The issue was that the const evaluator was returning an error because
the feature flag const_indexing wasn't turned on. The error was then
reported as a bug.
Fixes#29914
Needs a correct review because I'm not too confident with how this works.
All tests related to the C ABI are now passing.
References:
- dbe68fecd0/lib/CodeGen/TargetInfo.cpp (L479-L489)
- dbe68fecd0/lib/CodeGen/TargetInfo.cpp (L466-L477)
The `classifyArgumentType` function has two different paths depending on `RAA == CGCXXABI::RAA_DirectInMemory`, but I don't really know what's the corresponding option in Rust.
cc @brson @eddyb
Back in 9bc8e6d14 the linking of rlibs changed to using the `link_whole_rlib`
function. This change, however was only intended to affect dylibs, not
executables. For executables we don't actually want to link entire rlibs because
we want the linker to strip out as much as possible.
This commit adds a conditional to this logic to only link entire rlibs if we're
creating a dylib, and otherwise an executable just links an rlib as usual. A
test is included which will fail to link if this behavior is reverted.
cc https://github.com/rust-lang/rust/pull/31487#issuecomment-182945101
plugin-[breaking-change]
The first commit renames `ast::Pat_` to `ast::PatKind` and uses its variants in enum qualified form. I've also taken the opportunity and renamed `PatKind::Region` into `PatKind::Ref`.
The second commit splits `PatKind::Enum` into `PatKind::TupleStruct` and `PatKind::UnitStruct`.
So, pattern kinds now correspond to their struct/variant kinds - `Struct`, `TupleStruct` and `UnitStruct`.
@nikomatsakis @nrc @arielb1 Are you okay with this naming scheme?
An alternative possible naming scheme is `PatKind::StructVariant`, `PatKind::TupleVariant`, `PatKind::UnitVariant` (it's probably closer to the common use, but I like it less).
I intend to apply these changes to HIR later, they should not necessarily go in the same nightly with https://github.com/rust-lang/rust/pull/31487
r? @Manishearth
The issue was that the const evaluator was returning an error because
the feature flag const_indexing wasn't turned on. The error was then
reported as a bug.
Fixes#29914
<sup>**context:** moving back to a layered approach to type checking.</sup>
It looks like they'd not ended up tightly coupled in the time one was owned by the other. Every instance outside of `FnCtxt.inh` was from an `InferCtxt` created and dropped in the same function body.
This conflicts slightly with #30652, but there too it looks like the `FulfillmentContext` is from an `InferCtxt` that is created and dropped within the same function body (across one call to a module-private function).
That said, I heard that the PR that originally moved `FulfillmentContext` into `InferCtxt` was big, which leaves me concerned that I'm missing something.
r? @nikomatsakis
This changes three ICEs to fatal errors.
I've grepped for `lang_item.*expect` and `\.expect.*lang` and didn't come up with any more. But, there could be more ICEs lurking.
I wasn't sure about a test because there already _is_ a cfail test for missing lang items, but it only checks one.
Relevant to (already closed) #31477#31480#31558.
cc @lilred
r? @brson
cc @alexcrichton
I still need to add error code explanation test with this, but I can't figure out a way to generate the `.md` files in order to test example source codes.
Will fix#27328.
Tools which rely on DWARF for generating code coverage report, don't generate accurate numbers on test builds. For instance, [this sample main](757bdbf388/src/main.rs) returns [100% coverage](https://coveralls.io/builds/4940156/source?filename=main.rs) when [kcov](https://github.com/SimonKagstrom/kcov/) runs.
With @pnkfelix 's great help, we could narrow down the issue: The linker strips unused function during phase 6. Here's a patch which stops stripping when someone calls `rustc --test $ARGS`. @pnkfelix wasn't sure if we should add a new flag, or just use --test. What do you think @alexcrichton ?
Also, I'm not too sure: where is the best place to add a test for this addition?
Thanks for the help!
This series of commits adds the initial implementation of a new build system for
the compiler and standard library based on Cargo. The high-level architecture
now looks like:
1. The `./configure` script is run with `--enable-rustbuild` and other standard
configuration options.
2. A `Makefile` is generate which proxies commands to the new build system.
3. The new build system has a Python script entry point which manages
downloading both a Rust and Cargo nightly. This initial script also manages
building the build system itself (which is written in Rust).
4. The build system, written in rust and called `bootstrap`, architects how to
call `cargo` and manages building all native libraries and such.
One might reasonably ask "why rewrite the build system?", which is a good
question! The Rust project has used Makefiles for as long as I can remember at
least, and while ugly and difficult to use are undeniably robust as they contain
years worth of tweaking and tuning for working on as many platforms in as many
situation as possible. The rationale behind this PR, however is:
* The makefiles are impenetrable to all but a few people on this
planet. This means that contributions to the build system are almost
nonexistent, and furthermore if a build system change is needed it's
incredibly difficult to figure out how to do so. This hindrance prevents us
from doing some "perhaps fancier" things we may wish to do in make.
* Our build system, while portable, is unfortunately not infinitely portable
everywhere. For example the recently-introduced MSVC target is quite unlikely
to have `make` installed by default (e.g. it requires building inside of an
MSYS2 shell currently). Conversely, the portability of make comes at a cost of
crazy and weird hacks to work around all sorts of versions of software
everywhere, especially when it comes to the configure script and makefiles.
By rewriting this logic in one of the most robust platforms there is, Rust,
we get to assuage all of these worries for free!
* There's a standard tool to build Rust crates, Cargo, but the standard library
and compiler don't use it. This means that they cannot benefit easily from the
crates.io ecosystem, nor can the ecosystem benefit from a standard way to
build this repository itself. Moving to Cargo should help assuage both of
these needs. This has the added benefit of making the compiler more
approachable for newbies as working on the compiler will just happen to be
working on a large Cargo project, all the same standard tools and tricks will
apply.
* There's a huge amount of portability information in the main distribution, for
example around cross compiling, compiling on new OSes, etc. Pushing this logic
into standard crates (like `gcc`) enables the community to immediately benefit
from new build logic.
