Begin fixing all the broken doctests in `compiler/`
Begins to fix#95994.
All of them pass now but 24 of them I've marked with `ignore HELP (<explanation>)` (asking for help) as I'm unsure how to get them to work / if we should leave them as they are.
There are also a few that I marked `ignore` that could maybe be made to work but seem less important.
Each `ignore` has a rough "reason" for ignoring after it parentheses, with
- `(pseudo-rust)` meaning "mostly rust-like but contains foreign syntax"
- `(illustrative)` a somewhat catchall for either a fragment of rust that doesn't stand on its own (like a lone type), or abbreviated rust with ellipses and undeclared types that would get too cluttered if made compile-worthy.
- `(not-rust)` stuff that isn't rust but benefits from the syntax highlighting, like MIR.
- `(internal)` uses `rustc_*` code which would be difficult to make work with the testing setup.
Those reason notes are a bit inconsistently applied and messy though. If that's important I can go through them again and try a more principled approach. When I run `rg '```ignore \(' .` on the repo, there look to be lots of different conventions other people have used for this sort of thing. I could try unifying them all if that would be helpful.
I'm not sure if there was a better existing way to do this but I wrote my own script to help me run all the doctests and wade through the output. If that would be useful to anyone else, I put it here: https://github.com/Elliot-Roberts/rust_doctest_fixing_tool
Add a new Rust attribute to support embedding debugger visualizers
Implemented [this RFC](https://github.com/rust-lang/rfcs/pull/3191) to add support for embedding debugger visualizers into a PDB.
Added a new attribute `#[debugger_visualizer]` and updated the `CrateMetadata` to store debugger visualizers for crate dependencies.
RFC: https://github.com/rust-lang/rfcs/pull/3191
Cleanup `DebuggerVisualizerFile` type and other minor cleanup of queries.
Merge the queries for debugger visualizers into a single query.
Revert move of `resolve_path` to `rustc_builtin_macros`. Update dependencies in Cargo.toml for `rustc_passes`.
Respond to PR comments. Load visualizer files into opaque bytes `Vec<u8>`. Debugger visualizers for dynamically linked crates should not be embedded in the current crate.
Update the unstable book with the new feature. Add the tracking issue for the debugger_visualizer feature.
Respond to PR comments and minor cleanups.
Using an obviously-placeholder syntax. An RFC would still be needed before this could have any chance at stabilization, and it might be removed at any point.
But I'd really like to have it in nightly at least to ensure it works well with try_trait_v2, especially as we refactor the traits.
The self-profiler's `EventArgRecorder` is general-purpose in its ability to record Strings (and `rustc_span` depends on the crate its defined in, `rustc_data_structure`).
Some generic activities could use recording locations where they happen in the user's code: to allow e.g. to track macro expansions and diagnose performance issues there.
This adds a `SpannedEventArgRecorder` that can record an argument given as a span, rather than a String, since turning spans into Strings can be tricky if you're not happy with its default Debug output. This way the recorder can have a `record_arg_spanned` method which will do that.
asm: Add a kreg0 register class on x86 which includes k0
Previously we only exposed a kreg register class which excludes the k0
register since it can't be used in many instructions. However k0 is a
valid register and we need to have a way of marking it as clobbered for
clobber_abi.
Fixes#94977
Previously we only exposed a kreg register class which excludes the k0
register since it can't be used in many instructions. However k0 is a
valid register and we need to have a way of marking it as clobbered for
clobber_abi.
Fixes#94977
Stop using CRATE_DEF_INDEX outside of metadata encoding.
`CRATE_DEF_ID` and `CrateNum::as_def_id` are almost always what we want. We should not manipulate raw `DefIndex` outside of metadata encoding.
Remove last vestiges of skippng ident span hashing
This removes a comment that no longer applies, and properly hashes
the full ident for path segments.
implement SIMD gather/scatter via vector getelementptr
Fixes https://github.com/rust-lang/portable-simd/issues/271
However, I don't *really* know what I am doing here... Cc ``@workingjubilee`` ``@calebzulawski``
I didn't do anything for cranelift -- ``@bjorn3`` not sure if it's okay for that backend to temporarily break. I'm happy to cherry-pick a patch that adds cranelift support. :)
Create (unstable) 2024 edition
[On Zulip](https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Deprecating.20macro.20scoping.20shenanigans/near/272860652), there was a small aside regarding creating the 2024 edition now as opposed to later. There was a reasonable amount of support and no stated opposition.
