Fix argument removal suggestion around macros
Fixes#112437.
Fixes#113866.
Helps with #114255.
The issue was that `span.find_ancestor_inside(outer)` could previously return a span with a different expansion context from `outer`.
This happens for example for the built-in macro `panic!`, which expands to another macro call of `panic_2021!` or `panic_2015!`. Because the call site of `panic_20xx!` has not associated source code, its span currently points to the call site of `panic!` instead.
Something similar also happens items that get desugared in AST->HIR lowering. For example, `for` loops get two spans: One "inner" span that has the `.desugaring_kind()` kind set to `DesugaringKind::ForLoop` and one "outer" span that does not. Similar to the macro situation, both of these spans point to the same source code, but have different expansion contexts.
This causes problems, because joining two spans with different expansion contexts will usually[^1] not actually join them together to avoid creating "spaghetti" spans that go from the macro definition to the macro call. For example, in the following snippet `full_span` might not actually contain the `adjusted_start` and `adjusted_end`. This caused the broken suggestion / debug ICE in the linked issues.
```rust
let adjusted_start = start.find_ancestor_inside(shared_ancestor);
let adjusted_end = end.find_ancestor_inside(shared_ancestor);
let full_span = adjusted_start.to(adjusted_end)
```
To fix the issue, this PR introduces a new method, `find_ancestor_inside_same_ctxt`, which combines the functionality of `find_ancestor_inside` and `find_ancestor_in_same_ctxt`: It finds an ancestor span that is contained within the parent *and* has the same syntax context, and is therefore safe to extend. This new method should probably be used everywhere, where the returned span is extended, but for now it is just used for the argument removal suggestion.
Additionally, this PR fixes a second issue where the function call itself is inside a macro but the arguments come from outside the macro. The test is added in the first commit to include stderr diff, so this is best reviewed commit by commit.
[^1]: If one expansion context is the root context and the other is not.
When encountering code like
```rust
fn foo() -> i32 {
match 0 {
1 => return 0,
2 => "",
_ => 1,
}
}
```
Point at the return type and not at the prior arm, as that arm has type
`!` which isn't influencing the arm corresponding to arm `2`.
Fix#78124.
Indexing is similar to method calls in having an arbitrary
left-hand-side and then something on the right, which is the main part
of the expression. Method calls already have a span for that right part,
but indexing does not. This means that long method chains that use
indexing have really bad spans, especially when the indexing panics and
that span in coverted into a panic location.
This does the same thing as method calls for the AST and HIR, storing an
extra span which is then put into the `fn_span` field in THIR.
new unstable option: -Zwrite-long-types-to-disk
This option guards the logic of writing long type names in files and instead using short forms in error messages in rustc_middle/ty/error behind a flag. The main motivation for this change is to disable this behaviour when running ui tests.
This logic can be triggered by running tests in a directory that has a long enough path, e.g. /my/very-long-path/where/rust-codebase/exists/
This means ui tests can fail depending on how long the path to their file is.
Some ui tests actually rely on this behaviour for their assertions, so for those we enable the flag manually.
This option guards the logic of writing long type names in files and
instead using short forms in error messages in rustc_middle/ty/error
behind a flag. The main motivation for this change is to disable this
behaviour when running ui tests.
This logic can be triggered by running tests in a directory that has a
long enough path, e.g. /my/very-long-path/where/rust-codebase/exists/
This means ui tests can fail depending on how long the path to their
file is.
Some ui tests actually rely on this behaviour for their assertions,
so for those we enable the flag manually.
Implement selection for `Unsize` for better coercion behavior
In order for much of coercion to succeed, we need to be able to deal with partial ambiguity of `Unsize` traits during selection. However, I pessimistically implemented selection in the new trait solver to just bail out with ambiguity if it was a built-in impl:
9227ff28af/compiler/rustc_trait_selection/src/solve/eval_ctxt/select.rs (L126)
This implements a proper "rematch" procedure for dealing with built-in `Unsize` goals, so that even if the goal is ambiguous, we are able to get nested obligations which are used in the coercion selection-like loop:
9227ff28af/compiler/rustc_hir_typeck/src/coercion.rs (L702)
Second commit just moves a `resolve_vars_if_possible` call to fix a bug where we weren't detecting a trait upcasting to occur.
r? ``@lcnr``
Don't call `query_normalize` when reporting similar impls
Firstly, It's sketchy to be using `query_normalize` at all during HIR typeck -- it's asking for an ICE 😅. Secondly, we're normalizing an impl trait ref that potentially has parameter types in `ty::ParamEnv::empty()`, which is kinda sketchy as well.