Despite these benefits, it's going to be a long road to actually replace our
current build system. This PR is just the beginning and doesn't implement the
full suite of functionality as the current one, but there are many more to
follow! The current implementation strategy hopes to look like:
1. Land a second build system in-tree that can be itereated on an and
contributed to. This will not be used just yet in terms of gating new commits
to the repo.
2. Over time, bring the second build system to feature parity with the old build
system, start setting up CI for both build systems.
3. At some point in the future, switch the default to the new build system, but
keep the old one around.
4. At some further point in the future, delete the entire old build system.
---
Alright, so with all that out of the way, here's some more info on this PR
itself. The inital build system here is contained in the `src/bootstrap`
directory and just adds the necessary minimum bits to bootstrap the compiler
itself. There is currently no support for building documentation, running tests,
or installing, but the implemented support is:
* Compiling LLVM with `cmake` instead of `./configure` + `make`. The LLVM
project is removing their autotools build system, so we'd have to make this
transition eventually anyway.
* Compiling compiler-rt with `cmake` as well (for the same rationale as above).
* Adding `Cargo.toml` to map out the dependency graph to all crates, and also
adding `build.rs` files where appropriate. For example `alloc_jemalloc` has a
script to build jemalloc, `flate` has a script to build `miniz.c`, `std` will
build `libbacktrace`, etc.
* Orchestrating all the calls to `cargo` to build the standard distribution,
following the normal bootstrapping process. This also tracks dependencies
between steps to ensure cross-compilation targets happen as well.
* Configuration is intended to eventually be done through a `config.toml` file,
so support is implemented for this. The most likely vector of configuration
for now, however, is likely through `config.mk` (what `./configure` emits), so
the build system currently parses this information.
There's still quite a few steps left to do, and I'll open up some follow-up
issues (as well as a tracking issue) for this migration, but hopefully this is a
great start to get going! This PR is currently tested on all the
Windows/Linux/OSX triples for x86\_64 and x86, but more portability is always
welcome!
---
Future functionality left to implement
* [ ] Re-verify that multi-host builds work
* [ ] Verify android build works
* [ ] Verify iOS build work (mostly compiler-rt)
* [ ] Verify sha256 and ideally gpg of downloaded nightly compiler and nightly rustc
* [ ] Implement testing -- this is a huge bullet point with lots of sub-bullets
* [ ] Build and generate documentation (plus the various tools we have in-tree)
* [ ] Move various src/etc scripts into Rust -- not sure how this interacts with `make` build system
* [ ] Implement `make install` - like testing this is also quite massive
* [x] Deduplicate version information with makefiles
LLVM's memory dependence analysis doesn't properly account for calls
that could unwind and thus effectively act as a branching point. This
can lead to stores that are only visible when the call unwinds being
removed, possibly leading to calls to drop() functions with b0rked
memory contents.
As there is no fix for this in LLVM yet and we want to keep
compatibility to current LLVM versions anyways, we have to workaround
this bug by omitting the noalias attribute on &mut function arguments.
Benchmarks suggest that the performance loss by this change is very
small.
Thanks to @RalfJung for pushing me towards not removing too many
noalias annotations and @alexcrichton for helping out with the test for
this bug.
Fixes#29485
The pass removes the unwind branch of each terminator, thus moving the responsibility of handling
the -Z no-landing-pads flag to a small self-contained pass… instead of polluting the translator.
r? @Manishearth
I just noticed they can't be rolled up (often modifying the same line(s) in imports). So once I reach the critical amount for them to be merged I'll create a PR that merges all of them.
We no longer have a separate powerpc64 and powerpc64le target_arch, and instead use target_endian to select between the two. These patches fix a couple of remaining issues.
Turning gc-sections off improves code coverage based for tools which
use DWARF debugging information (like kcov). Otherwise dead code is
stripped and kcov returns a coverage percentage that doesn't reflect
reality.
LLVM's memory dependence analysis doesn't properly account for calls
that could unwind and thus effectively act as a branching point. This
can lead to stores that are only visible when the call unwinds being
removed, possibly leading to calls to drop() functions with b0rked
memory contents.
As there is no fix for this in LLVM yet and we want to keep
compatibility to current LLVM versions anyways, we have to workaround
this bug by omitting the noalias attribute on &mut function arguments.
Benchmarks suggest that the performance loss by this change is very
small.
Thanks to @RalfJung for pushing me towards not removing too many
noalias annotations and @alexcrichton for helping out with the test for
this bug.
Fixes#29485
* We don't have SEH-based unwinding yet.
For this reason we don't need operand bundles in MIR trans.
* Refactored some uses of fcx.
* Refactored some calls to `with_block`.
Here's another go at adding emscripten support. This needs to wait again on new [libc definitions](https://github.com/rust-lang-nursery/libc/pull/122) landing. To get the libc definitions right I had to add support for i686-unknown-linux-musl, which are very similar to emscripten's, which are derived from arm/musl.
This branch additionally removes the makefile dependency on the `EMSCRIPTEN` environment variable by not building the unused compiler-rt.
Again, this is not sufficient for actually compiling to asmjs since it needs additional LLVM patches.
r? @alexcrichton
This tells trans:🔙:write not to LLVM codegen to create .o
files but to put LLMV bitcode in .o files.
Emscripten's emcc supports .o in this format, and this is,
I think, slightly easier than making rlibs work without .o
files.
Backtraces, and the compilation of libbacktrace for asmjs, are disabled.
This port doesn't use jemalloc so, like pnacl, it disables jemalloc *for all targets*
in the configure file.
It disables stack protection.
The scope of these refactorings is a little bit bigger than the title implies. See each commit for details.
I’m submitting this for nitpicking now (the first 4 commits), because I feel the basic idea/implementation is sound and should work. I will eventually expand this PR to cover the translator changes necessary for all this to work (+ tests), ~~and perhaps implement a dynamic dropping scheme while I’m at it as well.~~
r? @nikomatsakis
If a new cleanup is added to a cleanup scope, the cached exits for that
scope are cleared, so all previous cleanups have to be translated
again. In the worst case this means that we get N distinct landing pads
where the last one has N cleanups, then N-1 and so on.