This change creates the 2024 edition in the compiler and creates a prelude for the 2024 edition. There is no current difference between the 2021 and 2024 editions. Cargo and other tools will need to be updated separately, as it's not in the same repository. This change permits the vast majority of work towards the next edition to proceed _now_ instead of waiting until 2024.
For sanity purposes, I've merged the "hello" UI tests into a single file with multiple revisions. Otherwise we'd end up with a file per edition, despite them being essentially identical.
````@rustbot```` label +T-lang +S-waiting-on-review
Not sure on the relevant team, to be honest.
* split `fuzzy_provenance_casts` into a ptr2int and a int2ptr lint
* feature gate both lints
* update documentation to be more realistic short term
* add tests for these lints
`MultiSpan` contains labels, which are more complicated with the
introduction of diagnostic translation and will use types from
`rustc_errors` - however, `rustc_errors` depends on `rustc_span` so
`rustc_span` cannot use types like `DiagnosticMessage` without
dependency cycles. Introduce a new `rustc_error_messages` crate that can
contain `DiagnosticMessage` and `MultiSpan`.
Signed-off-by: David Wood <david.wood@huawei.com>
When encountering an unsatisfied trait bound, if there are no other
suggestions, mention all the types that *do* implement that trait:
```
error[E0277]: the trait bound `f32: Foo` is not satisfied
--> $DIR/impl_wf.rs:22:6
|
LL | impl Baz<f32> for f32 { }
| ^^^^^^^^ the trait `Foo` is not implemented for `f32`
|
= help: the following other types implement trait `Foo`:
Option<T>
i32
str
note: required by a bound in `Baz`
--> $DIR/impl_wf.rs:18:31
|
LL | trait Baz<U: ?Sized> where U: Foo { }
| ^^^ required by this bound in `Baz`
```
Mention implementers of traits in `ImplObligation`s.
Do not mention other `impl`s for closures, ranges and `?`.
Attempts to improve method name suggestions when a matching method name
is not found. The approach taken is use the Levenshtein distance and
account for substrings having a high distance but can sometimes be very
close to the intended method (eg. empty vs is_empty).
Spellchecking compiler comments
This PR cleans up the rest of the spelling mistakes in the compiler comments. This PR does not change any literal or code spelling issues.
async: Give predictable name to binding generated from .await expressions.
This name makes it to debuginfo and allows debuggers to identify such bindings and their captured versions in suspended async fns.
This will be useful for async stack traces, as discussed in https://internals.rust-lang.org/t/async-debugging-logical-stack-traces-setting-goals-collecting-examples/15547.
I don't know if this needs some discussion by ````@rust-lang/compiler,```` e.g. about the name of the binding (`__awaitee`) or about the fact that this PR introduces a (soft) guarantee about a compiler generated name. Although, regarding the later, I think the same reasoning applies here as it does for debuginfo in general.
r? ````@tmandry````
Add the generic_associated_types_extended feature
Right now, this only ignore obligations that reference new placeholders in `poly_project_and_unify_type`. In the future, this might do other things, like allowing object-safe GATs.
**This feature is *incomplete* and quite likely unsound. This is mostly just for testing out potential future APIs using a "relaxed" set of rules until we figure out *proper* rules.**
Also drive by cleanup of adding a `ProjectAndUnifyResult` enum instead of using a `Result<Result<Option>>`.
r? `@nikomatsakis`
[1/2] Implement macro meta-variable expressions
See https://github.com/rust-lang/rust/pull/93545#issuecomment-1050963295
The logic behind `length`, `index` and `count` was removed but the parsing code is still present, i.e., everything is simply ignored like `ignored`.
r? ``@petrochenkov``
Treat unstable lints as unknown
This change causes unstable lints to be ignored if the `unknown_lints`
lint is allowed. To achieve this, it also changes lints to apply as soon
as they are processed. Previously, lints in the same set were processed
as a batch and then all simultaneously applied.
Implementation of https://github.com/rust-lang/compiler-team/issues/469
Merge `#[deprecated]` and `#[rustc_deprecated]`
The first commit makes "reason" an alias for "note" in `#[rustc_deprecated]`, while still prohibiting it in `#[deprecated]`.
