rust/src/libsyntax/ast.rs
2014-01-03 14:01:59 -08:00

1318 lines
37 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// The Rust abstract syntax tree.
use codemap::{Span, Spanned};
use abi::AbiSet;
use opt_vec::OptVec;
use parse::token::{interner_get, str_to_ident};
use std::cell::RefCell;
use std::hashmap::HashMap;
use std::option::Option;
use std::to_str::ToStr;
use extra::serialize::{Encodable, Decodable, Encoder, Decoder};
/// A pointer abstraction. FIXME(eddyb) #10676 use Rc<T> in the future.
pub type P<T> = @T;
/// Construct a P<T> from a T value.
pub fn P<T: 'static>(value: T) -> P<T> {
@value
}
// FIXME #6993: in librustc, uses of "ident" should be replaced
// by just "Name".
// an identifier contains a Name (index into the interner
// table) and a SyntaxContext to track renaming and
// macro expansion per Flatt et al., "Macros
// That Work Together"
#[deriving(Clone, IterBytes, ToStr, TotalEq, TotalOrd)]
pub struct Ident { name: Name, ctxt: SyntaxContext }
impl Ident {
/// Construct an identifier with the given name and an empty context:
pub fn new(name: Name) -> Ident { Ident {name: name, ctxt: EMPTY_CTXT}}
}
impl Eq for Ident {
fn eq(&self, other: &Ident) -> bool {
if (self.ctxt == other.ctxt) {
self.name == other.name
} else {
// IF YOU SEE ONE OF THESE FAILS: it means that you're comparing
// idents that have different contexts. You can't fix this without
// knowing whether the comparison should be hygienic or non-hygienic.
// if it should be non-hygienic (most things are), just compare the
// 'name' fields of the idents. Or, even better, replace the idents
// with Name's.
fail!("not allowed to compare these idents: {:?}, {:?}.
Probably related to issue \\#6993", self, other);
}
}
fn ne(&self, other: &Ident) -> bool {
! self.eq(other)
}
}
/// A SyntaxContext represents a chain of macro-expandings
/// and renamings. Each macro expansion corresponds to
/// a fresh uint
// I'm representing this syntax context as an index into
// a table, in order to work around a compiler bug
// that's causing unreleased memory to cause core dumps
// and also perhaps to save some work in destructor checks.
// the special uint '0' will be used to indicate an empty
// syntax context.
// this uint is a reference to a table stored in thread-local
// storage.
pub type SyntaxContext = u32;
// the SCTable contains a table of SyntaxContext_'s. It
// represents a flattened tree structure, to avoid having
// managed pointers everywhere (that caused an ICE).
// the mark_memo and rename_memo fields are side-tables
// that ensure that adding the same mark to the same context
// gives you back the same context as before. This shouldn't
// change the semantics--everything here is immutable--but
// it should cut down on memory use *a lot*; applying a mark
// to a tree containing 50 identifiers would otherwise generate
pub struct SCTable {
table: RefCell<~[SyntaxContext_]>,
mark_memo: RefCell<HashMap<(SyntaxContext,Mrk),SyntaxContext>>,
rename_memo: RefCell<HashMap<(SyntaxContext,Ident,Name),SyntaxContext>>,
}
// NB: these must be placed in any SCTable...
pub static EMPTY_CTXT : SyntaxContext = 0;
pub static ILLEGAL_CTXT : SyntaxContext = 1;
#[deriving(Eq, Encodable, Decodable,IterBytes)]
pub enum SyntaxContext_ {
EmptyCtxt,
Mark (Mrk,SyntaxContext),
// flattening the name and syntaxcontext into the rename...
// HIDDEN INVARIANTS:
// 1) the first name in a Rename node
// can only be a programmer-supplied name.
// 2) Every Rename node with a given Name in the
// "to" slot must have the same name and context
// in the "from" slot. In essence, they're all
// pointers to a single "rename" event node.
Rename (Ident,Name,SyntaxContext),
// actually, IllegalCtxt may not be necessary.
IllegalCtxt
}
/// A name is a part of an identifier, representing a string or gensym. It's
/// the result of interning.
pub type Name = u32;
/// A mark represents a unique id associated with a macro expansion
pub type Mrk = u32;
impl<S:Encoder> Encodable<S> for Ident {
fn encode(&self, s: &mut S) {
s.emit_str(interner_get(self.name));
}
}
impl<D:Decoder> Decodable<D> for Ident {
fn decode(d: &mut D) -> Ident {
str_to_ident(d.read_str())
}
}
/// Function name (not all functions have names)
pub type FnIdent = Option<Ident>;
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub struct Lifetime {
id: NodeId,
span: Span,
// FIXME #7743 : change this to Name!
ident: Ident
}
// a "Path" is essentially Rust's notion of a name;
// for instance: std::cmp::Eq . It's represented
// as a sequence of identifiers, along with a bunch
// of supporting information.
