Android builds use feature level 14, the libc wrapper for splice is gated
on feature level 21+ so we have to invoke the syscall directly.
Additionally the emulator doesn't seem to support it so we also have to
add ENOSYS checks.
Update thread and futex APIs to work with Emscripten
This updates the thread and futex APIs in `std` to match the APIs exposed by
Emscripten. This allows threads to run on `wasm32-unknown-emscripten` and the
thread parker to compile without errors related to the missing `futex` module.
To make use of this, Rust code must be compiled with `-C target-feature=atomics`
and Emscripten must link with `-pthread`.
I have confirmed this works well locally when building multithreaded crates.
Attempting to enable `std` thread tests currently fails for seemingly obscure
reasons and Emscripten is currently disabled in CI, so further work is needed to
have proper test coverage here.
This updates the thread and futex APIs in `std` to match the APIs exposed by
Emscripten. This allows threads to run on `wasm32-unknown-emscripten` and the
thread parker to compile without errors related to the missing `futex` module.
To make use of this, Rust code must be compiled with `-C target-feature=atomics`
and Emscripten must link with `-pthread`.
I have confirmed this works well locally when building multithreaded crates.
Attempting to enable `std` thread tests currently fails for seemingly obscure
reasons and Emscripten is currently disabled in CI, so further work is needed to
have proper test coverage here.
Duration::zero() -> Duration::ZERO
In review for #72790, whether or not a constant or a function should be favored for `#![feature(duration_zero)]` was seen as an open question. In https://github.com/rust-lang/rust/issues/73544#issuecomment-691701670 an invitation was opened to either stabilize the methods or propose a switch to the constant value, supplemented with reasoning. Followup comments suggested community preference leans towards the const ZERO, which would be reason enough.
ZERO also "makes sense" beside existing associated consts for Duration. It is ever so slightly awkward to have a series of constants specifying 1 of various units but leave 0 as a method, especially when they are side-by-side in code. It seems unintuitive for the one non-dynamic value (that isn't from Default) to be not-a-const, which could hurt discoverability of the associated constants overall. Elsewhere in `std`, methods for obtaining a constant value were even deprecated, as seen with [std::u32::min_value](https://doc.rust-lang.org/std/primitive.u32.html#method.min_value).
Most importantly, ZERO costs less to use. A match supports a const pattern, but const fn can only be used if evaluated through a const context such as an inline `const { const_fn() }` or a `const NAME: T = const_fn()` declaration elsewhere. Likewise, while https://github.com/rust-lang/rust/issues/73544#issuecomment-691949373 notes `Duration::zero()` can optimize to a constant value, "can" is not "will". Only const contexts have a strong promise of such. Even without that in mind, the comment in question still leans in favor of the constant for simplicity. As it costs less for a developer to use, may cost less to optimize, and seems to have more of a community consensus for it, the associated const seems best.
r? ```@LukasKalbertodt```
The discussion seems to have resolved that this lint is a bit "noisy" in
that applying it in all places would result in a reduction in
readability.
A few of the trivial functions (like `Path::new`) are fine to leave
outside of closures.
The general rule seems to be that anything that is obviously an
allocation (`Box`, `Vec`, `vec![]`) should be in a closure, even if it
is a 0-sized allocation.
It was only ever used with Vec<u8> anyway. This simplifies some things.
- It no longer needs to be flushed, because that's a no-op anyway for
a Vec<u8>.
- Writing to a Vec<u8> never fails.
- No #[cfg(test)] code is needed anymore to use `realstd` instead of
`std`, because Vec comes from alloc, not std (like Write).
Define `fs::hard_link` to not follow symlinks.
POSIX leaves it [implementation-defined] whether `link` follows symlinks.
In practice, for example, on Linux it does not and on FreeBSD it does.
So, switch to `linkat`, so that we can pick a behavior rather than
depending on OS defaults.
Pick the option to not follow symlinks. This is somewhat arbitrary, but
seems the less surprising choice because hard linking is a very
low-level feature which requires the source and destination to be on
the same mounted filesystem, and following a symbolic link could end
up in a different mounted filesystem.
[implementation-defined]: https://pubs.opengroup.org/onlinepubs/9699919799/functions/link.html
Use Intra-doc links for std::io::buffered
Helps with #75080. I used the implicit link style for intrinsics, as that was what `minnumf32` and others already had.
``@rustbot`` modify labels: T-doc, A-intra-doc-links
r? ``@jyn514``
`#![deny(unsafe_op_in_unsafe_fn)]` in sys/hermit
Partial fix of #73904.
This encloses ``unsafe`` operations in ``unsafe fn`` in ``sys/hermit``.
Some unsafe blocks are not well documented because some system-based functions lack documents.
Partially fix#55002, deprecate in another release
Co-authored-by: Ashley Mannix <kodraus@hey.com>
Update stable version for stabilize_spin_loop
Co-authored-by: Joshua Nelson <joshua@yottadb.com>
Use better example for spinlock
As suggested by KodrAus
Remove renamed_spin_loop already available in master
Fix spin loop example