`FloatMath` no longer exists and all functionality from both traits is
available under `Float`. Change from
use std::num::{Float, FloatMath};
to
use std::num::Float;
[breaking-change]
These aren't in their final form, but are all aiming to be part of 1.0, so at the very least encouraging usage now to find the bugs is nice.
Also, the widespread roll-out of associated types in the standard library indicates they're getting good, and it's lame to have to activate a feature in essentially every crate ever.
macro_rules! is like an item that defines a macro. Other items don't have a
trailing semicolon, or use a paren-delimited body.
If there's an argument for matching the invocation syntax, e.g. parentheses for
an expr macro, then I think that applies more strongly to the *inner*
delimiters on the LHS, wrapping the individual argument patterns.
This removes a large array of deprecated functionality, regardless of how
recently it was deprecated. The purpose of this commit is to clean out the
standard libraries and compiler for the upcoming alpha release.
Some notable compiler changes were to enable warnings for all now-deprecated
command line arguments (previously the deprecated versions were silently
accepted) as well as removing deriving(Zero) entirely (the trait was removed).
The distribution no longer contains the libtime or libregex_macros crates. Both
of these have been deprecated for some time and are available externally.
This modifies `Parser::eat_lt` to always split up `<<`s, instead of doing so only when a lifetime name followed or the `force` parameter (now removed) was `true`. This is because `Foo<<TYPE` is now a valid start to a type, whereas previously only `Foo<<LIFETIME` was valid.
This is a [breaking-change]. Change code that looks like this:
```rust
let x = foo as bar << 13;
```
to use parentheses, like this:
```rust
let x = (foo as bar) << 13;
```
Closes#17362.
This commit is an implementation of [RFC 503][rfc] which is a stabilization
story for the prelude. Most of the RFC was directly applied, removing reexports.
Some reexports are kept around, however:
* `range` remains until range syntax has landed to reduce churn.
* `Path` and `GenericPath` remain until path reform lands. This is done to
prevent many imports of `GenericPath` which will soon be removed.
* All `io` traits remain until I/O reform lands so imports can be rewritten all
at once to `std::io::prelude::*`.
This is a breaking change because many prelude reexports have been removed, and
the RFC can be consulted for the exact list of removed reexports, as well as to
find the locations of where to import them.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0503-prelude-stabilization.md
[breaking-change]
Closes#20068
This pass performs a second pass of stabilization through the `std::sync`
module, avoiding modules/types that are being handled in other PRs (e.g.
mutexes, rwlocks, condvars, and channels).
The following items are now stable
* `sync::atomic`
* `sync::atomic::ATOMIC_BOOL_INIT` (was `INIT_ATOMIC_BOOL`)
* `sync::atomic::ATOMIC_INT_INIT` (was `INIT_ATOMIC_INT`)
* `sync::atomic::ATOMIC_UINT_INIT` (was `INIT_ATOMIC_UINT`)
* `sync::Once`
* `sync::ONCE_INIT`
* `sync::Once::call_once` (was `doit`)
* C == `pthread_once(..)`
* Boost == `call_once(..)`
* Windows == `InitOnceExecuteOnce`
* `sync::Barrier`
* `sync::Barrier::new`
* `sync::Barrier::wait` (now returns a `bool`)
* `sync::Semaphore::new`
* `sync::Semaphore::acquire`
* `sync::Semaphore::release`
The following items remain unstable
* `sync::SemaphoreGuard`
* `sync::Semaphore::access` - it's unclear how this relates to the poisoning
story of mutexes.
* `sync::TaskPool` - the semantics of a failing task and whether a thread is
re-attached to a thread pool are somewhat unclear, and the
utility of this type in `sync` is question with respect to
the jobs of other primitives. This type will likely become
stable or move out of the standard library over time.
* `sync::Future` - futures as-is have yet to be deeply re-evaluated with the
recent core changes to Rust's synchronization story, and will
likely become stable in the future but are unstable until
that time comes.
[breaking-change]
Since runtime is removed, rust has no tasks anymore and everything is moving
from being task-* to thread-*. Let’s rename TaskRng as well!
This is a breaking change. If a breaking change for consistency is not desired, feel free to close.
The first six commits are from an earlier PR (#19858) and have already been reviewed. This PR makes an awful hack in the compiler to accommodate slices both natively and in the index a range form. After a snapshot we can hopefully add the new Index impls and then we can remove these awful hacks.
r? @nikomatsakis (or anyone who knows the compiler, really)
All of the current std::sync primitives have poisoning enable which means that
when a task fails inside of a write-access lock then all future attempts to
acquire the lock will fail. This strategy ensures that stale data whose
invariants are possibly not upheld are never viewed by other tasks to help
propagate unexpected panics (bugs in a program) among tasks.
Currently there is no way to test whether a mutex or rwlock is poisoned. One
method would be to duplicate all the methods with a sister foo_catch function,
for example. This pattern is, however, against our [error guidelines][errors].
As a result, this commit exposes the fact that a task has failed internally
through the return value of a `Result`.
[errors]: https://github.com/rust-lang/rfcs/blob/master/text/0236-error-conventions.md#do-not-provide-both-result-and-fail-variants
All methods now return a `LockResult<T>` or a `TryLockResult<T>` which
communicates whether the lock was poisoned or not. In a `LockResult`, both the
`Ok` and `Err` variants contains the `MutexGuard<T>` that is being returned in
order to allow access to the data if poisoning is not desired. This also means
that the lock is *always* held upon returning from `.lock()`.
