The regex library was largely used for non-critical aspects of the compiler and
various external tooling. The library at this point is duplicated with its
out-of-tree counterpart and as such imposes a bit of a maintenance overhead as
well as compile time hit for the compiler itself.
The last major user of the regex library is the libtest library, using regexes
for filters when running tests. This removal means that the filtering has gone
back to substring matching rather than using regexes.
Part of #18085
Instead of using an Enum, we use a struct with Option<&Tree> as leaves. It allow
to limit a lot of allocation.
before:
```
texitoi@vaio:~/dev/benchmarksgame-rs$ time ./bin/binary-trees-orig 20
stretch tree of depth 21 check: -1
2097152 trees of depth 4 check: -2097152
524288 trees of depth 6 check: -524288
131072 trees of depth 8 check: -131072
32768 trees of depth 10 check: -32768
8192 trees of depth 12 check: -8192
2048 trees of depth 14 check: -2048
512 trees of depth 16 check: -512
128 trees of depth 18 check: -128
32 trees of depth 20 check: -32
long lived tree of depth 20 check: -1
real 0m3.860s
user 0m11.032s
sys 0m3.572s
```
after:
```
texitoi@vaio:~/dev/benchmarksgame-rs$ time ./bin/binary-trees 20
stretch tree of depth 21 check: -1
2097152 trees of depth 4 check: -2097152
524288 trees of depth 6 check: -524288
131072 trees of depth 8 check: -131072
32768 trees of depth 10 check: -32768
8192 trees of depth 12 check: -8192
2048 trees of depth 14 check: -2048
512 trees of depth 16 check: -512
128 trees of depth 18 check: -128
32 trees of depth 20 check: -32
long lived tree of depth 20 check: -1
real 0m2.824s
user 0m9.224s
sys 0m1.428s
```
This gets rid of the 'experimental' level, removes the non-staged_api
case (i.e. stability levels for out-of-tree crates), and lets the
staged_api attributes use 'unstable' and 'deprecated' lints.
This makes the transition period to the full feature staging design
a bit nicer.
This commit aims to prepare the `std::hash` module for alpha by formalizing its
current interface whileholding off on adding `#[stable]` to the new APIs. The
current usage with the `HashMap` and `HashSet` types is also reconciled by
separating out composable parts of the design. The primary goal of this slight
redesign is to separate the concepts of a hasher's state from a hashing
algorithm itself.
The primary change of this commit is to separate the `Hasher` trait into a
`Hasher` and a `HashState` trait. Conceptually the old `Hasher` trait was
actually just a factory for various states, but hashing had very little control
over how these states were used. Additionally the old `Hasher` trait was
actually fairly unrelated to hashing.
This commit redesigns the existing `Hasher` trait to match what the notion of a
`Hasher` normally implies with the following definition:
trait Hasher {
type Output;
fn reset(&mut self);
fn finish(&self) -> Output;
}
This `Hasher` trait emphasizes that hashing algorithms may produce outputs other
than a `u64`, so the output type is made generic. Other than that, however, very
little is assumed about a particular hasher. It is left up to implementors to
provide specific methods or trait implementations to feed data into a hasher.
The corresponding `Hash` trait becomes:
trait Hash<H: Hasher> {
fn hash(&self, &mut H);
}
The old default of `SipState` was removed from this trait as it's not something
that we're willing to stabilize until the end of time, but the type parameter is
always required to implement `Hasher`. Note that the type parameter `H` remains
on the trait to enable multidispatch for specialization of hashing for
particular hashers.
Note that `Writer` is not mentioned in either of `Hash` or `Hasher`, it is
simply used as part `derive` and the implementations for all primitive types.
With these definitions, the old `Hasher` trait is realized as a new `HashState`
trait in the `collections::hash_state` module as an unstable addition for
now. The current definition looks like:
trait HashState {
type Hasher: Hasher;
fn hasher(&self) -> Hasher;
}
The purpose of this trait is to emphasize that the one piece of functionality
for implementors is that new instances of `Hasher` can be created. This
conceptually represents the two keys from which more instances of a
`SipHasher` can be created, and a `HashState` is what's stored in a
`HashMap`, not a `Hasher`.
Implementors of custom hash algorithms should implement the `Hasher` trait, and
only hash algorithms intended for use in hash maps need to implement or worry
about the `HashState` trait.