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub struct Path {
span: Span,
/// A `::foo` path, is relative to the crate root rather than current
/// module (like paths in an import).
global: bool,
/// The segments in the path: the things separated by `::`.
segments: ~[PathSegment],
}
/// A segment of a path: an identifier, an optional lifetime, and a set of
/// types.
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub struct PathSegment {
/// The identifier portion of this path segment.
identifier: Ident,
/// The lifetime parameters for this path segment.
lifetimes: OptVec<Lifetime>,
/// The type parameters for this path segment, if present.
types: OptVec<P<Ty>>,
}
pub type CrateNum = u32;
pub type NodeId = u32;
#[deriving(Clone, TotalEq, TotalOrd, Eq, Encodable, Decodable, IterBytes, ToStr)]
pub struct DefId {
crate: CrateNum,
node: NodeId,
}
/// Item definitions in the currently-compiled crate would have the CrateNum
/// LOCAL_CRATE in their DefId.
pub static LOCAL_CRATE: CrateNum = 0;
pub static CRATE_NODE_ID: NodeId = 0;
// When parsing and doing expansions, we initially give all AST nodes this AST
// node value. Then later, in the renumber pass, we renumber them to have
// small, positive ids.
pub static DUMMY_NODE_ID: NodeId = -1;
// The AST represents all type param bounds as types.
// typeck::collect::compute_bounds matches these against
// the "special" built-in traits (see middle::lang_items) and
// detects Copy, Send, Send, and Freeze.
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum TyParamBound {
TraitTyParamBound(trait_ref),
RegionTyParamBound
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub struct TyParam {
ident: Ident,
id: NodeId,
bounds: OptVec<TyParamBound>
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub struct Generics {
lifetimes: OptVec<Lifetime>,
ty_params: OptVec<TyParam>,
}
impl Generics {
pub fn is_parameterized(&self) -> bool {
self.lifetimes.len() + self.ty_params.len() > 0
}
pub fn is_lt_parameterized(&self) -> bool {
self.lifetimes.len() > 0
}
pub fn is_type_parameterized(&self) -> bool {
self.ty_params.len() > 0
}
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum MethodProvenance {
FromTrait(DefId),
FromImpl(DefId),
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum Def {
DefFn(DefId, purity),
DefStaticMethod(/* method */ DefId, MethodProvenance, purity),
DefSelf(NodeId, bool /* is_mutbl */),
DefSelfTy(/* trait id */ NodeId),
DefMod(DefId),
DefForeignMod(DefId),
DefStatic(DefId, bool /* is_mutbl */),
DefArg(NodeId, BindingMode),
DefLocal(NodeId, BindingMode),
DefVariant(DefId /* enum */, DefId /* variant */, bool /* is_structure */),
DefTy(DefId),
DefTrait(DefId),
DefPrimTy(prim_ty),
DefTyParam(DefId, uint),
DefBinding(NodeId, BindingMode),
DefUse(DefId),
DefUpvar(NodeId, // id of closed over var
@Def, // closed over def
NodeId, // expr node that creates the closure
NodeId), // id for the block/body of the closure expr
/// Note that if it's a tuple struct's definition, the node id of the DefId
/// may either refer to the item definition's id or the struct_def.ctor_id.
///
/// The cases that I have encountered so far are (this is not exhaustive):
/// - If it's a ty_path referring to some tuple struct, then DefMap maps
/// it to a def whose id is the item definition's id.
/// - If it's an ExprPath referring to some tuple struct, then DefMap maps
/// it to a def whose id is the struct_def.ctor_id.