The second commit changes "suggestion" to not just be a feature of `#[rustc_deprecated]`. This is placed behind the new `deprecated_suggestion` feature. This needs a tracking issue; let me know if this PR will be approved and I can create one.
The third commit is what permits `#[deprecated]` to be used when `#![feature(staged_api)]` is enabled. This isn't yet used in stdlib (only tests), as it would require duplicating all deprecation attributes until a bootstrap occurs. I intend to submit a follow-up PR that replaces all uses and removes the remaining `#[rustc_deprecated]` code after the next bootstrap.
`@rustbot` label +T-libs-api +C-feature-request +A-attributes +S-waiting-on-review
Rollup of 8 pull requests
Successful merges:
- #91804 (Make some `Clone` impls `const`)
- #92541 (Mention intent of `From` trait in its docs)
- #93057 (Add Iterator::collect_into)
- #94739 (Suggest `if let`/`let_else` for refutable pat in `let`)
- #94754 (Warn users about `||` in let chain expressions)
- #94763 (Add documentation about lifetimes to thread::scope.)
- #94768 (Ignore `close_read_wakes_up` test on SGX platform)
- #94772 (Add miri to the well known conditional compilation names and values)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
This change causes unstable lints to be ignored if the `unknown_lints`
lint is allowed. To achieve this, it also changes lints to apply as soon
as they are processed. Previously, lints in the same set were processed
as a batch and then all simultaneously applied.
Implementation of https://github.com/rust-lang/compiler-team/issues/469
Remove ordering traits from `rustc_span::hygiene::LocalExpnId`
Part of work on #90317.
Also adds a negative impl block as a form of documentation and a roadblock to regression.
Add well known values to `--check-cfg` implementation
This pull-request adds well known values for the well known names via `--check-cfg=values()`.
[RFC 3013: Checking conditional compilation at compile time](https://rust-lang.github.io/rfcs/3013-conditional-compilation-checking.html#checking-conditional-compilation-at-compile-time) doesn't define this at all, but this seems a nice improvement.
The activation is done by a empty `values()` (new syntax) similar to `names()` except that `names(foo)` also activate well known names while `values(aa, "aa", "kk")` would not.
As stated this use a different activation logic because well known values for the well known names are not always sufficient.
In fact this is problematic for every `target_*` cfg because of non builtin targets, as the current implementation use those built-ins targets to create the list the well known values.
The implementation is straight forward, first we gather (if necessary) all the values (lazily or not) and then we apply them.
r? ```@petrochenkov```
ARM: Only allow using d16-d31 with asm! when supported by the target
Support can be determined by checking for the "d32" LLVM feature.
r? ```````````````@nagisa```````````````
Only create a single expansion for each inline integration.
The inlining integrator used to create one expansion for each span from the callee body.
This PR reverses the logic to create a single expansion for the whole call,
which is more consistent with how macro expansions work for macros.
This should remove the large memory regression in #91743.
Fix several asm! related issues
This is a combination of several fixes, each split into a separate commit. Splitting these into PRs is not practical since they conflict with each other.
Fixes#92378Fixes#85247
r? ``@nagisa``
The previous approach of checking for the reserve-r9 target feature
didn't actually work because LLVM only sets this feature very late when
initializing the per-function subtarget.
Adopt let else in more places
Continuation of #89933, #91018, #91481, #93046, #93590, #94011.
I have extended my clippy lint to also recognize tuple passing and match statements. The diff caused by fixing it is way above 1 thousand lines. Thus, I split it up into multiple pull requests to make reviewing easier. This is the biggest of these PRs and handles the changes outside of rustdoc, rustc_typeck, rustc_const_eval, rustc_trait_selection, which were handled in PRs #94139, #94142, #94143, #94144.
Add MemTagSanitizer Support
Add support for the LLVM [MemTagSanitizer](https://llvm.org/docs/MemTagSanitizer.html).
On hardware which supports it (see caveats below), the MemTagSanitizer can catch bugs similar to AddressSanitizer and HardwareAddressSanitizer, but with lower overhead.
On a tag mismatch, a SIGSEGV is signaled with code SEGV_MTESERR / SEGV_MTEAERR.
# Usage
`-Zsanitizer=memtag -C target-feature="+mte"`
# Comments/Caveats
* MemTagSanitizer is only supported on AArch64 targets with hardware support
* Requires `-C target-feature="+mte"`
* LLVM MemTagSanitizer currently only performs stack tagging.