As new cleanups are to be executed before older ones, we can instead
cache the number of already translated cleanups in addition to the
block that contains them, and then only translate new ones, if any and
then jump to the cached ones, getting away with linear growth instead.
For the crate in #31381 this reduces the compile time for an optimized
build from >20 minutes (I cancelled the build at that point) to about 11
seconds. Testing a few crates that come with rustc show compile time
improvements somewhere between 1 and 8%. The "big" winner being
rustc_platform_intrinsics which features code similar to that in #31381.
Fixes#31381
The first commit improves detection of unused imports -- it should have been part of #30325. Right now, the unused import in the changed test would not be reported.
The rest of the commits are miscellaneous, independent clean-ups in resolve that I didn't think warranted individual PRs.
r? @nrc
The structure of the old translator as well as MIR assumed that drop glue cannot possibly panic and
translated the drops accordingly. However, in presence of `Drop::drop` this assumption can be
trivially shown to be untrue. As such, the Rust code like the following would never print number 2:
```rust
struct Droppable(u32);
impl Drop for Droppable {
fn drop(&mut self) {
if self.0 == 1 { panic!("Droppable(1)") } else { println!("{}", self.0) }
}
}
fn main() {
let x = Droppable(2);
let y = Droppable(1);
}
```
While the behaviour is allowed according to the language rules (we allow drops to not run), that’s
a very counter-intuitive behaviour. We fix this in MIR by allowing `Drop` to have a target to take
on divergence and connect the drops in such a way so the leftover drops are executed when some drop
unwinds.
Note, that this commit still does not implement the translator part of changes necessary for the
grand scheme of things to fully work, so the actual observed behaviour does not change yet. Coming
soon™.
See #14875.
We used to have CallKind only because there was a requirement to have all successors in a
contiguous memory block. Now that the requirement is gone, remove the CallKind and instead just
have the necessary information inline.
Awesome!
After the truly incredible and embarrassing mess I managed to make in my last pull request, this should be a bit less messy.
Fixes#31267 - with this change, the code mentioned in the issue compiles.
Found and fixed another issue as well - constants of zero-size types, when used in ExprRepeats inside associated constants, were causing the compiler to crash at the same place as #31267. An example of this:
```
struct Bar;
const BAZ: Bar = Bar;
struct Foo([Bar; 1]);
struct Biz;
impl Biz {
const BAZ: Foo = Foo([BAZ; 1]);
}
fn main() {
let foo = Biz::BAZ;
println!("{:?}", foo);
}
```
However, I'm fairly certain that my fix for this is not as elegant as it could be. The problem seems to occur only with an associated constant of a tuple struct containing a fixed size array which is initialized using a repeat expression, and when the element to be repeated provided to the repeat expression is another constant which is of a zero-sized type. The fix works by looking for constants and associated constants which are zero-width and consequently contain no data, but for which rustc is still attempting to emit an LLVM value; it simply stops rustc from attempting to emit anything. By my logic, this should work fine since the only values that are emitted in this case (according to the comments) are for closures with side effects, and constants will never have side effects, so it's fine to simply get rid of them. It fixes the error and things compile fine with it, but I have a sneaking suspicion that it could be done in a far better manner.
r? @nikomatsakis
If a new cleanup is added to a cleanup scope, the cached exits for that
scope are cleared, so all previous cleanups have to be translated
again. In the worst case this means that we get N distinct landing pads
where the last one has N cleanups, then N-1 and so on.
As new cleanups are to be executed before older ones, we can instead
cache the number of already translated cleanups in addition to the
block that contains them, and then only translate new ones, if any and
then jump to the cached ones, getting away with linear growth instead.
For the crate in #31381 this reduces the compile time for an optimized
build from >20 minutes (I cancelled the build at that point) to about 11
seconds. Testing a few crates that come with rustc show compile time
improvements somewhere between 1 and 8%. The "big" winner being
rustc_platform_intrinsics which features code similar to that in #31381.
Fixes#31381
This pull request adds support for [Illumos](http://illumos.org/)-based operating systems: SmartOS, OpenIndiana, and others. For now it's x86-64 only, as I'm not sure if 32-bit installations are widespread. This PR is based on #28589 by @potatosalad, and also closes#21000, #25845, and #25846.
Required changes in libc are already merged: https://github.com/rust-lang-nursery/libc/pull/138
Here's a snapshot required to build a stage0 compiler:
https://s3-eu-west-1.amazonaws.com/nbaksalyar/rustc-sunos-snapshot.tar.gz
It passes all checks from `make check`.
There are some changes I'm not quite sure about, e.g. macro usage in `src/libstd/num/f64.rs` and `DirEntry` structure in `src/libstd/sys/unix/fs.rs`, so any comments on how to rewrite it better would be greatly appreciated.
Also, LLVM configure script might need to be patched to build it successfully, or a pre-built libLLVM should be used. Some details can be found here: https://llvm.org/bugs/show_bug.cgi?id=25409
Thanks!
r? @brson
This mirrors the behavior of `clang-cl.exe` by adding a `CodeView` global
variable when emitting debug information. This should in turn help stack traces
that are generated when code is compiled with debuginfo enabled.
Closes#28133
Currently the `mipsel-unknown-linux-gnu` target doesn't actually set the
`target_arch` value to `mipsel` but it rather uses `mips`. Alternatively the
`powerpc64le` target does indeed set the `target_arch` as `powerpc64le`,
causing a bit of inconsistency between theset two.
As these are just the same instance of one instruction set, let's use
`target_endian` to switch between them and only set the `target_arch` as one
value. This should cut down on the number of `#[cfg]` annotations necessary and
all around be a little more ergonomic.
Currently the `mipsel-unknown-linux-gnu` target doesn't actually set the
`target_arch` value to `mipsel` but it rather uses `mips`. Alternatively the
`powerpc64le` target does indeed set the `target_arch` as `powerpc64le`,
causing a bit of inconsistency between theset two.