DefStruct(DefId),
DefTyParamBinder(NodeId), /* struct, impl or trait with ty params */
DefRegion(NodeId),
DefLabel(NodeId),
DefMethod(DefId /* method */, Option<DefId> /* trait */),
}
#[deriving(Clone, Eq, IterBytes, Encodable, Decodable, ToStr)]
pub enum DefRegion {
DefStaticRegion,
DefEarlyBoundRegion(/* index */ uint, /* lifetime decl */ NodeId),
DefLateBoundRegion(/* binder_id */ NodeId, /* depth */ uint, /* lifetime decl */ NodeId),
DefFreeRegion(/* block scope */ NodeId, /* lifetime decl */ NodeId),
}
// The set of MetaItems that define the compilation environment of the crate,
// used to drive conditional compilation
pub type CrateConfig = ~[@MetaItem];
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub struct Crate {
module: _mod,
attrs: ~[Attribute],
config: CrateConfig,
span: Span,
}
pub type MetaItem = Spanned<MetaItem_>;
#[deriving(Clone, Encodable, Decodable, IterBytes)]
pub enum MetaItem_ {
MetaWord(@str),
MetaList(@str, ~[@MetaItem]),
MetaNameValue(@str, lit),
}
// can't be derived because the MetaList requires an unordered comparison
impl Eq for MetaItem_ {
fn eq(&self, other: &MetaItem_) -> bool {
match *self {
MetaWord(ref ns) => match *other {
MetaWord(ref no) => (*ns) == (*no),
_ => false
},
MetaNameValue(ref ns, ref vs) => match *other {
MetaNameValue(ref no, ref vo) => {
(*ns) == (*no) && vs.node == vo.node
}
_ => false
},
MetaList(ref ns, ref miss) => match *other {
MetaList(ref no, ref miso) => {
ns == no &&
miss.iter().all(|mi| miso.iter().any(|x| x.node == mi.node))
}
_ => false
}
}
}
}
#[deriving(Clone, Eq, Encodable, Decodable,IterBytes)]
pub struct Block {
view_items: ~[view_item],
stmts: ~[@Stmt],
expr: Option<@Expr>,
id: NodeId,
rules: BlockCheckMode,
span: Span,
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub struct Pat {
id: NodeId,
node: Pat_,
span: Span,
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub struct FieldPat {
ident: Ident,
pat: @Pat,
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum BindingMode {
BindByRef(Mutability),
BindByValue(Mutability),
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum Pat_ {
PatWild,
PatWildMulti,
// A pat_ident may either be a new bound variable,
// or a nullary enum (in which case the second field
// is None).
// In the nullary enum case, the parser can't determine
// which it is. The resolver determines this, and
// records this pattern's NodeId in an auxiliary
// set (of "pat_idents that refer to nullary enums")
PatIdent(BindingMode, Path, Option<@Pat>),
PatEnum(Path, Option<~[@Pat]>), /* "none" means a * pattern where
* we don't bind the fields to names */
PatStruct(Path, ~[FieldPat], bool),
PatTup(~[@Pat]),
PatBox(@Pat),
PatUniq(@Pat),
PatRegion(@Pat), // borrowed pointer pattern
PatLit(@Expr),
PatRange(@Expr, @Expr),
// [a, b, ..i, y, z] is represented as
// pat_vec(~[a, b], Some(i), ~[y, z])
PatVec(~[@Pat], Option<@Pat>, ~[@Pat])
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum Mutability {
MutMutable,
MutImmutable,
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum Sigil {
BorrowedSigil,
OwnedSigil,
ManagedSigil
}
impl ToStr for Sigil {
fn to_str(&self) -> ~str {
match *self {
BorrowedSigil => ~"&",
OwnedSigil => ~"~",
ManagedSigil => ~"@"
}
}
}
#[deriving(Eq, Encodable, Decodable, IterBytes)]
pub enum Vstore {
// FIXME (#3469): Change uint to @expr (actually only constant exprs)
VstoreFixed(Option<uint>), // [1,2,3,4]
VstoreUniq, // ~[1,2,3,4]
VstoreBox, // @[1,2,3,4]
VstoreSlice(Option<Lifetime>) // &'foo? [1,2,3,4]
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum ExprVstore {
ExprVstoreUniq, // ~[1,2,3,4]
ExprVstoreBox, // @[1,2,3,4]
ExprVstoreMutBox, // @mut [1,2,3,4]
ExprVstoreSlice, // &[1,2,3,4]
ExprVstoreMutSlice, // &mut [1,2,3,4]
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum BinOp {
BiAdd,
BiSub,
BiMul,
BiDiv,
BiRem,
BiAnd,
BiOr,
BiBitXor,
BiBitAnd,
BiBitOr,
BiShl,
BiShr,
BiEq,
BiLt,
BiLe,
BiNe,
BiGe,
BiGt,
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum UnOp {
UnBox(Mutability),
UnUniq,
UnDeref,
UnNot,
UnNeg
}
pub type Stmt = Spanned<Stmt_>;
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum Stmt_ {
// could be an item or a local (let) binding:
StmtDecl(@Decl, NodeId),
// expr without trailing semi-colon (must have unit type):
StmtExpr(@Expr, NodeId),
// expr with trailing semi-colon (may have any type):
StmtSemi(@Expr, NodeId),
// bool: is there a trailing sem-colon?