# TODO
* Tests
* Example
Add a stack-`pin!`-ning macro to `core::pin`.
- https://github.com/rust-lang/rust/issues/93178
`pin!` allows pinning a value to the stack. Thanks to being implemented in the stdlib, which gives access to `macro` macros, and to the private `.pointer` field of the `Pin` wrapper, [it was recently discovered](https://rust-lang.zulipchat.com/#narrow/stream/187312-wg-async-foundations/topic/pin!.20.E2.80.94.20the.20.22definitive.22.20edition.20.28a.20rhs-compatible.20pin-nin.2E.2E.2E/near/268731241) ([archive link](https://zulip-archive.rust-lang.org/stream/187312-wg-async-foundations/topic/A.20rhs-compatible.20pin-ning.20macro.html#268731241)), contrary to popular belief, that it is actually possible to implement and feature such a macro:
```rust
let foo: Pin<&mut PhantomPinned> = pin!(PhantomPinned);
stuff(foo);
```
or, directly:
```rust
stuff(pin!(PhantomPinned));
```
- For context, historically, this used to require one of the two following syntaxes:
- ```rust
let foo = PhantomPinned;
pin!(foo);
stuff(foo);
```
- ```rust
pin! {
let foo = PhantomPinned;
}
stuff(foo);
```
This macro thus allows, for instance, doing things like:
```diff
fn block_on<T>(fut: impl Future<Output = T>) -> T {
// Pin the future so it can be polled.
- let mut fut = Box::pin(fut);
+ let mut fut = pin!(fut);
// Create a new context to be passed to the future.
let t = thread::current();
let waker = Arc::new(ThreadWaker(t)).into();
let mut cx = Context::from_waker(&waker);
// Run the future to completion.
loop {
match fut.as_mut().poll(&mut cx) {
Poll::Ready(res) => return res,
Poll::Pending => thread::park(),
}
}
}
```
- _c.f._, https://doc.rust-lang.org/1.58.1/alloc/task/trait.Wake.html
And so on, and so forth.
I don't think such an API can get better than that, barring full featured language support (`&pin` references or something), so I see no reason not to start experimenting with featuring this in the stdlib already 🙂
- cc `@rust-lang/wg-async-foundations` \[EDIT: this doesn't seem to have pinged anybody 😩, thanks `@yoshuawuyts` for the real ping\]
r? `@joshtriplett`
___
# Docs preview
https://user-images.githubusercontent.com/9920355/150605731-1f45c2eb-c9b0-4ce3-b17f-2784fb75786e.mp4
___
# Implementation
The implementation ends up being dead simple (so much it's embarrassing):
```rust
pub macro pin($value:expr $(,)?) {
Pin { pointer: &mut { $value } }
}
```
_and voilà_!
- The key for it working lies in [the rules governing the scope of anonymous temporaries](https://doc.rust-lang.org/1.58.1/reference/destructors.html#temporary-lifetime-extension).
<details><summary>Comments and context</summary>
This is `Pin::new_unchecked(&mut { $value })`, so, for starters, let's
review such a hypothetical macro (that any user-code could define):
```rust
macro_rules! pin {( $value:expr ) => (
match &mut { $value } { at_value => unsafe { // Do not wrap `$value` in an `unsafe` block.
$crate::pin::Pin::<&mut _>::new_unchecked(at_value)
}}
)}
```
Safety:
- `type P = &mut _`. There are thus no pathological `Deref{,Mut}` impls that would break `Pin`'s invariants.
- `{ $value }` is braced, making it a _block expression_, thus **moving** the given `$value`, and making it _become an **anonymous** temporary_.
By virtue of being anonynomous, it can no longer be accessed, thus preventing any attemps to `mem::replace` it or `mem::forget` it, _etc._
This gives us a `pin!` definition that is sound, and which works, but only in certain scenarios:
- If the `pin!(value)` expression is _directly_ fed to a function call:
`let poll = pin!(fut).poll(cx);`
- If the `pin!(value)` expression is part of a scrutinee:
```rust
match pin!(fut) { pinned_fut => {
pinned_fut.as_mut().poll(...);
pinned_fut.as_mut().poll(...);
}} // <- `fut` is dropped here.
```
Alas, it doesn't work for the more straight-forward use-case: `let` bindings.
