This is a minor step towards #3571, although I'm sure there's still more work to be done. Previously, `fmt!` collected a bunch of strings in a vector and then called `str::concat`. This changes the behavior by maintaining only one buffer and appending directly into that buffer. This avoids doubly-allocating memory, and it has the added bonus of reducing some allocations in `core::unstable::extfmt`
One of the unfortunate side effects of this is that the `rt` module in `extfmt.rs` had to be duplicated to avoid `stage0` errors. Dealing with the change in conversion functions may require a bit of a dance when a snapshot happens, but I think it's doable.
If the second speedup commit isn't deemed necessary, I got about a 15% speedup with just the first patch which doesn't require any modification of `extfmt.rs`, so no snapshot weirdness.
Here's some other things I ran into when looking at `fmt!`:
* I don't think that #2249 is relevant any more except for maybe removing one of `%i` or `%d`
* I'm not sure what was in mind for using traits with #3571, but I thought that formatters like `%u` could invoke the `to_uint()` method on the `NumCast` trait, but I ran into some problems like those in #5462
I'm having trouble thinking of other wins for `fmt!`, but if there's some suggestions I'd be more than willing to look into if they'd work out or not.
The `each_line` function in `ReaderUtil` acts very differently to equivalent functions in Python, Ruby, Clojure etc. E.g. given a file `t` with contents `trailing\nnew line\n` and `n` containing `no trailing\nnew line`:
Rust:
```Rust
t: ~[~"trailing", ~"new line", ~""]
n: ~[~"no trailing", ~"new line"]
```
Python:
```Python
>>> open('t').readlines()
['trailing\n', 'new line\n']
>>> open('n').readlines()
['no trailing\n', 'new line']
```
Ruby:
```Ruby
irb(main):001:0> File.readlines('t')
=> ["trailing\n", "new line\n"]
irb(main):002:0> File.readlines('n')
=> ["no trailing\n", "new line"]
```
Clojure
```Clojure
user=> (read-lines "t")
("trailing" "new line")
user=> (read-lines "n")
("no trailing" "new line")
```
The extra string that rust includes at the end is inconsistent, and means that it is impossible to distinguish between the "real" empty line a file that ends `...\n\n`, and the "fake" one after the last `\n`.
The code attached makes Rust's `each_line` act like Clojure (and PHP, i.e. not including the `\n`), as well as adjusting `str::lines` to fix the trailing empty line problem.
Also, add a convenience `read_lines` method to read all the lines in a file into a vector.
Specifically, `lines` and `each_line` will not emit a trailing empty string
when given "...\n". Also, add `read_lines`, which just collects all of
`each_line` into a vector, and `split_*_no_trailing` which will is the
generalised version of `lines`.
This makes the `trim` and `substr` functions return a slice instead of an `~str`, and removes the unnecessary `Trimmable` trait (`StrSlice` already contains the same functionality).
Also moves the `ToStr` implementations for the three str types into the str module in anticipation of further untangling.
In struct section of tutorial, make everything more coherent and
clear by always using "struct Point".
Also, do not prematurely introduce pointers and arrays.
Fixes#5240
The old string benchmarks weren't very useful because the strings weren't long enough, so I just threw those out for now. I left out benchmarks of `oldmap` because it's clear that it's 30-40% slower and it doesn't implement the `Map` trait.
This also cleanly divides up `insert`, `search` and `remove`.
Adds an assert_eq! macro that asserts that its two arguments are equal. Error messages can therefore be somewhat more informative than a simple assert, because the error message includes "expected" and "given" values.
In struct section of tutorial, make everything more coherent and
clear by always using "struct Point". Also, do not prematurely
introduce pointers and arrays. Fixes#5240
Signed-off-by: Luca Bruno <lucab@debian.org>
r? @nikomatsakis The typechecker previously passed around a boolean return flag to
indicate whether it saw something with type _|_ (that is, something
it knows at compile-time will definitely diverge) and also had some
manual checks for the `ty_err` pseudo-type that represents a previous
type error. This was because the typing rules implemented by the
typechecker didn't properly propagate _|_ and ty_err. I fixed it.
This also required changing expected error messages in a few tests,
as now we're printing out fewer derived errors -- in fact, at this
point we should print out no derived errors, so report any that
you see (ones that include "[type error]") as bugs.