting regular errors, adds a test for each of the removed
parser errors to make sure that obsolete forms don't start working
again, removes some obsolete/superfluous tests that were now failing.
Deletes some amount of dead code in the parser, also includes some small
changes to parser error messages to accomodate new tests.
It is simply defined as `f64` across every platform right now.
A use case hasn't been presented for a `float` type defined as the
highest precision floating point type implemented in hardware on the
platform. Performance-wise, using the smallest precision correct for the
use case greatly saves on cache space and allows for fitting more
numbers into SSE/AVX registers.
If there was a use case, this could be implemented as simply a type
alias or a struct thanks to `#[cfg(...)]`.
Closes#6592
The mailing list thread, for reference:
https://mail.mozilla.org/pipermail/rust-dev/2013-July/004632.html
This way syntax extensions can generate unsafe blocks without worrying about
them generating unnecessary unsafe warnings. Perhaps a special keyword could be
added to be used in macros, but I don't think that's the best solution.
Ensures that each AST node has a unique id. Fixes numerous bugs in macro expansion and deriving. Add two
representative tests.
Fixes#7971Fixes#6304Fixes#8367Fixes#8754Fixes#8852Fixes#2543Fixes#7654
has a unique id. Fixes numerous bugs in macro expansion and deriving. Add two
representative tests.
Fixes#7971Fixes#6304Fixes#8367Fixes#8754Fixes#8852Fixes#2543Fixes#7654
I've reversed my thinking on this restrictive definition of eq after
two separate bugs were hidden by commenting it out; it's better to
get ICEs than SIGSEGV's, any day.
RE-ENABLING ICE MACHINE!