```rust
let pinned_fut = pin!(fut); // <- temporary value is freed at the end of this statement
pinned_fut.poll(...) // error[E0716]: temporary value dropped while borrowed
// note: consider using a `let` binding to create a longer lived value
```
- Issues such as this one are the ones motivating https://github.com/rust-lang/rfcs/pull/66
This makes such a macro incredibly unergonomic in practice, and the reason most macros out there had to take the path of being a statement/binding macro (_e.g._, `pin!(future);`) instead of featuring the more intuitive ergonomics of an expression macro.
Luckily, there is a way to avoid the problem. Indeed, the problem stems from the fact that a temporary is dropped at the end of its enclosing statement when it is part of the parameters given to function call, which has precisely been the case with our `Pin::new_unchecked()`!
For instance,
```rust
let p = Pin::new_unchecked(&mut <temporary>);
```
becomes:
```rust
let p = { let mut anon = <temporary>; &mut anon };
```
However, when using a literal braced struct to construct the value, references to temporaries can then be taken. This makes Rust change the lifespan of such temporaries so that they are, instead, dropped _at the end of the enscoping block_.
For instance,
```rust
let p = Pin { pointer: &mut <temporary> };
```
becomes:
```rust
let mut anon = <temporary>;
let p = Pin { pointer: &mut anon };
```
which is *exactly* what we want.
Finally, we don't hit problems _w.r.t._ the privacy of the `pointer` field, or the unqualified `Pin` name, thanks to `decl_macro`s being _fully_ hygienic (`def_site` hygiene).
</details>
___
# TODO
- [x] Add compile-fail tests with attempts to break the `Pin` invariants thanks to the macro (_e.g._, try to access the private `.pointer` field, or see what happens if such a pin is used outside its enscoping scope (borrow error));
- [ ] Follow-up stuff:
- [ ] Try to experiment with adding `pin!` to the prelude: this may require to be handled with some extra care, as it may lead to issues reminiscent of those of `assert_matches!`: https://github.com/rust-lang/rust/issues/82913
- [x] Create the tracking issue.
This thus still makes it technically possible to enable the feature, and thus
to trigger UB without `unsafe`, but this is fine since incomplete features are
known to be potentially unsound (labelled "may not be safe").
This follows from the discussion at https://github.com/rust-lang/rust/pull/93176#discussion_r799413561
Couple of driver cleanups
* Remove the `RustcDefaultCalls` struct, which hasn't been necessary since the introduction of `rustc_interface`.
* Move the `setup_callbacks` call around for a tiny code deduplication.
* Remove the `SPAN_DEBUG` global as it isn't actually necessary.
The only difference between the default and rustc_interface set version
is that the default accesses the source map from SESSION_GLOBALS while
the rustc_interface version accesses the source map from the global
TyCtxt. SESSION_GLOBALS is always set while running the compiler while
the global TyCtxt is not always set. If the global TyCtxt is set, it's
source map is identical to the one in SESSION_GLOBALS
Make `span_extend_to_prev_str()` more robust
Fixes#91560. The logic in `span_extend_to_prev_str()` is currently quite brittle and fails if there is extra whitespace or something else in between, and it also should return an `Option` but doesn't currently.
Fix invalid special casing of the unreachable! macro
This pull-request fix an invalid special casing of the `unreachable!` macro in the same way the `panic!` macro was solved, by adding two new internal only macros `unreachable_2015` and `unreachable_2021` edition dependent and turn `unreachable!` into a built-in macro that do dispatching. This logic is stolen from the `panic!` macro.
~~This pull-request also adds an internal feature `format_args_capture_non_literal` that allows capturing arguments from formatted string that expanded from macros. The original RFC #2795 mentioned this as a future possibility. This feature is [required](https://github.com/rust-lang/rust/issues/92137#issuecomment-1018630522) because of concatenation that needs to be done inside the macro:~~
```rust
$crate::concat!("internal error: entered unreachable code: ", $fmt)
```
**In summary** the new behavior for the `unreachable!` macro with this pr is:
Edition 2021:
```rust
let x = 5;
unreachable!("x is {x}");
```
```
internal error: entered unreachable code: x is 5
```
Edition <= 2018:
```rust
let x = 5;
unreachable!("x is {x}");
```
```
internal error: entered unreachable code: x is {x}
```
Also note that the change in this PR are **insta-stable** and **breaking changes** but this a considered as being a [bug](https://github.com/rust-lang/rust/issues/92137#issuecomment-998441613).