As these are just the same instance of one instruction set, let's use
`target_endian` to switch between them and only set the `target_arch` as one
value. This should cut down on the number of `#[cfg]` annotations necessary and
all around be a little more ergonomic.
This mirrors the behavior of `clang-cl.exe` by adding a `CodeView` global
variable when emitting debug information. This should in turn help stack traces
that are generated when code is compiled with debuginfo enabled.
Closes#28133
These commits perform a few high-level changes with the goal of enabling i686 MSVC unwinding:
* LLVM is upgraded to pick up the new exception handling instructions and intrinsics for MSVC. This puts us somewhere along the 3.8 branch, but we should still be compatible with LLVM 3.7 for non-MSVC targets.
* All unwinding for MSVC targets (both 32 and 64-bit) are implemented in terms of this new LLVM support. I would like to also extend this to Windows GNU targets to drop the runtime dependencies we have on MinGW, but I'd like to land this first.
* Some tests were fixed up for i686 MSVC here and there where necessary. The full test suite should be passing now for that target.
In terms of landing this I plan to have this go through first, then verify that i686 MSVC works, then I'll enable `make check` on the bots for that target instead of just `make` as-is today.
Closes#25869
This commit transitions the compiler to using the new exception handling
instructions in LLVM for implementing unwinding for MSVC. This affects both 32
and 64-bit MSVC as they're both now using SEH-based strategies. In terms of
standard library support, lots more details about how SEH unwinding is
implemented can be found in the commits.
In terms of trans, this change necessitated a few modifications:
* Branches were added to detect when the old landingpad instruction is used or
the new cleanuppad instruction is used to `trans::cleanup`.
* The return value from `cleanuppad` is not stored in an `alloca` (because it
cannot be).
* Each block in trans now has an `Option<LandingPad>` instead of `is_lpad: bool`
for indicating whether it's in a landing pad or not. The new exception
handling intrinsics require that on MSVC each `call` inside of a landing pad
is annotated with which landing pad that it's in. This change to the basic
block means that whenever a `call` or `invoke` instruction is generated we
know whether to annotate it as part of a cleanuppad or not.
* Lots of modifications were made to the instruction builders to construct the
new instructions as well as pass the tagging information for the call/invoke
instructions.
* The translation of the `try` intrinsics for MSVC has been overhauled to use
the new `catchpad` instruction. The filter function is now also a
rustc-generated function instead of a purely libstd-defined function. The
libstd definition still exists, it just has a stable ABI across architectures
and leaves some of the really weird implementation details to the compiler
(e.g. the `localescape` and `localrecover` intrinsics).
This brings some routine upgrades to the bundled LLVM that we're using, the most
notable of which is a bug fix to the way we handle range asserts when loading
the discriminant of an enum. This fix ended up being very similar to f9d4149c
where we basically can't have a range assert when loading a discriminant due to
filling drop, and appropriate flags were added to communicate this to
`trans::adt`.
When cross compiling for a target that has a larger usize type than the
host system, we use a truncated value to mark data as dropped,
eventually leading to drop calls on already dropped data. To properly
handle this, the drop pattern needs to be of type u64.
Since C_integral truncates its given value to the requested size anyway,
we can also drop the function that chose between the u32 and u64 values,
and always use the u64 constant.
Fixes#31139
The purpose of the translation item collector is to find all monomorphic instances of functions, methods and statics that need to be translated into LLVM IR in order to compile the current crate.
So far these instances have been discovered lazily during the trans path. For incremental compilation we want to know the set of these instances in advance, and that is what the trans::collect module provides.
In the future, incremental and regular translation will be driven by the collector implemented here.
r? @nikomatsakis
cc @rust-lang/compiler
Translation Item Collection
===========================
This module is responsible for discovering all items that will contribute to
to code generation of the crate. The important part here is that it not only
needs to find syntax-level items (functions, structs, etc) but also all
their monomorphized instantiations. Every non-generic, non-const function
maps to one LLVM artifact. Every generic function can produce
from zero to N artifacts, depending on the sets of type arguments it
is instantiated with.
This also applies to generic items from other crates: A generic definition
in crate X might produce monomorphizations that are compiled into crate Y.
We also have to collect these here.
The following kinds of "translation items" are handled here:
- Functions
- Methods
- Closures
- Statics
- Drop glue
The following things also result in LLVM artifacts, but are not collected
here, since we instantiate them locally on demand when needed in a given
codegen unit:
- Constants
- Vtables
- Object Shims
General Algorithm
-----------------
Let's define some terms first:
- A "translation item" is something that results in a function or global in
the LLVM IR of a codegen unit. Translation items do not stand on their
own, they can reference other translation items. For example, if function
`foo()` calls function `bar()` then the translation item for `foo()`
references the translation item for function `bar()`. In general, the
definition for translation item A referencing a translation item B is that
the LLVM artifact produced for A references the LLVM artifact produced
for B.
- Translation items and the references between them for a directed graph,
where the translation items are the nodes and references form the edges.
Let's call this graph the "translation item graph".
- The translation item graph for a program contains all translation items
that are needed in order to produce the complete LLVM IR of the program.
The purpose of the algorithm implemented in this module is to build the
translation item graph for the current crate. It runs in two phases:
1. Discover the roots of the graph by traversing the HIR of the crate.
2. Starting from the roots, find neighboring nodes by inspecting the MIR
representation of the item corresponding to a given node, until no more
new nodes are found.
The roots of the translation item graph correspond to the non-generic
syntactic items in the source code. We find them by walking the HIR of the
crate, and whenever we hit upon a function, method, or static item, we
create a translation item consisting of the items DefId and, since we only
consider non-generic items, an empty type-substitution set.
Given a translation item node, we can discover neighbors by inspecting its
MIR. We walk the MIR and any time we hit upon something that signifies a
reference to another translation item, we have found a neighbor. Since the
translation item we are currently at is always monomorphic, we also know the
concrete type arguments of its neighbors, and so all neighbors again will be
monomorphic. The specific forms a reference to a neighboring node can take
in MIR are quite diverse. Here is an overview:
The most obvious form of one translation item referencing another is a
function or method call (represented by a CALL terminator in MIR). But
calls are not the only thing that might introduce a reference between two
function translation items, and as we will see below, they are just a
specialized of the form described next, and consequently will don't get any
special treatment in the algorithm.