StmtMac(mac, bool),
}
// FIXME (pending discussion of #1697, #2178...): local should really be
// a refinement on pat.
/// Local represents a `let` statement, e.g., `let <pat>:<ty> = <expr>;`
#[deriving(Eq, Encodable, Decodable,IterBytes)]
pub struct Local {
ty: P<Ty>,
pat: @Pat,
init: Option<@Expr>,
id: NodeId,
span: Span,
}
pub type Decl = Spanned<Decl_>;
#[deriving(Eq, Encodable, Decodable,IterBytes)]
pub enum Decl_ {
// a local (let) binding:
DeclLocal(@Local),
// an item binding:
DeclItem(@item),
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub struct Arm {
pats: ~[@Pat],
guard: Option<@Expr>,
body: P<Block>,
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub struct Field {
ident: SpannedIdent,
expr: @Expr,
span: Span,
}
pub type SpannedIdent = Spanned<Ident>;
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum BlockCheckMode {
DefaultBlock,
UnsafeBlock(UnsafeSource),
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum UnsafeSource {
CompilerGenerated,
UserProvided,
}
#[deriving(Clone, Eq, Encodable, Decodable,IterBytes)]
pub struct Expr {
id: NodeId,
node: Expr_,
span: Span,
}
impl Expr {
pub fn get_callee_id(&self) -> Option<NodeId> {
match self.node {
ExprMethodCall(callee_id, _, _, _, _, _) |
ExprIndex(callee_id, _, _) |
ExprBinary(callee_id, _, _, _) |
ExprAssignOp(callee_id, _, _, _) |
ExprUnary(callee_id, _, _) => Some(callee_id),
_ => None,
}
}
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum CallSugar {
NoSugar,
DoSugar,
ForSugar
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum Expr_ {
ExprVstore(@Expr, ExprVstore),
ExprVec(~[@Expr], Mutability),
ExprCall(@Expr, ~[@Expr], CallSugar),
ExprMethodCall(NodeId, @Expr, Ident, ~[P<Ty>], ~[@Expr], CallSugar),
ExprTup(~[@Expr]),
ExprBinary(NodeId, BinOp, @Expr, @Expr),
ExprUnary(NodeId, UnOp, @Expr),
ExprLit(@lit),
ExprCast(@Expr, P<Ty>),
ExprIf(@Expr, P<Block>, Option<@Expr>),
ExprWhile(@Expr, P<Block>),
// FIXME #6993: change to Option<Name>
ExprForLoop(@Pat, @Expr, P<Block>, Option<Ident>),
// Conditionless loop (can be exited with break, cont, or ret)
// FIXME #6993: change to Option<Name>
ExprLoop(P<Block>, Option<Ident>),
ExprMatch(@Expr, ~[Arm]),
ExprFnBlock(P<fn_decl>, P<Block>),
ExprProc(P<fn_decl>, P<Block>),
ExprDoBody(@Expr),
ExprBlock(P<Block>),
ExprAssign(@Expr, @Expr),
ExprAssignOp(NodeId, BinOp, @Expr, @Expr),
ExprField(@Expr, Ident, ~[P<Ty>]),
ExprIndex(NodeId, @Expr, @Expr),
/// Expression that looks like a "name". For example,
/// `std::vec::from_elem::<uint>` is an ExprPath that's the "name" part
/// of a function call.
ExprPath(Path),
/// The special identifier `self`.
ExprSelf,
ExprAddrOf(Mutability, @Expr),
ExprBreak(Option<Name>),
ExprAgain(Option<Name>),
ExprRet(Option<@Expr>),
/// Gets the log level for the enclosing module
ExprLogLevel,
ExprInlineAsm(inline_asm),
ExprMac(mac),
// A struct literal expression.
ExprStruct(Path, ~[Field], Option<@Expr> /* base */),
// A vector literal constructed from one repeated element.
ExprRepeat(@Expr /* element */, @Expr /* count */, Mutability),
// No-op: used solely so we can pretty-print faithfully
ExprParen(@Expr)
}
// When the main rust parser encounters a syntax-extension invocation, it
// parses the arguments to the invocation as a token-tree. This is a very
// loose structure, such that all sorts of different AST-fragments can
// be passed to syntax extensions using a uniform type.