If someone could start a perf run and then a crater run this would be appreciated.
Fixes https://github.com/rust-lang/rust/issues/92137
Add `intrinsics::const_deallocate`
Tracking issue: #79597
Related: #91884
This allows deallocation of a memory allocated by `intrinsics::const_allocate`. At the moment, this can be only used to reduce memory usage, but in the future this may be useful to detect memory leaks (If an allocated memory remains after evaluation, raise an error...?).
Introduce a limit to Levenshtein distance computation
Incorporate distance limit from `find_best_match_for_name` directly into
Levenshtein distance computation.
Use the string size difference as a lower bound on the distance and exit
early when it exceeds the specified limit.
After finding a candidate within a limit, lower the limit further to
restrict the search space.
Incorporate distance limit from `find_best_match_for_name` directly into
Levenshtein distance computation.
Use the string size difference as a lower bound on the distance and exit
early when it exceeds the specified limit.
After finding a candidate within a limit, lower the limit further to
restrict the search space.
Make `Decodable` and `Decoder` infallible.
`Decoder` has two impls:
- opaque: this impl is already partly infallible, i.e. in some places it
currently panics on failure (e.g. if the input is too short, or on a
bad `Result` discriminant), and in some places it returns an error
(e.g. on a bad `Option` discriminant). The number of places where
either happens is surprisingly small, just because the binary
representation has very little redundancy and a lot of input reading
can occur even on malformed data.
- json: this impl is fully fallible, but it's only used (a) for the
`.rlink` file production, and there's a `FIXME` comment suggesting it
should change to a binary format, and (b) in a few tests in
non-fundamental ways. Indeed #85993 is open to remove it entirely.
And the top-level places in the compiler that call into decoding just
abort on error anyway. So the fallibility is providing little value, and
getting rid of it leads to some non-trivial performance improvements.
Much of this PR is pretty boring and mechanical. Some notes about
a few interesting parts:
- The commit removes `Decoder::{Error,error}`.
- `InternIteratorElement::intern_with`: the impl for `T` now has the same
optimization for small counts that the impl for `Result<T, E>` has,
because it's now much hotter.
- Decodable impls for SmallVec, LinkedList, VecDeque now all use
`collect`, which is nice; the one for `Vec` uses unsafe code, because
that gave better perf on some benchmarks.
r? `@bjorn3`
Print a helpful message if unwinding aborts when it reaches a nounwind function
This is implemented by routing `TerminatorKind::Abort` back through the panic handler, but with a special flag in the `PanicInfo` which indicates that the panic handler should *not* attempt to unwind the stack and should instead abort immediately.
This is useful for the planned change in https://github.com/rust-lang/lang-team/issues/97 which would make `Drop` impls `nounwind` by default.
### Code
```rust
#![feature(c_unwind)]
fn panic() {
panic!()
}
extern "C" fn nounwind() {
panic();
}
fn main() {
nounwind();
}
```
### Before
```
$ ./test
thread 'main' panicked at 'explicit panic', test.rs:4:5
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
Illegal instruction (core dumped)
```
### After
```
$ ./test
thread 'main' panicked at 'explicit panic', test.rs:4:5
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
thread 'main' panicked at 'panic in a function that cannot unwind', test.rs:7:1
stack backtrace:
0: 0x556f8f86ec9b - <std::sys_common::backtrace::_print::DisplayBacktrace as core::fmt::Display>::fmt::hdccefe11a6ac4396
1: 0x556f8f88ac6c - core::fmt::write::he152b28c41466ebb
2: 0x556f8f85d6e2 - std::io::Write::write_fmt::h0c261480ab86f3d3
3: 0x556f8f8654fa - std::panicking::default_hook::{{closure}}::h5d7346f3ff7f6c1b
4: 0x556f8f86512b - std::panicking::default_hook::hd85803a1376cac7f
5: 0x556f8f865a91 - std::panicking::rust_panic_with_hook::h4dc1c5a3036257ac
6: 0x556f8f86f079 - std::panicking::begin_panic_handler::{{closure}}::hdda1d83c7a9d34d2
7: 0x556f8f86edc4 - std::sys_common::backtrace::__rust_end_short_backtrace::h5b70ed0cce71e95f
8: 0x556f8f865592 - rust_begin_unwind
9: 0x556f8f85a764 - core::panicking::panic_no_unwind::h2606ab3d78c87899
10: 0x556f8f85b910 - test::nounwind::hade6c7ee65050347
11: 0x556f8f85b936 - test::main::hdc6e02cb36343525
12: 0x556f8f85b7e3 - core::ops::function::FnOnce::call_once::h4d02663acfc7597f
13: 0x556f8f85b739 - std::sys_common::backtrace::__rust_begin_short_backtrace::h071d40135adb0101
14: 0x556f8f85c149 - std::rt::lang_start::{{closure}}::h70dbfbf38b685e93
15: 0x556f8f85c791 - std::rt::lang_start_internal::h798f1c0268d525aa
16: 0x556f8f85c131 - std::rt::lang_start::h476a7ee0a0bb663f
17: 0x556f8f85b963 - main
18: 0x7f64c0822b25 - __libc_start_main
19: 0x556f8f85ae8e - _start
20: 0x0 - <unknown>
thread panicked while panicking. aborting.