A function does not need to actually be called in order to be a neighbor of
another function. It suffices to just take a reference in order to introduce
an edge. Consider the following example:
```rust
fn print_val<T: Display>(x: T) {
println!("{}", x);
}
fn call_fn(f: &Fn(i32), x: i32) {
f(x);
}
fn main() {
let print_i32 = print_val::<i32>;
call_fn(&print_i32, 0);
}
```
The MIR of none of these functions will contain an explicit call to
`print_val::<i32>`. Nonetheless, in order to translate this program, we need
an instance of this function. Thus, whenever we encounter a function or
method in operand position, we treat it as a neighbor of the current
translation item. Calls are just a special case of that.
In a way, closures are a simple case. Since every closure object needs to be
constructed somewhere, we can reliably discover them by observing
`RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also
true for closures inlined from other crates.
Drop glue translation items are introduced by MIR drop-statements. The
generated translation item will again have drop-glue item neighbors if the
type to be dropped contains nested values that also need to be dropped. It
might also have a function item neighbor for the explicit `Drop::drop`
implementation of its type.
A subtle way of introducing neighbor edges is by casting to a trait object.
Since the resulting fat-pointer contains a reference to a vtable, we need to
instantiate all object-save methods of the trait, as we need to store
pointers to these functions even if they never get called anywhere. This can
be seen as a special case of taking a function reference.
Since `Box` expression have special compiler support, no explicit calls to
`exchange_malloc()` and `exchange_free()` may show up in MIR, even if the
compiler will generate them. We have to observe `Rvalue::Box` expressions
and Box-typed drop-statements for that purpose.
Interaction with Cross-Crate Inlining
-------------------------------------
The binary of a crate will not only contain machine code for the items
defined in the source code of that crate. It will also contain monomorphic
instantiations of any extern generic functions and of functions marked with
The collection algorithm handles this more or less transparently. When
constructing a neighbor node for an item, the algorithm will always call
`inline::get_local_instance()` before proceeding. If no local instance can
be acquired (e.g. for a function that is just linked to) no node is created;
which is exactly what we want, since no machine code should be generated in
the current crate for such an item. On the other hand, if we can
successfully inline the function, we subsequently can just treat it like a
local item, walking it's MIR et cetera.
Eager and Lazy Collection Mode
------------------------------
Translation item collection can be performed in one of two modes:
- Lazy mode means that items will only be instantiated when actually
referenced. The goal is to produce the least amount of machine code
possible.
- Eager mode is meant to be used in conjunction with incremental compilation
where a stable set of translation items is more important than a minimal
one. Thus, eager mode will instantiate drop-glue for every drop-able type
in the crate, even of no drop call for that type exists (yet). It will
also instantiate default implementations of trait methods, something that
otherwise is only done on demand.
Open Issues
-----------
Some things are not yet fully implemented in the current version of this
module.
Since no MIR is constructed yet for initializer expressions of constants and
statics we cannot inspect these properly.
Ideally, no translation item should be generated for const fns unless there
is a call to them that cannot be evaluated at compile time. At the moment
this is not implemented however: a translation item will be produced
regardless of whether it is actually needed or not.
<!-- Reviewable:start -->
[<img src="https://reviewable.io/review_button.png" height=40 alt="Review on Reviewable"/>](https://reviewable.io/reviews/rust-lang/rust/30900)
<!-- Reviewable:end -->
This commit removes the `-D warnings` flag being passed through the makefiles to
all crates to instead be a crate attribute. We want these attributes always
applied for all our standard builds, and this is more amenable to Cargo-based
builds as well.
Note that all `deny(warnings)` attributes are gated with a `cfg(stage0)`
attribute currently to match the same semantics we have today
The purpose of the translation item collector is to find all monomorphic instances of functions, methods and statics that need to be translated into LLVM IR in order to compile the current crate.
So far these instances have been discovered lazily during the trans path. For incremental compilation we want to know the set of these instances in advance, and that is what the trans::collect module provides.
In the future, incremental and regular translation will be driven by the collector implemented here.
LLVM was upgraded to a new version in this commit:
f9d4149c29
which was part of this pull request:
https://github.com/rust-lang/rust/issues/26025
Consider the following two lines from that commit:
f9d4149c29 (diff-a3b24dbe2ea7c1981f9ac79f9745f40aL462)f9d4149c29 (diff-a3b24dbe2ea7c1981f9ac79f9745f40aL469)
The purpose of these lines is to register LLVM passes. Prior to the that
commit, the passes being handled were assumed to be ModulePasses (a
specific type of LLVM pass) since they were being added to a ModulePass
manager. After that commit, both lines were refactored (presumably in an
attempt to DRY out the code), but the ModulePasses were changed to be
registered to a FunctionPass manager. This change resulted in
ModulePasses being run, but a Function object was being passed as a
parameter to the pass instead of a Module, which resulted in
segmentation faults.
In this commit, I changed relevant sections of the code to check the
type of the passes being added and register them to the appropriate pass
manager.
Closes https://github.com/rust-lang/rust/issues/31067
This commit removes the `-D warnings` flag being passed through the makefiles to
all crates to instead be a crate attribute. We want these attributes always
applied for all our standard builds, and this is more amenable to Cargo-based
builds as well.
Note that all `deny(warnings)` attributes are gated with a `cfg(stage0)`
attribute currently to match the same semantics we have today
This is a fix for #30741. It simplifies dep-graph tracking for trait matching. I was experimenting with having a greater resolution here, but decided to pare back to just have one dep node for "trait resolutions on trait `Foo`", which means that adding an impl to the trait `Foo` will invalidate all fns that had to do any trait matching at all on `Foo`. This seems like a reasonable starting place.