//
// If the syntax extension is an MBE macro, it will attempt to match its
// LHS "matchers" against the provided token tree, and if it finds a
// match, will transcribe the RHS token tree, splicing in any captured
// macro_parser::matched_nonterminals into the tt_nonterminals it finds.
//
// The RHS of an MBE macro is the only place a tt_nonterminal or tt_seq
// makes any real sense. You could write them elsewhere but nothing
// else knows what to do with them, so you'll probably get a syntax
// error.
//
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
#[doc="For macro invocations; parsing is delegated to the macro"]
pub enum token_tree {
// a single token
tt_tok(Span, ::parse::token::Token),
// a delimited sequence (the delimiters appear as the first
// and last elements of the vector)
tt_delim(@~[token_tree]),
// These only make sense for right-hand-sides of MBE macros:
// a kleene-style repetition sequence with a span, a tt_forest,
// an optional separator, and a boolean where true indicates
// zero or more (..), and false indicates one or more (+).
tt_seq(Span, @~[token_tree], Option<::parse::token::Token>, bool),
// a syntactic variable that will be filled in by macro expansion.
tt_nonterminal(Span, Ident)
}
//
// Matchers are nodes defined-by and recognized-by the main rust parser and
// language, but they're only ever found inside syntax-extension invocations;
// indeed, the only thing that ever _activates_ the rules in the rust parser
// for parsing a matcher is a matcher looking for the 'matchers' nonterminal
// itself. Matchers represent a small sub-language for pattern-matching
// token-trees, and are thus primarily used by the macro-defining extension
// itself.
//
// match_tok
// ---------
//
// A matcher that matches a single token, denoted by the token itself. So
// long as there's no $ involved.
//
//
// match_seq
// ---------
//
// A matcher that matches a sequence of sub-matchers, denoted various
// possible ways:
//
// $(M)* zero or more Ms
// $(M)+ one or more Ms
// $(M),+ one or more comma-separated Ms
// $(A B C);* zero or more semi-separated 'A B C' seqs
//
//
// match_nonterminal
// -----------------
//
// A matcher that matches one of a few interesting named rust
// nonterminals, such as types, expressions, items, or raw token-trees. A
// black-box matcher on expr, for example, binds an expr to a given ident,
// and that ident can re-occur as an interpolation in the RHS of a
// macro-by-example rule. For example:
//
// $foo:expr => 1 + $foo // interpolate an expr
// $foo:tt => $foo // interpolate a token-tree
// $foo:tt => bar! $foo // only other valid interpolation
// // is in arg position for another
// // macro
//
// As a final, horrifying aside, note that macro-by-example's input is
// also matched by one of these matchers. Holy self-referential! It is matched
// by an match_seq, specifically this one:
//
// $( $lhs:matchers => $rhs:tt );+
//
// If you understand that, you have closed to loop and understand the whole
// macro system. Congratulations.
//
pub type matcher = Spanned<matcher_>;
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum matcher_ {
// match one token
match_tok(::parse::token::Token),
// match repetitions of a sequence: body, separator, zero ok?,
// lo, hi position-in-match-array used:
match_seq(~[matcher], Option<::parse::token::Token>, bool, uint, uint),
// parse a Rust NT: name to bind, name of NT, position in match array:
match_nonterminal(Ident, Ident, uint)
}
pub type mac = Spanned<mac_>;
// represents a macro invocation. The Path indicates which macro
// is being invoked, and the vector of token-trees contains the source
// of the macro invocation.
// There's only one flavor, now, so this could presumably be simplified.
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum mac_ {
mac_invoc_tt(Path,~[token_tree],SyntaxContext), // new macro-invocation
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum StrStyle {
CookedStr,
RawStr(uint)
}
pub type lit = Spanned<lit_>;
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum lit_ {
lit_str(@str, StrStyle),
lit_binary(@[u8]),
lit_char(u32),
lit_int(i64, int_ty),
lit_uint(u64, uint_ty),
lit_int_unsuffixed(i64),
lit_float(@str, float_ty),
lit_float_unsuffixed(@str),
lit_nil,
lit_bool(bool),
}
// NB: If you change this, you'll probably want to change the corresponding
// type structure in middle/ty.rs as well.
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub struct mt {
ty: P<Ty>,
mutbl: Mutability,
}
#[deriving(Eq, Encodable, Decodable,IterBytes)]
pub struct TypeField {
ident: Ident,
mt: mt,
span: Span,
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub struct TypeMethod {
ident: Ident,
attrs: ~[Attribute],
purity: purity,
decl: P<fn_decl>,
generics: Generics,
explicit_self: explicit_self,
id: NodeId,
span: Span,
}
// A trait method is either required (meaning it doesn't have an
// implementation, just a signature) or provided (meaning it has a default
// implementation).