Aborted (core dumped)
```
`Decoder` has two impls:
- opaque: this impl is already partly infallible, i.e. in some places it
currently panics on failure (e.g. if the input is too short, or on a
bad `Result` discriminant), and in some places it returns an error
(e.g. on a bad `Option` discriminant). The number of places where
either happens is surprisingly small, just because the binary
representation has very little redundancy and a lot of input reading
can occur even on malformed data.
- json: this impl is fully fallible, but it's only used (a) for the
`.rlink` file production, and there's a `FIXME` comment suggesting it
should change to a binary format, and (b) in a few tests in
non-fundamental ways. Indeed #85993 is open to remove it entirely.
And the top-level places in the compiler that call into decoding just
abort on error anyway. So the fallibility is providing little value, and
getting rid of it leads to some non-trivial performance improvements.
Much of this commit is pretty boring and mechanical. Some notes about
a few interesting parts:
- The commit removes `Decoder::{Error,error}`.
- `InternIteratorElement::intern_with`: the impl for `T` now has the same
optimization for small counts that the impl for `Result<T, E>` has,
because it's now much hotter.
- Decodable impls for SmallVec, LinkedList, VecDeque now all use
`collect`, which is nice; the one for `Vec` uses unsafe code, because
that gave better perf on some benchmarks.
Improve SIMD casts
* Allows `simd_cast` intrinsic to take `usize` and `isize`
* Adds `simd_as` intrinsic, which is the same as `simd_cast` except for saturating float-to-int conversions (matching the behavior of `as`).
cc `@workingjubilee`
Avoid unnecessary monomorphization of inline asm related functions
This should reduce build time for codegen backends by avoiding duplicated monomorphization of certain inline asm related functions for each passed in closure type.
Implement `#[rustc_must_implement_one_of]` attribute
This PR adds a new attribute — `#[rustc_must_implement_one_of]` that allows changing the "minimal complete definition" of a trait. It's similar to GHC's minimal `{-# MINIMAL #-}` pragma, though `#[rustc_must_implement_one_of]` is weaker atm.
Such attribute was long wanted. It can be, for example, used in `Read` trait to make transitions to recently added `read_buf` easier:
```rust
#[rustc_must_implement_one_of(read, read_buf)]
pub trait Read {
fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
let mut buf = ReadBuf::new(buf);
self.read_buf(&mut buf)?;
Ok(buf.filled_len())
}
fn read_buf(&mut self, buf: &mut ReadBuf<'_>) -> Result<()> {
default_read_buf(|b| self.read(b), buf)
}
}
impl Read for Ty0 {}
//^ This will fail to compile even though all `Read` methods have default implementations
// Both of these will compile just fine
impl Read for Ty1 {
fn read(&mut self, buf: &mut [u8]) -> Result<usize> { /* ... */ }
}
impl Read for Ty2 {
fn read_buf(&mut self, buf: &mut ReadBuf<'_>) -> Result<()> { /* ... */ }
}
```
For now, this is implemented as an internal attribute to start experimenting on the design of this feature. In the future we may want to extend it:
- Allow arbitrary requirements like `a | (b & c)`
- Allow multiple requirements like
- ```rust
#[rustc_must_implement_one_of(a, b)]
#[rustc_must_implement_one_of(c, d)]
```
- Make it appear in rustdoc documentation
- Change the syntax?