Independently, I realized I had neglected to record a dependency from trans on typeck -- this is obviously needed, since trans consumes a bunch of data structures that typeck produces (but which are not currently individually tracked) -- and because trans assumes that typeck has been done. Eventually those are going to go away and be replaced with MIR, which will be tracked, so this edge would presumably be derived automatically then, but it's an obvious enough thing to want for now.
r? @arielb1
cc @michaelwoerister -- this might indirectly fix the problem you observed with the trans cache, though it'd be nice to try and craft an independent test case for that.
This commit stabilizes and deprecates the FCP (final comment period) APIs for
the upcoming 1.7 beta release. The specific APIs which changed were:
Stabilized
* `Path::strip_prefix` (renamed from `relative_from`)
* `path::StripPrefixError` (new error type returned from `strip_prefix`)
* `Ipv4Addr::is_loopback`
* `Ipv4Addr::is_private`
* `Ipv4Addr::is_link_local`
* `Ipv4Addr::is_multicast`
* `Ipv4Addr::is_broadcast`
* `Ipv4Addr::is_documentation`
* `Ipv6Addr::is_unspecified`
* `Ipv6Addr::is_loopback`
* `Ipv6Addr::is_unique_local`
* `Ipv6Addr::is_multicast`
* `Vec::as_slice`
* `Vec::as_mut_slice`
* `String::as_str`
* `String::as_mut_str`
* `<[T]>::clone_from_slice` - the `usize` return value is removed
* `<[T]>::sort_by_key`
* `i32::checked_rem` (and other signed types)
* `i32::checked_neg` (and other signed types)
* `i32::checked_shl` (and other signed types)
* `i32::checked_shr` (and other signed types)
* `i32::saturating_mul` (and other signed types)
* `i32::overflowing_add` (and other signed types)
* `i32::overflowing_sub` (and other signed types)
* `i32::overflowing_mul` (and other signed types)
* `i32::overflowing_div` (and other signed types)
* `i32::overflowing_rem` (and other signed types)
* `i32::overflowing_neg` (and other signed types)
* `i32::overflowing_shl` (and other signed types)
* `i32::overflowing_shr` (and other signed types)
* `u32::checked_rem` (and other unsigned types)
* `u32::checked_shl` (and other unsigned types)
* `u32::saturating_mul` (and other unsigned types)
* `u32::overflowing_add` (and other unsigned types)
* `u32::overflowing_sub` (and other unsigned types)
* `u32::overflowing_mul` (and other unsigned types)
* `u32::overflowing_div` (and other unsigned types)
* `u32::overflowing_rem` (and other unsigned types)
* `u32::overflowing_neg` (and other unsigned types)
* `u32::overflowing_shl` (and other unsigned types)
* `u32::overflowing_shr` (and other unsigned types)
* `ffi::IntoStringError`
* `CString::into_string`
* `CString::into_bytes`
* `CString::into_bytes_with_nul`
* `From<CString> for Vec<u8>`
* `From<CString> for Vec<u8>`
* `IntoStringError::into_cstring`
* `IntoStringError::utf8_error`
* `Error for IntoStringError`
Deprecated
* `Path::relative_from` - renamed to `strip_prefix`
* `Path::prefix` - use `components().next()` instead
* `os::unix::fs` constants - moved to the `libc` crate
* `fmt::{radix, Radix, RadixFmt}` - not used enough to stabilize
* `IntoCow` - conflicts with `Into` and may come back later
* `i32::{BITS, BYTES}` (and other integers) - not pulling their weight
* `DebugTuple::formatter` - will be removed
* `sync::Semaphore` - not used enough and confused with system semaphores
Closes#23284
cc #27709 (still lots more methods though)
Closes#27712Closes#27722Closes#27728Closes#27735Closes#27729Closes#27755Closes#27782Closes#27798
The only way to get a value for a zero-sized type is `undef`, so
there's really no point in actually having a return type other than
void for such types. Also, while the comment in return_type_is_void
mentioned something about aiding C ABI support, @eddyb correctly
pointed out on IRC that there is no such thing as a zero-sized type in
C. And even with clang, which allows empty structs, those get
translated as void return types as well.
Fixes#28766
This is groundwork for #30587 (typestrong constant integrals), but imo it's a change that in itself is good, too, since we don't just juggle `u64`s around anymore.
`ty::Disr` will be changed to a `ConstInt` in #30587
This commit stabilizes and deprecates the FCP (final comment period) APIs for
the upcoming 1.7 beta release. The specific APIs which changed were:
Stabilized
* `Path::strip_prefix` (renamed from `relative_from`)
* `path::StripPrefixError` (new error type returned from `strip_prefix`)
* `Ipv4Addr::is_loopback`
* `Ipv4Addr::is_private`
* `Ipv4Addr::is_link_local`
* `Ipv4Addr::is_multicast`
* `Ipv4Addr::is_broadcast`
* `Ipv4Addr::is_documentation`
* `Ipv6Addr::is_unspecified`
* `Ipv6Addr::is_loopback`
* `Ipv6Addr::is_unique_local`
* `Ipv6Addr::is_multicast`
* `Vec::as_slice`
* `Vec::as_mut_slice`
* `String::as_str`
* `String::as_mut_str`
* `<[T]>::clone_from_slice` - the `usize` return value is removed
* `<[T]>::sort_by_key`
* `i32::checked_rem` (and other signed types)
* `i32::checked_neg` (and other signed types)
* `i32::checked_shl` (and other signed types)
* `i32::checked_shr` (and other signed types)
* `i32::saturating_mul` (and other signed types)
* `i32::overflowing_add` (and other signed types)
* `i32::overflowing_sub` (and other signed types)
* `i32::overflowing_mul` (and other signed types)
* `i32::overflowing_div` (and other signed types)
* `i32::overflowing_rem` (and other signed types)
* `i32::overflowing_neg` (and other signed types)
* `i32::overflowing_shl` (and other signed types)
* `i32::overflowing_shr` (and other signed types)
* `u32::checked_rem` (and other unsigned types)
* `u32::checked_neg` (and other unsigned types)
* `u32::checked_shl` (and other unsigned types)
* `u32::saturating_mul` (and other unsigned types)
* `u32::overflowing_add` (and other unsigned types)
* `u32::overflowing_sub` (and other unsigned types)
* `u32::overflowing_mul` (and other unsigned types)
* `u32::overflowing_div` (and other unsigned types)
* `u32::overflowing_rem` (and other unsigned types)
* `u32::overflowing_neg` (and other unsigned types)
* `u32::overflowing_shl` (and other unsigned types)