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum trait_method {
required(TypeMethod),
provided(@method),
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum int_ty {
ty_i,
ty_i8,
ty_i16,
ty_i32,
ty_i64,
}
impl ToStr for int_ty {
fn to_str(&self) -> ~str {
::ast_util::int_ty_to_str(*self)
}
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum uint_ty {
ty_u,
ty_u8,
ty_u16,
ty_u32,
ty_u64,
}
impl ToStr for uint_ty {
fn to_str(&self) -> ~str {
::ast_util::uint_ty_to_str(*self)
}
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum float_ty {
ty_f32,
ty_f64,
}
impl ToStr for float_ty {
fn to_str(&self) -> ~str {
::ast_util::float_ty_to_str(*self)
}
}
// NB Eq method appears below.
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub struct Ty {
id: NodeId,
node: ty_,
span: Span,
}
// Not represented directly in the AST, referred to by name through a ty_path.
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum prim_ty {
ty_int(int_ty),
ty_uint(uint_ty),
ty_float(float_ty),
ty_str,
ty_bool,
ty_char
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum Onceness {
Once,
Many
}
impl ToStr for Onceness {
fn to_str(&self) -> ~str {
match *self {
Once => ~"once",
Many => ~"many"
}
}
}
#[deriving(Eq, Encodable, Decodable,IterBytes)]
pub struct TyClosure {
sigil: Sigil,
region: Option<Lifetime>,
lifetimes: OptVec<Lifetime>,
purity: purity,
onceness: Onceness,
decl: P<fn_decl>,
// Optional optvec distinguishes between "fn()" and "fn:()" so we can
// implement issue #7264. None means "fn()", which means infer a default
// bound based on pointer sigil during typeck. Some(Empty) means "fn:()",
// which means use no bounds (e.g., not even Owned on a ~fn()).
bounds: Option<OptVec<TyParamBound>>,
}
#[deriving(Eq, Encodable, Decodable,IterBytes)]
pub struct TyBareFn {
purity: purity,
abis: AbiSet,
lifetimes: OptVec<Lifetime>,
decl: P<fn_decl>
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum ty_ {
ty_nil,
ty_bot, /* bottom type */
ty_box(mt),
ty_uniq(P<Ty>),
ty_vec(P<Ty>),
ty_fixed_length_vec(P<Ty>, @Expr),
ty_ptr(mt),
ty_rptr(Option<Lifetime>, mt),
ty_closure(@TyClosure),
ty_bare_fn(@TyBareFn),
ty_tup(~[P<Ty>]),
ty_path(Path, Option<OptVec<TyParamBound>>, NodeId), // for #7264; see above
ty_typeof(@Expr),
// ty_infer means the type should be inferred instead of it having been
// specified. This should only appear at the "top level" of a type and not
// nested in one.
ty_infer,
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum asm_dialect {
asm_att,
asm_intel
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub struct inline_asm {
asm: @str,
asm_str_style: StrStyle,
clobbers: @str,
inputs: ~[(@str, @Expr)],
outputs: ~[(@str, @Expr)],
volatile: bool,
alignstack: bool,
dialect: asm_dialect
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub struct arg {
ty: P<Ty>,
pat: @Pat,
id: NodeId,
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub struct fn_decl {
inputs: ~[arg],
output: P<Ty>,
cf: ret_style,
variadic: bool
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum purity {
unsafe_fn, // declared with "unsafe fn"
impure_fn, // declared with "fn"
extern_fn, // declared with "extern fn"
}
impl ToStr for purity {
fn to_str(&self) -> ~str {
match *self {
impure_fn => ~"impure",
unsafe_fn => ~"unsafe",
extern_fn => ~"extern"
}
}
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum ret_style {
noreturn, // functions with return type _|_ that always
// raise an error or exit (i.e. never return to the caller)
return_val, // everything else
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum explicit_self_ {
sty_static, // no self
sty_value(Mutability), // `self`
sty_region(Option<Lifetime>, Mutability), // `&'lt self`
sty_box(Mutability), // `@self`
sty_uniq(Mutability) // `~self`
}
pub type explicit_self = Spanned<explicit_self_>;
#[deriving(Eq, Encodable, Decodable,IterBytes)]
pub struct method {
ident: Ident,
attrs: ~[Attribute],
generics: Generics,
explicit_self: explicit_self,