The entire module and `HashState` infrastructure remains `#[unstable]` due to it
being recently redesigned, but some other stability decision made for the
`std::hash` module are:
* The `Writer` trait remains `#[experimental]` as it's intended to be replaced
with an `io::Writer` (more details soon).
* The top-level `hash` function is `#[unstable]` as it is intended to be generic
over the hashing algorithm instead of hardwired to `SipHasher`
* The inner `sip` module is now private as its one export, `SipHasher` is
reexported in the `hash` module.
And finally, a few changes were made to the default parameters on `HashMap`.
* The `RandomSipHasher` default type parameter was renamed to `RandomState`.
This renaming emphasizes that it is not a hasher, but rather just state to
generate hashers. It also moves away from the name "sip" as it may not always
be implemented as `SipHasher`. This type lives in the
`std::collections::hash_map` module as `#[unstable]`
* The associated `Hasher` type of `RandomState` is creatively called...
`Hasher`! This concrete structure lives next to `RandomState` as an
implemenation of the "default hashing algorithm" used for a `HashMap`. Under
the hood this is currently implemented as `SipHasher`, but it draws an
explicit interface for now and allows us to modify the implementation over
time if necessary.
There are many breaking changes outlined above, and as a result this commit is
a:
[breaking-change]
This commit takes a first pass at stabilizing `std::thread`:
* It removes the `detach` method in favor of two constructors -- `spawn`
for detached threads, `scoped` for "scoped" (i.e., must-join)
threads. This addresses some of the surprise/frustrating debug
sessions with the previous API, in which `spawn` produced a guard that
on destruction joined the thread (unless `detach` was called).
The reason to have the division in part is that `Send` will soon not
imply `'static`, which means that `scoped` thread creation can take a
closure over *shared stack data* of the parent thread. On the other
hand, this means that the parent must not pop the relevant stack
frames while the child thread is running. The `JoinGuard` is used to
prevent this from happening by joining on drop (if you have not
already explicitly `join`ed.) The APIs around `scoped` are
future-proofed for the `Send` changes by taking an additional lifetime
parameter. With the current definition of `Send`, this is forced to be
`'static`, but when `Send` changes these APIs will gain their full
flexibility immediately.
Threads that are `spawn`ed, on the other hand, are detached from the
start and do not yield an RAII guard.
The hope is that, by making `scoped` an explicit opt-in with a very
suggestive name, it will be drastically less likely to be caught by a
surprising deadlock due to an implicit join at the end of a scope.
* The module itself is marked stable.
* Existing methods other than `spawn` and `scoped` are marked stable.
The migration path is:
```rust
Thread::spawn(f).detached()
```
becomes
```rust
Thread::spawn(f)
```
while
```rust
let res = Thread::spawn(f);
res.join()
```
becomes
```rust
let res = Thread::scoped(f);
res.join()
```
[breaking-change]
`FloatMath` no longer exists and all functionality from both traits is
available under `Float`. Change from
use std::num::{Float, FloatMath};
to
use std::num::Float;
[breaking-change]
These aren't in their final form, but are all aiming to be part of 1.0, so at the very least encouraging usage now to find the bugs is nice.
Also, the widespread roll-out of associated types in the standard library indicates they're getting good, and it's lame to have to activate a feature in essentially every crate ever.
macro_rules! is like an item that defines a macro. Other items don't have a
trailing semicolon, or use a paren-delimited body.
If there's an argument for matching the invocation syntax, e.g. parentheses for
an expr macro, then I think that applies more strongly to the *inner*
delimiters on the LHS, wrapping the individual argument patterns.
This removes a large array of deprecated functionality, regardless of how
recently it was deprecated. The purpose of this commit is to clean out the
standard libraries and compiler for the upcoming alpha release.
Some notable compiler changes were to enable warnings for all now-deprecated
command line arguments (previously the deprecated versions were silently
accepted) as well as removing deriving(Zero) entirely (the trait was removed).
The distribution no longer contains the libtime or libregex_macros crates. Both
of these have been deprecated for some time and are available externally.
This modifies `Parser::eat_lt` to always split up `<<`s, instead of doing so only when a lifetime name followed or the `force` parameter (now removed) was `true`. This is because `Foo<<TYPE` is now a valid start to a type, whereas previously only `Foo<<LIFETIME` was valid.
This is a [breaking-change]. Change code that looks like this:
```rust
let x = foo as bar << 13;
```
to use parentheses, like this:
```rust
let x = (foo as bar) << 13;
```
Closes#17362.