* `u32::overflowing_shr` (and other unsigned types)
* `ffi::IntoStringError`
* `CString::into_string`
* `CString::into_bytes`
* `CString::into_bytes_with_nul`
* `From<CString> for Vec<u8>`
* `From<CString> for Vec<u8>`
* `IntoStringError::into_cstring`
* `IntoStringError::utf8_error`
* `Error for IntoStringError`
Deprecated
* `Path::relative_from` - renamed to `strip_prefix`
* `Path::prefix` - use `components().next()` instead
* `os::unix::fs` constants - moved to the `libc` crate
* `fmt::{radix, Radix, RadixFmt}` - not used enough to stabilize
* `IntoCow` - conflicts with `Into` and may come back later
* `i32::{BITS, BYTES}` (and other integers) - not pulling their weight
* `DebugTuple::formatter` - will be removed
* `sync::Semaphore` - not used enough and confused with system semaphores
Closes#23284
cc #27709 (still lots more methods though)
Closes#27712Closes#27722Closes#27728Closes#27735Closes#27729Closes#27755Closes#27782Closes#27798
libfoo.a -> foo.lib
In order to not cause conflicts, changes the DLL import library name
foo.lib -> foo.dll.lib
Fixes https://github.com/rust-lang/rust/issues/29508
Because this changes output filenames this is a [breaking-change]
Signed-off-by: Peter Atashian <retep998@gmail.com>
This provides limited support for using associated consts on type parameters. It generally works on things that can be figured out at trans time. This doesn't work for array lengths or match arms. I have another patch to make it work in const expressions.
CC @eddyb @nikomatsakis
The only way to get a value for a zero-sized type is `undef`, so
there's really no point in actually having a return type other than
void for such types. Also, while the comment in return_type_is_void
mentioned something about aiding C ABI support, @eddyb correctly
pointed out on IRC that there is no such thing as a zero-sized type in
C. And even with clang, which allows empty structs, those get
translated as void return types as well.
Fixes#28766
The compiler can emit errors and warning in JSON format. This is a more easily machine readable form then the usual error output.
Closes#10492, closes#14863.
(Note that it might be a good idea to replace *all* calls of
`alloc_ty` with calls to `alloc_ty_init`, to encourage programmers to
consider the appropriate value for the `init` flag when creating
temporary values.)
includes bugfixes pointed out during review:
* Only `call_lifetime_start` for an alloca if the function entry does
not itself initialize it to "dropped."
* Remove `schedule_lifetime_end` after writing an *element* into a
borrowed slice. (As explained by [dotdash][irc], "the lifetime end
that is being removed was for an element in the slice, which is not
an alloca of its own and has no lifetime start of its own")
[irc]: https://botbot.me/mozilla/rust-internals/2016-01-13/?msg=57844504&page=3
This will correctly add the thread_local attribute to the external static
variable "errno":
extern {
#[thread_local]
static errno: c_int;
}
Before this commit, the thread_local attribute is ignored.
In particular, bring back the `zero` flag for `lvalue_scratch_datum`,
which controls whether the alloca's created immediately at function
start are uninitialized at that point or have their embedded
drop-flags initialized to "dropped".
Then made `to_lvalue_datum_in_scope` pass "dropped" as `zero` flag.
Previously it was returning a value, mostly for the two reasons:
* Cloning Lvalue is very cheap most of the time (i.e. when Lvalue is not a Projection);
* There’s users who want &mut lvalue and there’s users who want &lvalue. Returning a value allows
to make either one easier when pattern matching (i.e. Some(ref dest) or Some(ref mut dest)).
However, I’m now convinced this is an invalid approach. Namely the users which want a mutable
reference may modify the Lvalue in-place, but the changes won’t be reflected in the final MIR,
since the Lvalue modified is merely a clone.
Instead, we have two accessors `destination` and `destination_mut` which return a reference to the
destination in desired mode.
`TypeFoldable`s can currently be visited inefficiently with an identity folder that is run only for its side effects. This creates a more efficient visitor for `TypeFoldable`s and uses it to implement `RegionEscape` and `HasProjectionTypes`, fixing cleanup issue #20298.
This is a pure refactoring.
It was recently realized that we accept defaulted type parameters everywhere, without feature gate, even though the only place that we really *intended* to accept them were on types. This PR adds a lint warning unless the "type-parameter-defaults" feature is enabled. This should eventually become a hard error.
This is a [breaking-change] in that new feature gates are required (or simply removing the defaults, which is probably a better choice as they have little effect at this time). Results of a [crater run][crater] suggest that approximately 5-15 crates are affected. I didn't do the measurement quite right so that run cannot distinguish "true" regressions from "non-root" regressions, but even the upper bound of 15 affected crates seems relatively minimal.
[crater]: https://gist.github.com/nikomatsakis/760c6a67698bd24253bf
cc @rust-lang/lang
r? @pnkfelix
This is roughly the same as my previous PR that created a dependency graph, but that:
1. The dependency graph is only optionally constructed, though this doesn't seem to make much of a difference in terms of overhead (see measurements below).
2. The dependency graph is simpler (I combined a lot of nodes).
3. The dependency graph debugging facilities are much better: you can now use `RUST_DEP_GRAPH_FILTER` to filter the dep graph to just the nodes you are interested in, which is super help.
4. The tests are somewhat more elaborate, including a few known bugs I need to fix in a second pass.
This is potentially a `[breaking-change]` for plugin authors. If you are poking about in tcx state or something like that, you probably want to add `let _ignore = tcx.dep_graph.in_ignore();`, which will cause your reads/writes to be ignored and not affect the dep-graph.
