Apply `EarlyOtherwiseBranch` to scalar value
In the future, I'm thinking of hoisting discriminant via GVN so that we only need to write very little code here.
r? `@cjgillot`
Rename dump of coroutine by-move-body to be more consistent, fix ICE in dump_mir
First, we add a missing match for `DefKind::SyntheticCoroutineBody` in `dump_mir`. Fixes#129703. The second commit (directly below) serves as a test.
Second, we reorder the `dump_mir` in `coroutine_by_move_body_def_id` to be *after* we adjust the body source, and change the disambiguator so it reads more like any other MIR body. This also serves as a test for the ICE, since we're dumping the MIR of a body with `DefKind::SyntheticCoroutineBody`.
Third, we change the parenting of the synthetic MIR body to have the *coroutine-closure* (i.e. async closure) as its parent, so we don't have long strings of `{closure#0}-{closure#0}-{closure#0}`.
try-job: test-various
Arbitrary self types v2: pointers feature gate.
The main `arbitrary_self_types` feature gate will shortly be reused for a new version of arbitrary self types which we are amending per [this RFC](https://github.com/rust-lang/rfcs/blob/master/text/3519-arbitrary-self-types-v2.md). The main amendments are:
* _do_ support `self` types which can't safely implement `Deref`
* do _not_ support generic `self` types
* do _not_ support raw pointers as `self` types.
This PR relates to the last of those bullet points: this strips pointer support from the current `arbitrary_self_types` feature. We expect this to cause some amount of breakage for crates using this unstable feature to allow raw pointer self types. If that's the case, we want to know about it, and we want crate authors to know of the upcoming changes.
For now, this can be resolved by adding the new
`arbitrary_self_types_pointers` feature to such crates. If we determine that use of raw pointers as self types is common, then we may maintain that as an unstable feature even if we come to stabilize the rest of the `arbitrary_self_types` support in future. If we don't hear that this PR is causing breakage, then perhaps we don't need it at all, even behind an unstable feature gate.
[Tracking issue](https://github.com/rust-lang/rust/issues/44874)
This is [step 4 of the plan outlined here](https://github.com/rust-lang/rust/issues/44874#issuecomment-2122179688)
enable -Zrandomize-layout in debug CI builds
This builds rustc/libs/tools with `-Zrandomize-layout` on *-debug CI runners.
Only a handful of tests and asserts break with that enabled, which is promising. One test was fixable, the rest is dealt with by disabling them through new cargo features or compiletest directives.
The config.toml flag `rust.randomize-layout` defaults to false, so it has to be explicitly enabled for now.
The main `arbitrary_self_types` feature gate will shortly be reused for
a new version of arbitrary self types which we are amending per [this
RFC](https://github.com/rust-lang/rfcs/blob/master/text/3519-arbitrary-self-types-v2.md).
The main amendments are:
* _do_ support `self` types which can't safely implement `Deref`
* do _not_ support generic `self` types
* do _not_ support raw pointers as `self` types.
This PR relates to the last of those bullet points: this strips pointer
support from the current `arbitrary_self_types` feature.
We expect this to cause some amount of breakage for crates using this
unstable feature to allow raw pointer self types. If that's the case, we
want to know about it, and we want crate authors to know of the upcoming
changes.
For now, this can be resolved by adding the new
`arbitrary_self_types_pointers` feature to such crates. If we determine
that use of raw pointers as self types is common, then we may maintain
that as an unstable feature even if we come to stabilize the rest of the
`arbitrary_self_types` support in future. If we don't hear that this PR
is causing breakage, then perhaps we don't need it at all, even behind
an unstable feature gate.
[Tracking issue](https://github.com/rust-lang/rust/issues/44874)
This is [step 4 of the plan outlined here](https://github.com/rust-lang/rust/issues/44874#issuecomment-2122179688)
Documents that `BikeshedIntrinsicFrom` models transmute-via-union,
which is slightly more expressive than the transmute-via-cast
implemented by `transmute_copy`. Additionally, we provide an
implementation of transmute-via-union as a method on the
`BikeshedIntrinsicFrom` trait with additional documentation on
the boundary between trait invariants and caller obligations.
Whether or not transmute-via-union is the right kind of transmute
to model remains up for discussion [1]. Regardless, it seems wise
to document the present behavior.
[1] https://rust-lang.zulipchat.com/#narrow/stream/216762-project-safe-transmute/topic/What.20'kind'.20of.20transmute.20to.20model.3F/near/426331967
Added "copy" to Debug fmt for copy operands
In MIR's debug mode (--emit mir) the printing for Operands is slightly inconsistent.
The RValues - values on the right side of an Assign - are usually printed with their Operand when they are Places.
Example:
_2 = move _3
But for arguments, the operand is omitted.
_2 = _1
I propose a change be made, to display the place with the operand.