purity: purity,
decl: P<fn_decl>,
body: P<Block>,
id: NodeId,
span: Span,
self_id: NodeId,
vis: visibility,
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub struct _mod {
view_items: ~[view_item],
items: ~[@item],
}
#[deriving(Clone, Eq, Encodable, Decodable,IterBytes)]
pub struct foreign_mod {
abis: AbiSet,
view_items: ~[view_item],
items: ~[@foreign_item],
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub struct variant_arg {
ty: P<Ty>,
id: NodeId,
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum variant_kind {
tuple_variant_kind(~[variant_arg]),
struct_variant_kind(@struct_def),
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub struct enum_def {
variants: ~[P<variant>],
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub struct variant_ {
name: Ident,
attrs: ~[Attribute],
kind: variant_kind,
id: NodeId,
disr_expr: Option<@Expr>,
vis: visibility,
}
pub type variant = Spanned<variant_>;
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub struct path_list_ident_ {
name: Ident,
id: NodeId,
}
pub type path_list_ident = Spanned<path_list_ident_>;
pub type view_path = Spanned<view_path_>;
#[deriving(Eq, Encodable, Decodable, IterBytes)]
pub enum view_path_ {
// quux = foo::bar::baz
//
// or just
//
// foo::bar::baz (with 'baz =' implicitly on the left)
view_path_simple(Ident, Path, NodeId),
// foo::bar::*
view_path_glob(Path, NodeId),
// foo::bar::{a,b,c}
view_path_list(Path, ~[path_list_ident], NodeId)
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub struct view_item {
node: view_item_,
attrs: ~[Attribute],
vis: visibility,
span: Span,
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum view_item_ {
// ident: name used to refer to this crate in the code
// optional @str: if present, this is a location (containing
// arbitrary characters) from which to fetch the crate sources
// For example, extern mod whatever = "github.com/mozilla/rust"
view_item_extern_mod(Ident, Option<(@str, StrStyle)>, NodeId),
view_item_use(~[@view_path]),
}
// Meta-data associated with an item
pub type Attribute = Spanned<Attribute_>;
// Distinguishes between Attributes that decorate items and Attributes that
// are contained as statements within items. These two cases need to be
// distinguished for pretty-printing.
#[deriving(Clone, Eq, Encodable, Decodable,IterBytes)]
pub enum AttrStyle {
AttrOuter,
AttrInner,
}
// doc-comments are promoted to attributes that have is_sugared_doc = true
#[deriving(Clone, Eq, Encodable, Decodable,IterBytes)]
pub struct Attribute_ {
style: AttrStyle,
value: @MetaItem,
is_sugared_doc: bool,
}
/*
trait_refs appear in impls.
resolve maps each trait_ref's ref_id to its defining trait; that's all
that the ref_id is for. The impl_id maps to the "self type" of this impl.
If this impl is an item_impl, the impl_id is redundant (it could be the
same as the impl's node id).
*/
#[deriving(Clone, Eq, Encodable, Decodable,IterBytes)]
pub struct trait_ref {
path: Path,
ref_id: NodeId,
}
#[deriving(Clone, Eq, Encodable, Decodable,IterBytes)]
pub enum visibility {
public,
private,
inherited,
}
impl visibility {
pub fn inherit_from(&self, parent_visibility: visibility) -> visibility {
match self {
&inherited => parent_visibility,
&public | &private => *self
}
}
}
#[deriving(Clone, Eq, Encodable, Decodable,IterBytes)]
pub struct struct_field_ {
kind: struct_field_kind,
id: NodeId,
ty: P<Ty>,
attrs: ~[Attribute],
}
pub type struct_field = Spanned<struct_field_>;
#[deriving(Clone, Eq, Encodable, Decodable,IterBytes)]
pub enum struct_field_kind {
named_field(Ident, visibility),
unnamed_field // element of a tuple-like struct
}
#[deriving(Eq, Encodable, Decodable,IterBytes)]
pub struct struct_def {
fields: ~[struct_field], /* fields, not including ctor */
/* ID of the constructor. This is only used for tuple- or enum-like
* structs. */
ctor_id: Option<NodeId>
}
/*
FIXME (#3300): Should allow items to be anonymous. Right now
we just use dummy names for anon items.
