add test for #37765
Adds a test for #37765, a path parsing fix which removes the need for a parenthesis workaround.
Closes#37765.
cc #37290 @withoutboats
r? @petrochenkov
Add semicolon to "perhaps add a `use` for one of them" help
Similar to pull request #37430, this makes the message more copy-paste
friendly and aligns it with other messages like:
help: you can import it into scope: use foo::Bar;
r? @eddyb
coherence: skip impls with an erroneous trait ref
Impls with a erroneous trait ref are already ignored in the first part
of coherence, so ignore them in the second part too. This avoids
cascading coherence errors when 1 impl of a trait has an error.
r? @nikomatsakis
Refactoring towards region obligation
Two refactorings towards the intermediate goal of propagating region obligations through the `InferOk` structure (which in turn leads to the possibility of lazy normalization).
1. Remove `TypeOrigin` and add `ObligationCause`
- as we converge subtyping and obligations and so forth, the ability to keep these types distinct gets harder
2. Propagate obligations from `InferOk` into the surrounding fulfillment context
After these land, I have a separate branch (which still needs a bit of work) that can make the actual change to stop directly adding subregion edges and instead propagate obligations. (This should also make it easier to fix the unsoundness in specialization around lifetimes.)
r? @eddyb
Fix grammar verification
* Use make check-lexer to verify the grammar.
* Extend grammar/README
* Add make clean-grammar rule
* Add target check-build-lexer-verifier to make tidy, so it will build the verifier with every build and catch future errors
This is the continuation of #34994
r? @steveklabnik @jonathandturner @alexcrichton
* Use `make check-lexer` to verify the grammar.
* Extend grammar/README
* Add make clean-grammar rule
* Add target `check-build-lexer-verifier` to `make tidy`, so it will build the verifier with every build and catch future errors
* Search for antlr4 with configure and find
rustc: Implement #[link(cfg(..))] and crt-static
This commit is an implementation of [RFC 1721] which adds a new target feature
to the compiler, `crt-static`, which can be used to select how the C runtime for
a target is linked. Most targets dynamically linke the C runtime by default with
the notable exception of some of the musl targets.
[RFC 1721]: https://github.com/rust-lang/rfcs/blob/master/text/1721-crt-static.md
This commit first adds the new target-feature, `crt-static`. If enabled, then
the `cfg(target_feature = "crt-static")` will be available. Targets like musl
will have this enabled by default. This feature can be controlled through the
standard target-feature interface, `-C target-feature=+crt-static` or
`-C target-feature=-crt-static`.
Next this adds an gated and unstable `#[link(cfg(..))]` feature to enable the
`crt-static` semantics we want with libc. The exact behavior of this attribute
is a little squishy, but it's intended to be a forever-unstable
implementation detail of the liblibc crate.
Specifically the `#[link(cfg(..))]` annotation means that the `#[link]`
directive is only active in a compilation unit if that `cfg` value is satisfied.
For example when compiling an rlib, these directives are just encoded and
ignored for dylibs, and all staticlibs are continued to be put into the rlib as
usual. When placing that rlib into a staticlib, executable, or dylib, however,
the `cfg` is evaluated *as if it were defined in the final artifact* and the
library is decided to be linked or not.
Essentially, what'll happen is:
* On MSVC with `-C target-feature=-crt-static`, the `msvcrt.lib` library will be
linked to.
* On MSVC with `-C target-feature=+crt-static`, the `libcmt.lib` library will be
linked to.
* On musl with `-C target-feature=-crt-static`, the object files in liblibc.rlib
are removed and `-lc` is passed instead.
* On musl with `-C target-feature=+crt-static`, the object files in liblibc.rlib
are used and `-lc` is not passed.
This commit does **not** include an update to the liblibc module to implement
these changes. I plan to do that just after the 1.14.0 beta release is cut to
ensure we get ample time to test this feature.
cc #37406
This commit is an implementation of [RFC 1721] which adds a new target feature
to the compiler, `crt-static`, which can be used to select how the C runtime for
a target is linked. Most targets dynamically linke the C runtime by default with
the notable exception of some of the musl targets.
[RFC 1721]: https://github.com/rust-lang/rfcs/blob/master/text/1721-crt-static.md
This commit first adds the new target-feature, `crt-static`. If enabled, then
the `cfg(target_feature = "crt-static")` will be available. Targets like musl
will have this enabled by default. This feature can be controlled through the
standard target-feature interface, `-C target-feature=+crt-static` or
`-C target-feature=-crt-static`.
