This overlaps with #22276 (I left make check running overnight) but covers a number of additional cases and has a few rewrites where the clones are not even necessary.
This also implements `RandomAccessIterator` for `iter::Cloned`
cc @steveklabnik, you may want to glance at this before #22281 gets the bors treatment
This breaks all implementors of FromIterator, as they must now accept IntoIterator instead of Iterator. The fix for this is generally trivial (change the bound, and maybe call into_iter() on the argument to get the old argument).
Users of FromIterator should be unaffected because Iterators are IntoIterator.
[breaking-change]
This breaks all implementors of Extend, as they must now accept IntoIterator instead of Iterator. The fix for this is generally trivial (change the bound, and maybe call into_iter() on the argument to get the old argument).
Users of Extend should be unaffected because Iterators are IntoIterator.
[breaking-change]
This commit is an implementation of [RFC 823][rfc] which is another pass over
the `std::hash` module for stabilization. The contents of the module were not
entirely marked stable, but some portions which remained quite similar to the
previous incarnation are now marked `#[stable]`. Specifically:
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0823-hash-simplification.md
* `std::hash` is now stable (the name)
* `Hash` is now stable
* `Hash::hash` is now stable
* `Hasher` is now stable
* `SipHasher` is now stable
* `SipHasher::new` and `new_with_keys` are now stable
* `Hasher for SipHasher` is now stable
* Many `Hash` implementations are now stable
All other portions of the `hash` module remain `#[unstable]` as they are less
commonly used and were recently redesigned.
This commit is a breaking change due to the modifications to the `std::hash` API
and more details can be found on the [RFC][rfc].
Closes#22467
[breaking-change]
The data pointer used in the slice is never null, using assume() to tell
LLVM about it gets rid of various unneeded null checks when iterating
over the slice.
Since the snapshot compiler is still using an older LLVM version, omit
the call in stage0, because compile times explode otherwise.
Benchmarks from #18193
````
running 5 tests
test _range ... bench: 33329 ns/iter (+/- 417)
test assembly ... bench: 33299 ns/iter (+/- 58)
test enumerate ... bench: 33318 ns/iter (+/- 83)
test iter ... bench: 33311 ns/iter (+/- 130)
test position ... bench: 33300 ns/iter (+/- 47)
test result: ok. 0 passed; 0 failed; 0 ignored; 5 measured
````
Fixes#18193
Now that the necessary associated types exist for the `IntoIterator` trait this
commit stabilizes the trait as-is as well as all existing implementations.
Now that the necessary associated types exist for the `IntoIterator` trait this
commit stabilizes the trait as-is as well as all existing implementations.
`IntoIterator` now has an extra associated item:
``` rust
trait IntoIterator {
type Item;
type IntoIter: Iterator<Self=Self::Item>;
}
```
This lets you bind the iterator \"`Item`\" directly when writing generic functions:
``` rust
// hypothetical change, not included in this PR
impl Extend<T> for Vec<T> {
// you can now write
fn extend<I>(&mut self, it: I) where I: IntoIterator<Item=T> { .. }
// instead of
fn extend<I: IntoIterator>(&mut self, it: I) where I::IntoIter: Iterator<Item=T> { .. }
}
```
The downside is that now you have to write an extra associated type in your `IntoIterator` implementations:
``` diff
impl<T> IntoIterator for Vec<T> {
+ type Item = T;
type IntoIter = IntoIter<T>;
fn into_iter(self) -> IntoIter<T> { .. }
}
```
Because this breaks all downstream implementations of `IntoIterator`, this is a [breaking-change]
---
r? @aturon
It is not totally clear if we should just use whitespace, or if the full
unicode word-breaking algorithm is more correct. If there is demand we
can reconsider this decision (and consider the precise algorithm to use
in detail).
cc #15628.