This commit is an implementation of [RFC 503][rfc] which is a stabilization
story for the prelude. Most of the RFC was directly applied, removing reexports.
Some reexports are kept around, however:
* `range` remains until range syntax has landed to reduce churn.
* `Path` and `GenericPath` remain until path reform lands. This is done to
prevent many imports of `GenericPath` which will soon be removed.
* All `io` traits remain until I/O reform lands so imports can be rewritten all
at once to `std::io::prelude::*`.
This is a breaking change because many prelude reexports have been removed, and
the RFC can be consulted for the exact list of removed reexports, as well as to
find the locations of where to import them.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0503-prelude-stabilization.md
[breaking-change]
Closes#20068
This pass performs a second pass of stabilization through the `std::sync`
module, avoiding modules/types that are being handled in other PRs (e.g.
mutexes, rwlocks, condvars, and channels).
The following items are now stable
* `sync::atomic`
* `sync::atomic::ATOMIC_BOOL_INIT` (was `INIT_ATOMIC_BOOL`)
* `sync::atomic::ATOMIC_INT_INIT` (was `INIT_ATOMIC_INT`)
* `sync::atomic::ATOMIC_UINT_INIT` (was `INIT_ATOMIC_UINT`)
* `sync::Once`
* `sync::ONCE_INIT`
* `sync::Once::call_once` (was `doit`)
* C == `pthread_once(..)`
* Boost == `call_once(..)`
* Windows == `InitOnceExecuteOnce`
* `sync::Barrier`
* `sync::Barrier::new`
* `sync::Barrier::wait` (now returns a `bool`)
* `sync::Semaphore::new`
* `sync::Semaphore::acquire`
* `sync::Semaphore::release`
The following items remain unstable
* `sync::SemaphoreGuard`
* `sync::Semaphore::access` - it's unclear how this relates to the poisoning
story of mutexes.
* `sync::TaskPool` - the semantics of a failing task and whether a thread is
re-attached to a thread pool are somewhat unclear, and the
utility of this type in `sync` is question with respect to
the jobs of other primitives. This type will likely become
stable or move out of the standard library over time.
* `sync::Future` - futures as-is have yet to be deeply re-evaluated with the
recent core changes to Rust's synchronization story, and will
likely become stable in the future but are unstable until
that time comes.
[breaking-change]
Since runtime is removed, rust has no tasks anymore and everything is moving
from being task-* to thread-*. Let’s rename TaskRng as well!
This is a breaking change. If a breaking change for consistency is not desired, feel free to close.
The first six commits are from an earlier PR (#19858) and have already been reviewed. This PR makes an awful hack in the compiler to accommodate slices both natively and in the index a range form. After a snapshot we can hopefully add the new Index impls and then we can remove these awful hacks.
r? @nikomatsakis (or anyone who knows the compiler, really)
All of the current std::sync primitives have poisoning enable which means that
when a task fails inside of a write-access lock then all future attempts to
acquire the lock will fail. This strategy ensures that stale data whose
invariants are possibly not upheld are never viewed by other tasks to help
propagate unexpected panics (bugs in a program) among tasks.
Currently there is no way to test whether a mutex or rwlock is poisoned. One
method would be to duplicate all the methods with a sister foo_catch function,
for example. This pattern is, however, against our [error guidelines][errors].
As a result, this commit exposes the fact that a task has failed internally
through the return value of a `Result`.
[errors]: https://github.com/rust-lang/rfcs/blob/master/text/0236-error-conventions.md#do-not-provide-both-result-and-fail-variants
All methods now return a `LockResult<T>` or a `TryLockResult<T>` which
communicates whether the lock was poisoned or not. In a `LockResult`, both the
`Ok` and `Err` variants contains the `MutexGuard<T>` that is being returned in
order to allow access to the data if poisoning is not desired. This also means
that the lock is *always* held upon returning from `.lock()`.
A new type, `PoisonError`, was added with one method `into_guard` which can
consume the assertion that a lock is poisoned to gain access to the underlying
data.
This is a breaking change because the signatures of these methods have changed,
often incompatible ways. One major difference is that the `wait` methods on a
condition variable now consume the guard and return it in as a `LockResult` to
indicate whether the lock was poisoned while waiting. Most code can be updated
by calling `.unwrap()` on the return value of `.lock()`.
[breaking-change]