After this, or perhaps as an add-on to this PR in some cases, what I would like to do is the following:
- [x] Write-up a little guide to how to use this system, the debugging options available, and what the possible failure modes are.
- [ ] Introduce read-only and perhaps the `Meta` node
- [x] Replace "memoization tasks" with node from the map itself
- [ ] Fix the shortcomings, obviously! Notably, the HIR map needs to register reads, and there is some state that is not yet tracked. (Maybe as a separate PR.)
- [x] Refactor the dep-graph code so that the actual maintenance of the dep-graph occurs in a parallel thread, and the main thread simply throws things into a shared channel (probably a fixed-size channel). There is no reason for dep-graph construction to be on the main thread. (Maybe as a separate PR.)
Regarding performance: adding this tracking does add some overhead, approximately 2% in my measurements (I was comparing the build times for rustdoc). Interestingly, enabling or disabling tracking doesn't seem to do very much. I want to poke at this some more and gather a bit more data -- in some tests I've seen that 2% go away, but on others it comes back. It's not entirely clear to me if that 2% is truly due to constructing the dep-graph at all.
The next big step after this is write some code to dump the dep-graph to disk and reload it.
r? @michaelwoerister
This considerably simplifies code around calling functions and translation of Resume itself. This
removes requirement that a block containing Resume terminator is always translated after something
which creates a landing pad, thus allowing us to actually translate some valid MIRs we could not
translate before.
However, an assumption is added that translator is correct (in regards to landing pad generation)
and code will never reach the Resume terminator without going through a landing pad first. Breaking
these assumptions would pass an `undef` value into the personality functions.
This merges two separate Call terminators and uses a separate CallKind sub-enum instead.
A little bit unrelatedly, copying into destination value for a certain kind of invoke, is also
implemented here. See the associated comment in code for various details that arise with this
implementation.
DivergingCall is different enough from the regular converging Call to warrant the split. This also
inlines CallData struct and creates a new CallTargets enum in order to have a way to differentiate
between calls that do not have an associated cleanup block.
Note, that this patch still does not produce DivergingCall terminator anywhere. Look for that in
the next patches.
So far, calls going through `Fn::call`, `FnMut::call_mut`, or `FnOnce::call_once` have not been translated properly into MIR:
The call `f(a, b, c)` where `f: Fn(T1, T2, T3)` would end up in MIR as:
```
call `f` with arguments `a`, `b`, `c`
```
What we really want is:
```
call `Fn::call` with arguments `f`, `a`, `b`, `c`
```
This PR transforms these kinds of overloaded calls during `HIR -> HAIR` translation.
What's still a bit funky is that the `Fn` traits expect arguments to be tupled but due to special handling type-checking and trans, we do not actually tuple arguments and everything still checks out fine. So, after this PR we end up with MIR containing calls where function signature and arguments seemingly don't match:
```
call Fn::call(&self, args: (T1, T2, T3)) with arguments `f`, `a`, `b`, `c`
```
instead of
```
call Fn::call(&self, args: (T1, T2, T3)) with arguments `f`, (`a`, `b`, `c`) // <- args tupled!
```
It would be nice if the call traits could go without special handling in MIR and later on.
So far `librustc::trans::base::trans_fn()` and `trans_closure()` have been passed the list of attributes on the function being translated *only* if the function was local and non-generic. For generic functions, functions inlined from other crates, functions with foreign ABI and for closures, only an empty list of attributes was ever passed to `trans_fn()`.
This led to the case that generic functions marked with `#[rustc_mir]` where not actually translated via MIR but via the legacy translation path.
This PR makes function/closure attributes always be passed to `trans_fn()` and disables the one test where this makes a difference.
If there is an actual reason why attributes were not passed along in these cases, let me know.
cc @rust-lang/compiler
cc @luqmana regarding the test case
This moves back (essentially reverts #30265) into MIR-specific translation code, but keeps the
funcition split out, since it is expected to eventually become recursive.
Fixes https://github.com/rust-lang/rust/issues/29572
cc @oli-obk
This PR changes the `emit_opaque` and `read_opaque` methods in the RBML library to use a space-efficient binary encoder that does not emit any tags and uses the LEB128 variable-length integer format for all numbers it emits.
The space savings are nice, albeit a bit underwhelming, especially for dynamic libraries where metadata is already compressed.
| RLIBs | NEW | OLD |
|--------------|--------|-----------|
|libstd | 8.8 MB | 10.5 MB |
|libcore |15.6 MB | 19.7 MB |
|libcollections| 3.7 MB | 4.8 MB |
|librustc |34.0 MB | 37.8 MB |
|libsyntax |28.3 MB | 32.1 MB |
| SOs | NEW | OLD |
|---------------|-----------|--------|
| libstd | 4.8 MB | 5.1 MB |
| librustc | 8.6 MB | 9.2 MB |
| libsyntax | 7.8 MB | 8.4 MB |
At least this should make up for the size increase caused recently by also storing MIR in crate metadata.
Can this be a breaking change for anyone?
cc @rust-lang/compiler
This moves back (essentially reverts #30265) into MIR-specific translation code, but keeps the
funcition split out, since it is expected to eventually become recursive.
`auto_ref()` currently returns an Rvalue datum for the ref'd value,
which is fine for thin pointers, but for fat pointers this means that
once the pointer is moved out of that datum, its memory will be marked
as dead. And because there is not necessarily an intermediate temporary
involved we can end up marking memory as dead that is actually still
used.
As I don't want to break the micro-optimization for thin pointers by
always returning an Lvalue datum, I decided to only do so for fat
pointers.
Fix#30478
`auto_ref()` currently returns an Rvalue datum for the ref'd value,
which is fine for thin pointers, but for fat pointers this means that
once the pointer is moved out of that datum, its memory will be marked
as dead. And because there is not necessarily an intermediate temporary
involved we can end up marking memory as dead that is actually still
used.
As I don't want to break the micro-optimization for thin pointers by
always returning an Lvalue datum, I decided to only do so for fat
pointers.
Fix#30478