This PR is an optimization of the `FromIterator` implementation of `Vec`
Benchmark: https://gist.github.com/alexcrichton/03d666159a28a80e7c70
Before:
test macro_repeat1 ... bench: 57 ns/iter (+/- 1)
test macro_repeat2 ... bench: 56 ns/iter (+/- 1)
test map_clone1 ... bench: 828 ns/iter (+/- 13)
test map_clone2 ... bench: 828 ns/iter (+/- 8)
test repeat1 ... bench: 1104 ns/iter (+/- 10)
test repeat2 ... bench: 1106 ns/iter (+/- 11)
After:
test macro_repeat1 ... bench: 75 ns/iter (+/- 21)
test macro_repeat2 ... bench: 59 ns/iter (+/- 31)
test map_clone1 ... bench: 34 ns/iter (+/- 22)
test map_clone2 ... bench: 52 ns/iter (+/- 21)
test repeat1 ... bench: 34 ns/iter (+/- 11)
test repeat2 ... bench: 33 ns/iter (+/- 12)
The idea behind this optimization is to avoid all bounds checks for space
already allocated into the vector. This may involve running the iterator twice,
but the first run of the iterator should be optimizable to a memcpy or memset if
possible.
The same treatment can in theory be applied to `Vec::extend` but the benchmarks
for that currently get *worse* if the change is applied. This appears to be some
LLVM optimizations going awry but it's seems prudent to land at least the
`collect` portion beforehand.
It is not totally clear if we should just use whitespace, or if the full
unicode word-breaking algorithm is more correct. If there is demand we
can reconsider this decision (and consider the precise algorithm to use
in detail).
cc #15628.
This PR is an optimization of the `FromIterator` implementation of `Vec`
Benchmark: https://gist.github.com/alexcrichton/03d666159a28a80e7c70
Before:
test macro_repeat1 ... bench: 57 ns/iter (+/- 1)
test macro_repeat2 ... bench: 56 ns/iter (+/- 1)
test map_clone1 ... bench: 828 ns/iter (+/- 13)
test map_clone2 ... bench: 828 ns/iter (+/- 8)
test repeat1 ... bench: 1104 ns/iter (+/- 10)
test repeat2 ... bench: 1106 ns/iter (+/- 11)
After:
test macro_repeat1 ... bench: 75 ns/iter (+/- 21)
test macro_repeat2 ... bench: 59 ns/iter (+/- 31)
test map_clone1 ... bench: 34 ns/iter (+/- 22)
test map_clone2 ... bench: 52 ns/iter (+/- 21)
test repeat1 ... bench: 34 ns/iter (+/- 11)
test repeat2 ... bench: 33 ns/iter (+/- 12)
The idea behind this optimization is to avoid all bounds checks for space
already allocated into the vector. This may involve running the iterator twice,
but the first run of the iterator should be optimizable to a memcpy or memset if
possible.
The same treatment can in theory be applied to `Vec::extend` but the benchmarks
for that currently get *worse* if the change is applied. This appears to be some
LLVM optimizations going awry but it's seems prudent to land at least the
`collect` portion beforehand.
There are a number of holes that the stability lint did not previously cover,
including:
* Types
* Bounds on type parameters on functions and impls
* Where clauses
* Imports
* Patterns (structs and enums)
These holes have all been fixed by overriding the `visit_path` function on the
AST visitor instead of a few specialized cases. This change also necessitated a
few stability changes:
* The `collections::fmt` module is now stable (it was already supposed to be).
* The `thread_local:👿:Key` type is now stable (it was already supposed to
be).
* The `std::rt::{begin_unwind, begin_unwind_fmt}` functions are now stable.
These are required via the `panic!` macro.
* The `std::old_io::stdio::{println, println_args}` functions are now stable.
These are required by the `print!` and `println!` macros.
* The `ops::{FnOnce, FnMut, Fn}` traits are now `#[stable]`. This is required to
make bounds with these traits stable. Note that manual implementations of
these traits are still gated by default, this stability only allows bounds
such as `F: FnOnce()`.
Closes#8962Closes#16360Closes#20327