The only UI test change from removing this normalization is that we don't evaluate anonymous constants in impls, which end up giving us really ugly suggestions:
```
error[E0277]: the trait bound `[X; 35]: Default` is not satisfied
--> /home/gh-compiler-errors/test.rs:4:5
|
4 | <[X; 35] as Default>::default();
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ the trait `Default` is not implemented for `[X; 35]`
|
= help: the following other types implement trait `Default`:
&[T]
&mut [T]
[T; 32]
[T; core::::array::{impl#30}::{constant#0}]
[T; core::::array::{impl#31}::{constant#0}]
[T; core::::array::{impl#32}::{constant#0}]
[T; core::::array::{impl#33}::{constant#0}]
[T; core::::array::{impl#34}::{constant#0}]
and 27 others
```
So just fold the impls with a `BottomUpFolder` that calls `ty::Const::eval`. This doesn't work totally correctly with generic-const-exprs, but it's fine for stable code, and this is error reporting after all.
Make compiletest aware of targets without dynamic linking
Some parts of the compiletest internals and some tests require dynamic linking to work, which is not supported by all targets. Before this PR, this was handled by if branches matching on the target name.
This PR loads whether a target supports dynamic linking or not from the target spec, and adds a `// needs-dynamic-linking` attribute for tests that require it. Note that I was not able to replace all the old conditions based on the target name, as some targets have `dynamic_linking: true` in their spec but pretend they don't have it in compiletest.
Also, to get this to work I had to *partially* revert #111472 (cc `@djkoloski` `@tmandry` `@bjorn3).` On one hand, only the target spec contains whether a target supports dynamic linking, but on the other hand a subset of the fields can be overridden through `-C` flags (as far as I'm aware only `-C panic=$strategy`). The solution I came up with is to take the target spec as the base, and then override the panic strategy based on `--print=cfg`. Hopefully that should not break y'all again.
`hir`: Add `Become` expression kind (explicit tail calls experiment)
This adds `hir::ExprKind::Become` alongside ast lowering. During hir-thir lowering we currently lower `become` as `return`, so that we can partially test `become` without ICEing.
cc `@scottmcm`
r? `@Nilstrieb`
Always register sized obligation for argument
Removes a "hack" that skips registering sized obligations for parameters that are simple identifiers. This doesn't seem to affect diagnostics because we're probably already being smart enough about deduplicating identical error messages anyways.
Fixes#112608
Suggest publicly accessible paths for items in private mod:
When encountering a path in non-import situations that are not reachable
due to privacy constraints, search for any public re-exports that the
user could use instead.
Track whether an import suggestion is offering a re-export.
When encountering a path with private segments, mention if the item at
the final path segment is not publicly accessible at all.
Add item visibility metadata to privacy errors from imports:
On unreachable imports, record the item that was being imported in order
to suggest publicly available re-exports or to be explicit that the item
is not available publicly from any path.
In order to allow this, we add a mode to `resolve_path` that will not
add new privacy errors, nor return early if it encounters one. This way
we can get the `Res` corresponding to the final item in the import,
which is used in the privacy error machinery.
Adjust UI tests for `unit_bindings` lint
- Explicitly annotate `let x: () = expr;` where `x` has unit type, or remove the unit binding to leave only `expr;` instead.
- Use `let () = init;` or `let pat = ();` where appropriate.
- Fix disjoint-capture-in-same-closure test which wasn't actually testing a closure: `tests/ui/closures/2229_closure_analysis/run_pass/disjoint-capture-in-same-closure.rs`.
Note that unfortunately there's *a lot* of UI tests, there are a couple of places where I may have left something like `let (): ()` (this is not needed but is left over from an ealier version of the lint) which is bad style.
This PR is to help with the `unit_bindings` lint at #112380.
- Either explicitly annotate `let x: () = expr;` where `x` has unit
type, or remove the unit binding to leave only `expr;` instead.
- Fix disjoint-capture-in-same-closure test
Uplift `clippy::cmp_nan` lint
This PR aims at uplifting the `clippy::cmp_nan` lint into rustc.
## `invalid_nan_comparisons`
~~(deny-by-default)~~ (warn-by-default)
The `invalid_nan_comparisons` lint checks comparison with `f32::NAN` or `f64::NAN` as one of the operand.
### Example
```rust,compile_fail
let a = 2.3f32;
if a == f32::NAN {}
```
### Explanation
NaN does not compare meaningfully to anything – not even itself – so those comparisons are always false.
-----
Mostly followed the instructions for uplifting a clippy lint described here: https://github.com/rust-lang/rust/pull/99696#pullrequestreview-1134072751
`@rustbot` label: +I-lang-nominated
r? compiler