Next this adds an gated and unstable `#[link(cfg(..))]` feature to enable the
`crt-static` semantics we want with libc. The exact behavior of this attribute
is a little squishy, but it's intended to be a forever-unstable
implementation detail of the liblibc crate.
Specifically the `#[link(cfg(..))]` annotation means that the `#[link]`
directive is only active in a compilation unit if that `cfg` value is satisfied.
For example when compiling an rlib, these directives are just encoded and
ignored for dylibs, and all staticlibs are continued to be put into the rlib as
usual. When placing that rlib into a staticlib, executable, or dylib, however,
the `cfg` is evaluated *as if it were defined in the final artifact* and the
library is decided to be linked or not.
Essentially, what'll happen is:
* On MSVC with `-C target-feature=-crt-static`, the `msvcrt.lib` library will be
linked to.
* On MSVC with `-C target-feature=+crt-static`, the `libcmt.lib` library will be
linked to.
* On musl with `-C target-feature=-crt-static`, the object files in liblibc.rlib
are removed and `-lc` is passed instead.
* On musl with `-C target-feature=+crt-static`, the object files in liblibc.rlib
are used and `-lc` is not passed.
This commit does **not** include an update to the liblibc module to implement
these changes. I plan to do that just after the 1.14.0 beta release is cut to
ensure we get ample time to test this feature.
cc #37406
rustdoc: Fix some local inlining issues
* Only inline public items when inlining glob imports.
* Never inline while in a private module or a child of a private module.
* Never inline impls. This allowed the removal of a workaround in the
rendering code.
Remove `scope_auxiliary`.
`scope_auxiliary` is a big part of the high memory usage in #36799. It's only used for MIR dumping. I have taken a hubristic approach: I have assumed that particular use is unimportant and removed `scope_auxiliary` and related things. This reduces peak RSS by ~10% for a cut-down version of the program in #36799.
If that assumption is wrong perhaps we can avoid building `scope_auxiliary` unless MIR dumping is enabled.
In general having all these different structs for "origins" is not
great, since equating types can cause obligations and vice-versa. I
think we should gradually collapse these things. We almost certainly
also need to invest a big more energy into the `error_reporting` code to
rationalize it: this PR does kind of the minimal effort in that
direction.
Add llvm debuginfo configure option
CC @nnethercote @Mark-Simulacrum
We add a new configure option, `--enable-llvm-debuginfo`, to do exactly what you'd think.
Re: #31033Fixes#37738
rustc: Flag all builtins functions as hidden
When compiling compiler-rt you typically compile with `-fvisibility=hidden`
which to ensure that all symbols are hidden in shared objects and don't show up
in symbol tables. This is important for these intrinsics being linked in every
crate to ensure that we're not unnecessarily bloating the public ABI of Rust
crates.
This should help allow the compiler-builtins project with Rust-defined builtins
start landing in-tree as well.
rustbuild: Tweak default rule inclusion
If a rule is flagged with `default(true)` then the pseudo-rule `default:foo`
will include that. If a rule is also flagged with `.host(true)`, however, then
the rule shouldn't be included for targets that aren't in the host array. This
adds a filter to ensure we don't pull in host rules for targets by accident.
test: Move missing-items to a ui test
This test is failing on nightly for unknown reasons, and my best guess is a
difference in grep versions which is interpreting symbols differently. For now
let's just move this to a ui test and hope it fixes nightlies.
If a rule is flagged with `default(true)` then the pseudo-rule `default:foo`
will include that. If a rule is also flagged with `.host(true)`, however, then
the rule shouldn't be included for targets that aren't in the host array. This
adds a filter to ensure we don't pull in host rules for targets by accident.
Restore Vec::from_iter() specialization
Since I said "no intentional functional change" in the previous commit,
I guess it was inevitable there were unintentional changes. Not
functional, but optimization-wise. This restores the extend
specialization's use in Vec::from_iter. (commit 1).
Also use specialization in from_iter to reduce allocation code duplication
for the TrustedLen case (commit 2).
Bug introduced in PR #37709
* Only inline public items when inlining glob imports.
* Never inline while in a private module or a child of a private module.
* Never inline impls. This allowed the removal of a workaround in the
rendering code.
This test is failing on nightly for unknown reasons, and my best guess is a
difference in grep versions which is interpreting symbols differently. For now
let's just move this to a ui test and hope it fixes nightlies.
Fix syntax error in the compiler
Currently `rustc` accepts the following code: `fn f<'a>() where 'a {}`. This should be a syntax error, shouldn't it?
Not sure if my changes actually compile, waiting for the LLVM to build.