_2 = copy _1
Move and copy have different semantics, meaning this difference is important and helpful to the user. It also adds consistency to the pretty printing.
-- EDIT --
Consider this example Rust program and its MIR output with the **updated pretty printer.**
This was generated with the arguments --emit mir --crate-type lib -Zmir-opt-level=0 (Otherwise, it's optimised away since it's a junk program).
```rust
fn main(foo: i32) {
let v = 10;
if v == 20 {
foo;
}
else {
v;
}
}
```
```MIR
// WARNING: This output format is intended for human consumers only
// and is subject to change without notice. Knock yourself out.
fn main(_1: i32) -> () {
debug foo => _1;
let mut _0: ();
let _2: i32;
let mut _3: bool;
let mut _4: i32;
let _5: i32;
let _6: i32;
scope 1 {
debug v => _2;
}
bb0: {
StorageLive(_2);
_2 = const 10_i32;
StorageLive(_3);
StorageLive(_4);
_4 = copy _2;
_3 = Eq(move _4, const 20_i32);
switchInt(move _3) -> [0: bb2, otherwise: bb1];
}
bb1: {
StorageDead(_4);
StorageLive(_5);
_5 = copy _1;
StorageDead(_5);
_0 = const ();
goto -> bb3;
}
bb2: {
StorageDead(_4);
StorageLive(_6);
_6 = copy _2;
StorageDead(_6);
_0 = const ();
goto -> bb3;
}
bb3: {
StorageDead(_3);
StorageDead(_2);
return;
}
}
```
In this example program, we can see that when we move a place, it is preceded by "move". e.g. ``` _3 = Eq(move _4, const 20_i32);```. However, when we copy a place such as ```_5 = _1;```, it is not preceded by the operand in the original printout. I propose to change the print to include the copy ```_5 = copy _1``` as in this example.
Regarding the arguments part. When I originally submitted this PR, I was under the impression this only affected the print for arguments to a function, but actually, it affects anything that uses a copy. This is preferable anyway with regard to consistency. The PR is about making ```copy``` explicit.
Apply "polymorphization at home" to RawVec
The idea here is to move all the logic in RawVec into functions with explicit size and alignment parameters. This should eliminate all the fussing about how tweaking RawVec code produces large swings in compile times.
This uncovered https://github.com/rust-lang/rust-clippy/issues/12979, so I've modified the relevant test in a way that tries to preserve the spirit of the test without tripping the ICE.
Fix `ElaborateBoxDerefs` on debug varinfo
Slightly simplifies the `ElaborateBoxDerefs` pass to fix cases where it was applying the wrong projections to debug var infos containing places that deref boxes.
From what I can tell[^1], we don't actually have any tests (or code anywhere, really) that exercise `debug x => *(...: Box<T>)`, and it's very difficult to trigger this in surface Rust, so I wrote a custom MIR test.
What happens is that the pass was turning `*(SOME_PLACE: Box<T>)` into `*(*((((SOME_PLACE).0: Unique<T>).0: NonNull<T>).0: *const T))` in debug var infos. In particular, notice the *double deref*, which was wrong.
This is the root cause of #128554, so this PR fixes#128554 as well. The reason that async closures was affected is because of the way that we compute the [`ByMove` body](https://github.com/rust-lang/rust/blob/master/compiler/rustc_mir_transform/src/coroutine/by_move_body.rs), which resulted in `*(...: Box<T>)` in debug var info. But this really has nothing to do with async closures.
[^1]: Validated by literally replacing the `if elem == PlaceElem::Deref && base_ty.is_box() { ... }` innards with a `panic!()`, which compiled all of stage2 without panicking.
match lowering: Hide `Candidate` from outside the lowering algorithm
The internals of `Candidate` are tricky and a source of confusion. This PR makes it so we don't expose `Candidate`s outside the lowering algorithm. Now:
- false edges are handled in `lower_match_tree`;
- `lower_match_tree` takes a list of patterns as input;
- `lower_match_tree` returns a flat datastructure that contains only the necessary information.
r? ```@matthewjasper```
Disable jump threading of float equality
Jump threading stores values as `u128` (`ScalarInt`) and does its comparisons for equality as integer comparisons.
This works great for integers. Sadly, not everything is an integer.
Floats famously have wonky equality semantcs, with `NaN!=NaN` and `0.0 == -0.0`. This does not match our beautiful integer bitpattern equality and therefore causes things to go horribly wrong.
While jump threading could be extended to support floats by remembering that they're floats in the value state and handling them properly, it's signficantly easier to just disable it for now.
fixes#128243
Jump threading stores values as `u128` (`ScalarInt`) and does its
comparisons for equality as integer comparisons.
This works great for integers. Sadly, not everything is an integer.