A new type, `PoisonError`, was added with one method `into_guard` which can
consume the assertion that a lock is poisoned to gain access to the underlying
data.
This is a breaking change because the signatures of these methods have changed,
often incompatible ways. One major difference is that the `wait` methods on a
condition variable now consume the guard and return it in as a `LockResult` to
indicate whether the lock was poisoned while waiting. Most code can be updated
by calling `.unwrap()` on the return value of `.lock()`.
[breaking-change]
Since runtime is removed, rust has no tasks anymore and everything is moving
from being task-* to thread-*. Let’s rename TaskRng as well!
* Rename TaskRng to ThreadRng
* Rename task_rng to thread_rng
[breaking-change]
Implements [RFC 486](https://github.com/rust-lang/rfcs/pull/486). Fixes#19908.
* Rename `to_ascii_{lower,upper}` to `to_ascii_{lower,upper}case`, per #14401
* Remove the `Ascii` type and associated traits: `AsciiCast`, `OwnedAsciiCast`, `AsciiStr`, `IntoBytes`, and `IntoString`.
* As a replacement, add `.is_ascii()` to `AsciiExt`, and implement `AsciiExt` for `u8` and `char`.
[breaking-change]
This breaks code that looks like this:
let x = foo as bar << 13;
Change such code to look like this:
let x = (foo as bar) << 13;
Closes#17362.
[breaking-change]
According to [RFC 344][], methods that return `&[u8]` should have names
ending in `bytes`. Though `include_bin!` is a macro not a method, it
seems reasonable to follow the convention anyway.
We keep the old name around for now, but trigger a deprecation warning
when it is used.
[RFC 344]: https://github.com/rust-lang/rfcs/blob/master/text/0344-conventions-galore.md
[breaking-change]
This commit is part of a series that introduces a `std::thread` API to
replace `std::task`.
In the new API, `spawn` returns a `JoinGuard`, which by default will
join the spawned thread when dropped. It can also be used to join
explicitly at any time, returning the thread's result. Alternatively,
the spawned thread can be explicitly detached (so no join takes place).
As part of this change, Rust processes now terminate when the main
thread exits, even if other detached threads are still running, moving
Rust closer to standard threading models. This new behavior may break code
that was relying on the previously implicit join-all.
In addition to the above, the new thread API also offers some built-in
support for building blocking abstractions in user space; see the module
doc for details.
Closes#18000
[breaking-change]
followed by a semicolon.
This allows code like `vec![1i, 2, 3].len();` to work.
This breaks code that uses macros as statements without putting
semicolons after them, such as:
fn main() {
...
assert!(a == b)
assert!(c == d)
println(...);
}
It also breaks code that uses macros as items without semicolons:
local_data_key!(foo)
fn main() {
println("hello world")
}
Add semicolons to fix this code. Those two examples can be fixed as
follows:
fn main() {
...
assert!(a == b);
assert!(c == d);
println(...);
}
local_data_key!(foo);
fn main() {
println("hello world")
}
RFC #378.
Closes#18635.
[breaking-change]
This change makes the compiler no longer infer whether types (structures
and enumerations) implement the `Copy` trait (and thus are implicitly
copyable). Rather, you must implement `Copy` yourself via `impl Copy for
MyType {}`.
A new warning has been added, `missing_copy_implementations`, to warn
you if a non-generic public type has been added that could have
implemented `Copy` but didn't.
For convenience, you may *temporarily* opt out of this behavior by using
`#![feature(opt_out_copy)]`. Note though that this feature gate will never be
accepted and will be removed by the time that 1.0 is released, so you should
transition your code away from using it.
This breaks code like:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
Change this code to:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
impl Copy for Point2D {}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
This is the backwards-incompatible part of #13231.
Part of RFC #3.
[breaking-change]
In regards to:
https://github.com/rust-lang/rust/issues/19253#issuecomment-64836729
This commit:
* Changes the #deriving code so that it generates code that utilizes fewer
reexports (in particur Option::* and Result::*), which is necessary to
remove those reexports in the future
* Changes other areas of the codebase so that fewer reexports are utilized
io::stdin returns a new `BufferedReader` each time it's called, which
results in some very confusing behavior with disappearing output. It now
returns a `StdinReader`, which wraps a global singleton
`Arc<Mutex<BufferedReader<StdReader>>`. `Reader` is implemented directly
on `StdinReader`. However, `Buffer` is not, as the `fill_buf` method is
fundamentaly un-thread safe. A `lock` method is defined on `StdinReader`
which returns a smart pointer wrapping the underlying `BufferedReader`
while guaranteeing mutual exclusion.
Code that treats the return value of io::stdin as implementing `Buffer`
will break. Add a call to `lock`:
```rust
io::stdin().read_line();
// =>
io::stdin().lock().read_line();
```
Closes#14434
[breaking-change]
io::stdin returns a new `BufferedReader` each time it's called, which
results in some very confusing behavior with disappearing output. It now
returns a `StdinReader`, which wraps a global singleton
`Arc<Mutex<BufferedReader<StdReader>>`. `Reader` is implemented directly
on `StdinReader`. However, `Buffer` is not, as the `fill_buf` method is
fundamentaly un-thread safe. A `lock` method is defined on `StdinReader`
which returns a smart pointer wrapping the underlying `BufferedReader`
while guaranteeing mutual exclusion.
Code that treats the return value of io::stdin as implementing `Buffer`
will break. Add a call to `lock`:
```rust
io::stdin().lines()
// =>
io::stdin().lock().lines()
```
Closes#14434
[breaking-change]