*/
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub struct item {
ident: Ident,
attrs: ~[Attribute],
id: NodeId,
node: item_,
vis: visibility,
span: Span,
}
#[deriving(Clone, Eq, Encodable, Decodable, IterBytes)]
pub enum item_ {
item_static(P<Ty>, Mutability, @Expr),
item_fn(P<fn_decl>, purity, AbiSet, Generics, P<Block>),
item_mod(_mod),
item_foreign_mod(foreign_mod),
item_ty(P<Ty>, Generics),
item_enum(enum_def, Generics),
item_struct(@struct_def, Generics),
item_trait(Generics, ~[trait_ref], ~[trait_method]),
item_impl(Generics,
Option<trait_ref>, // (optional) trait this impl implements
P<Ty>, // self
~[@method]),
// a macro invocation (which includes macro definition)
item_mac(mac),
}
#[deriving(Eq, Encodable, Decodable,IterBytes)]
pub struct foreign_item {
ident: Ident,
attrs: ~[Attribute],
node: foreign_item_,
id: NodeId,
span: Span,
vis: visibility,
}
#[deriving(Eq, Encodable, Decodable,IterBytes)]
pub enum foreign_item_ {
foreign_item_fn(P<fn_decl>, Generics),
foreign_item_static(P<Ty>, /* is_mutbl */ bool),
}
// The data we save and restore about an inlined item or method. This is not
// part of the AST that we parse from a file, but it becomes part of the tree
// that we trans.
#[deriving(Eq, Encodable, Decodable,IterBytes)]
pub enum inlined_item {
ii_item(@item),
ii_method(DefId /* impl id */, bool /* is provided */, @method),
ii_foreign(@foreign_item),
}
#[cfg(test)]
mod test {
use super::*;
fn is_freeze<T: Freeze>() {}
// Assert that the AST remains Freeze (#10693).
#[test] fn ast_is_freeze() {
is_freeze::<item>();
}
}
/* hold off on tests ... they appear in a later merge.
#[cfg(test)]
mod test {
use std::option::{None, Option, Some};
use std::uint;
use extra;
use codemap::*;
use super::*;
#[test] fn xorpush_test () {
let mut s = ~[];
xorPush(&mut s,14);
assert_eq!(s,~[14]);
xorPush(&mut s,14);
assert_eq!(s,~[]);
xorPush(&mut s,14);
assert_eq!(s,~[14]);
xorPush(&mut s,15);
assert_eq!(s,~[14,15]);
xorPush (&mut s,16);
assert_eq! (s,~[14,15,16]);
xorPush (&mut s,16);
assert_eq! (s,~[14,15]);
xorPush (&mut s,15);
assert_eq! (s,~[14]);
}
#[test] fn test_marksof () {
let stopname = uints_to_name(&~[12,14,78]);
assert_eq!(s,~[]);
xorPush(&mut s,14);
assert_eq!(s,~[14]);
xorPush(&mut s,15);
assert_eq!(s,~[14,15]);
xorPush (&mut s,16);
assert_eq! (s,~[14,15,16]);
xorPush (&mut s,16);
assert_eq! (s,~[14,15]);
xorPush (&mut s,15);
assert_eq! (s,~[14]);
}
#[test] fn test_marksof () {
let stopname = uints_to_name(&~[12,14,78]);
let name1 = uints_to_name(&~[4,9,7]);
assert_eq!(marksof (MT,stopname),~[]);
assert_eq! (marksof (Mark (4,@Mark(98,@MT)),stopname),~[4,98]);
// does xoring work?
assert_eq! (marksof (Mark (5, @Mark (5, @Mark (16,@MT))),stopname),
~[16]);
// does nested xoring work?
assert_eq! (marksof (Mark (5,
@Mark (10,
@Mark (10,
@Mark (5,
@Mark (16,@MT))))),
stopname),
~[16]);
// stop has no effect on marks
assert_eq! (marksof (Mark (9, @Mark (14, @Mark (12, @MT))),stopname),
~[9,14,12]);
// rename where stop doesn't match:
assert_eq! (marksof (Mark (9, @Rename
(name1,
@Mark (4, @MT),
uints_to_name(&~[100,101,102]),
@Mark (14, @MT))),
stopname),
~[9,14]);
// rename where stop does match
;
assert_eq! (marksof (Mark(9, @Rename (name1,
@Mark (4, @MT),
stopname,
@Mark (14, @MT))),
stopname),
~[9]);
}
// are ASTs encodable?
#[test] fn check_asts_encodable() {
let bogus_span = span {lo:BytePos(10),
hi:BytePos(20),
expn_info:None};
let e : crate =
spanned{
node: crate_{
module: _mod {view_items: ~[], items: ~[]},
attrs: ~[],
config: ~[]
},
span: bogus_span};
// doesn't matter which encoder we use....
let _f = (@e as @extra::serialize::Encodable<extra::json::Encoder>);
}
}
*/
//
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End:
//