Floats famously have wonky equality semantcs, with `NaN!=NaN` and
`0.0 == -0.0`. This does not match our beautiful integer bitpattern
equality and therefore causes things to go horribly wrong.
While jump threading could be extended to support floats by remembering
that they're floats in the value state and handling them properly,
it's signficantly easier to just disable it for now.
Forbid borrows and unsized types from being used as the type of a const generic under `adt_const_params`
Fixes#112219Fixes#112124Fixes#112125
### Motivation
Currently the `adt_const_params` feature allows writing `Foo<const N: [u8]>` this is entirely useless as it is not possible to write an expression which evaluates to a type that is not `Sized`. In order to actually use unsized types in const generics they are typically written as `const N: &[u8]` which *is* possible to provide a value of.
Unfortunately allowing the types of const parameters to contain references is non trivial (#120961) as it introduces a number of difficult questions about how equality of references in the type system should behave. References in the types of const generics is largely only useful for using unsized types in const generics.
This PR introduces a new feature gate `unsized_const_parameters` and moves support for `const N: [u8]` and `const N: &...` from `adt_const_params` into it. The goal here hopefully is to experiment with allowing `const N: [u8]` to work without references and then eventually completely forbid references in const generics.
Splitting this out into a new feature gate means that stabilization of `adt_const_params` does not have to resolve#120961 which is the only remaining "big" blocker for the feature. Remaining issues after this are a few ICEs and naming bikeshed for `ConstParamTy`.
### Implementation
The implementation is slightly subtle here as we would like to ensure that a stabilization of `adt_const_params` is forwards compatible with any outcome of `unsized_const_parameters`. This is inherently tricky as we do not support unstable trait implementations and we determine whether a type is valid as the type of a const parameter via a trait bound.
There are a few constraints here:
- We would like to *allow for the possibility* of adding a `Sized` supertrait to `ConstParamTy` in the event that we wind up opting to not support unsized types and instead requiring people to write the 'sized version', e.g. `const N: [u8; M]` instead of `const N: [u8]`.
- Crates should be able to enable `unsized_const_parameters` and write trait implementations of `ConstParamTy` for `!Sized` types without downstream crates that only enable `adt_const_params` being able to observe this (required for std to be able to `impl<T> ConstParamTy for [T]`
Ultimately the way this is accomplished is via having two traits (sad), `ConstParamTy` and `UnsizedConstParamTy`. Depending on whether `unsized_const_parameters` is enabled or not we change which trait is used to check whether a type is allowed to be a const parameter.
Long term (when stabilizing `UnsizedConstParamTy`) it should be possible to completely merge these traits (and derive macros), only having a single `trait ConstParamTy` and `macro ConstParamTy`.
Under `adt_const_params` it is now illegal to directly refer to `ConstParamTy` it is only used as an internal impl detail by `derive(ConstParamTy)` and checking const parameters are well formed. This is necessary in order to ensure forwards compatibility with all possible future directions for `feature(unsized_const_parameters)`.
Generally the intuition here should be that `ConstParamTy` is the stable trait that everything uses, and `UnsizedConstParamTy` is that plus unstable implementations (well, I suppose `ConstParamTy` isn't stable yet :P).
Ignore allocation bytes in one more mir-opt test
Following on PR #126502, add `rustc -Zdump-mir-exclude-alloc-bytes` to tests/mir-opt/dataflow-const-prop/aggregate_copy.rs as well to skip writing allocation bytes in MIR dumps.
Fixes#126261
Move a few intrinsics to Rust abi
Move a few more intrinsic functions to the convention added in #121192. In the second commit, I added documentation about their safety requirements. Let me know if you would like me to move the second commit to a different PR.
Note: I kept the same signature of `pref_align_of`, but I was wondering why this function is considered unsafe?
Following on PR #126502, add `rustc -Zdump-mir-exclude-alloc-bytes`
to tests/mir-opt/dataflow-const-prop/aggregate_copy.rs as well
to skip writing allocation bytes in MIR dumps.
Fixes#126261
Only track mentioned places for jump threading
This PR aims to reduce the state space size in jump threading and dataflow const-prop opts.
The current implementation walks the types of all locals, and creates a place for each possible projection. This can easily lead to a large number of places and tracked values, most being useless to the actual pass.
With this PR, we instead collect places that appear syntactically in the MIR (first commit). However, this is not sufficient (second commit), and we miss places that we could track in aggregate assignments. The third commit tracks such assignments to mirror place projections, see the inline comment.
This is complementary to https://github.com/rust-lang/rust/pull/127036
r? `@oli-obk`
Add FileCheck annotations to mir-opt/dest-prop tests
Part of https://github.com/rust-lang/rust/issues/116971, adds FileCheck annotations to MIR-opt tests in tests/mir-opt/dest-prop.
I would like some feedback. Also, I don't know how to approach `union.rs`. I couldn't figure out what it is testing.
r? cjgillot