- Etc
Eventually, we should make an RFC and make this (or rather similar) attribute public.
---
I'm fairly new to compiler development and not at all sure if the implementation makes sense, but at least it passes tests :)
Remove deprecated LLVM-style inline assembly
The `llvm_asm!` was deprecated back in #87590 1.56.0, with intention to remove
it once `asm!` was stabilized, which already happened in #91728 1.59.0. Now it
is time to remove `llvm_asm!` to avoid continued maintenance cost.
Closes#70173.
Closes#92794.
Closes#87612.
Closes#82065.
cc `@rust-lang/wg-inline-asm`
r? `@Amanieu`
Add diagnostic items for macros
For use in Clippy, it adds diagnostic items to all the stable public macros
Clippy has lints that look for almost all of these (currently by name or path), but there are a few that aren't currently part of any lint, I could remove those if it's preferred to add them as needed rather than ahead of time
Ensure that `Fingerprint` caching respects hashing configuration
Fixes#92266
In some `HashStable` impls, we use a cache to avoid re-computing
the same `Fingerprint` from the same structure (e.g. an `AdtDef`).
However, the `StableHashingContext` used can be configured to
perform hashing in different ways (e.g. skipping `Span`s). This
configuration information is not included in the cache key,
which will cause an incorrect `Fingerprint` to be used if
we hash the same structure with different `StableHashingContext`
settings.
To fix this, the configuration settings of `StableHashingContext`
are split out into a separate `HashingControls` struct. This
struct is used as part of the cache key, ensuring that our caches
always produce the correct result for the given settings.
With this in place, we now turn off `Span` hashing during the
entire process of computing the hash included in legacy symbols.
This current has no effect, but will matter when a future PR
starts hashing more `Span`s that we currently skip.
Fixes#92266
In some `HashStable` impls, we use a cache to avoid re-computing
the same `Fingerprint` from the same structure (e.g. an `AdtDef`).
However, the `StableHashingContext` used can be configured to
perform hashing in different ways (e.g. skipping `Span`s). This
configuration information is not included in the cache key,
which will cause an incorrect `Fingerprint` to be used if
we hash the same structure with different `StableHashingContext`
settings.
To fix this, the configuration settings of `StableHashingContext`
are split out into a separate `HashingControls` struct. This
struct is used as part of the cache key, ensuring that our caches
always produce the correct result for the given settings.
With this in place, we now turn off `Span` hashing during the
entire process of computing the hash included in legacy symbols.
This current has no effect, but will matter when a future PR
starts hashing more `Span`s that we currently skip.
Add `#[rustc_clean(loaded_from_disk)]` to assert loading of query result
Currently, you can use `#[rustc_clean]` to assert to that a particular
query (technically, a `DepNode`) is green or red. However, a green
`DepNode` does not mean that the query result was actually deserialized
from disk - we might have never re-run a query that needed the result.
Some incremental tests are written as regression tests for ICEs that
occured during query result decoding. Using
`#[rustc_clean(loaded_from_disk="typeck")]`, you can now assert
that the result of a particular query (e.g. `typeck`) was actually
loaded from disk, in addition to being green.
Currently, you can use `#[rustc_clean]` to assert to that a particular
query (technically, a `DepNode`) is green or red. However, a green
`DepNode` does not mean that the query result was actually deserialized
from disk - we might have never re-run a query that needed the result.
Some incremental tests are written as regression tests for ICEs that
occured during query result decoding. Using
`#[rustc_clean(loaded_from_disk="typeck")]`, you can now assert
that the result of a particular query (e.g. `typeck`) was actually
loaded from disk, in addition to being green.
Remove `SymbolStr`
This was originally proposed in https://github.com/rust-lang/rust/pull/74554#discussion_r466203544. As well as removing the icky `SymbolStr` type, it allows the removal of a lot of `&` and `*` occurrences.
Best reviewed one commit at a time.
r? `@oli-obk`
By changing `as_str()` to take `&self` instead of `self`, we can just
return `&str`. We're still lying about lifetimes, but it's a smaller lie
than before, where `SymbolStr` contained a (fake) `&'static str`!
manually implement `Hash` for `DefId`
This might speed up hashing for hashers that can work on individual u64s. Just as an experiment, suggested in a reddit thread on `FxHasher`. cc `@nnethercote`
Note that this should not be merged as is without cfg-ing the code path for 64 bits.