remove notion of Implicit derefs from mem-cat
`PointerKind` is included in `LoanPath` and hence forms part of the equality check; this led to having two unequal paths that both represent `*x`, depending on whether the `*` was inserted automatically or explicitly. Bad mojo.
Fixes#51117
r? @eddyb
`PointerKind` is included in `LoanPath` and hence forms part of the
equality check; this led to having two unequal paths that both
represent `*x`, depending on whether the `*` was inserted
automatically or explicitly. Bad mojo. The `note` field, in contrast,
is intended more-or-less primarily for this purpose of adding extra
data.
[MIR] Change "scopes" from "visibility scopes" to "source scopes".
These scopes are already used for source-oriented diagnostics, lint levels and unsafety checks.
This PR generalizes the naming around scopes, making the type `SourceScope`, and flips (across several commits) the relationship/priority between `LocalDecl`'s "visibility" and "syntactic" scopes.
r? @nikomatsakis
resolve: Make sure indeterminate and inconsistent macro resolutions always generate errors
Addresses the issue described in https://github.com/rust-lang/rust/pull/50911#issuecomment-392560525
I haven't come up with a minimized reproduction yet, but confirmed that `npbot` now generates the correct error with `![feature(use_extern_macros)]`.
reset anonymous-lifetime-mode as we enter `()` scopes
Background:
The anonymous lifetime mode is used to prohibit elided lifetimes where
they didn't used to be permitted, and instead require that `'_` be
used. For example:
```rust
impl Trait for Ref<T> { .. }
// ^^^^^^ ERROR: should be `Ref<'_, T>`
```
When we are parsing the parts of the impl header, we enter into an alternate mode called `CreateParameter`. In this mode, we give an error for things like `Ref<T>`, but for elided lifetimes in a reference type like `&T` we make the elided lifetime into an in-band lifetime:
4f99f37b7e/src/librustc/hir/lowering.rs (L4017-L4035)
This was not intended to change behavior because we only enter into that mode in contexts where elision was not historically permitted. However, the problem is that we fail to reset the mode when we enter into bounds like `Fn(&u32)`, where elision *was* allowed -- the same occurs for fn types like `fn(&u32`). This PR restores the original mode in those contexts.
Fixes#51008
r? @cramertj
rustc: don't visit lifetime parameters through visit_lifetime.
Ideally we'd also not use the `Lifetime` struct for parameters, but I'll leave that to @varkor (#48149).
Fixes#51185 (discovered while auditing all the `visit_lifetime` implementations).
r? @nikomatsakis
Background:
The anonymous lifetime mode is used to prohibit elided lifetimes where
they didn't used to be permitted, and instead require that `'_` be
used. For example:
```rust
impl Trait for Ref<T> { .. }
// ^^^^^^ ERROR: should be `Ref<'_, T>`
```
When we are parsing the parts of the impl header, we enter into an
alternate mode called `CreateParameter`. In this mode, we give an
error for things like `Ref<T>`, but for elided lifetimes in a
reference type like `&T` we make the elided lifetime into an in-band
lifetime:
4f99f37b7e/src/librustc/hir/lowering.rs (L4017-L4035)
This was not intended to change behavior because we only enter into
that mode in contexts where elision was not historically
permitted. However, the problem is that we fail to reset the mode when
we enter into bounds like `Fn(&u32)`, where elision *was* allowed --
the same occurs for fn types like `fn(&u32`). This PR restores the
original mode in those contexts.
Suggest using `as_ref` on some borrow errors [hack]
When encountering the following code:
```rust
struct Foo;
fn takes_ref(_: &Foo) {}
let ref opt = Some(Foo);
opt.map(|arg| takes_ref(arg));
```
Suggest using `opt.as_ref().map(|arg| takes_ref(arg));` instead.
This is a stop gap solution until we expand typeck to deal with these
cases in a more graceful way.
#43861
When encountering the following code:
```rust
struct Foo;
fn takes_ref(_: &Foo) {}
let ref opt = Some(Foo);
opt.map(|arg| takes_ref(arg));
```
Suggest using `opt.as_ref().map(|arg| takes_ref(arg));` instead.
This is a stop gap solution until we expand typeck to deal with these
cases in a more graceful way.
Update libbacktrace
We haven't updated libbacktrace in two years. This is just blindly updating to the latest HEAD; I'd like to see what travis says. It at least builds on my machine, running some tests...
This perpetuates the patches from https://github.com/rust-lang/rust/pull/30908
While we're at it update the `backtrace` crate from crates.io. It turns out that
the submodule's configure script has gotten a lot more finnicky as of late so
also switch over to using the `cc` crate manually which allows to avoid some
hacks around the configure script as well
OOM handling changes
As discussed in https://github.com/rust-lang/rust/issues/49668#issuecomment-384893456 and subsequent.
This does have codegen implications. Even without the hooks, and with a handler that ignores the arguments, the compiler doesn't eliminate calling `rust_oom` with the `Layout`. Even if it managed to eliminate that, with the hooks, I don't know if the compiler would be able to figure out it can skip it if the hook is never set.
A couple implementation notes:
- I went with explicit enums rather than bools because it makes it clearer in callers what is being requested.
- I didn't know what `feature` to put the hook setting functions behind. (and surprisingly, the compile went through without any annotation on the functions)
- There's probably some bikeshedding to do on the naming.
Cc: @Simonsapin, @sfackler
every match arm reads the match's borrowed input
This PR changes the `match` codegen under NLL (and just NLL, at least for now) to make the following adjustments:
* It adds a `-Z disable-ast-check-for-mutation-in-guard` which, as described, turns off the naive (conservative but also not 100% sound) check for mutation in guards of match arms.
* We now borrow the match input at the outset and emit a special `ReadForMatch` statement (that, according to the *static* semantics, reads that borrowed match input) at the start of each match arm. The intent here is to catch cases where the match guard mutates the match input, either via an independent borrow or via `ref mut` borrows in that arm's pattern.
* In order to ensure that `ref mut` borrows do not actually conflict with the emitted `ReadForMatch` statements, I expanded the two-phase-borrow system slightly, and also changed the MIR code gen so that under NLL, when there is a guard on a match arm, then each pattern variable ends up having *three* temporaries associated with it:
1. The first temporary will hold the substructure being matched; this is what we will move the (substructural) value into *if* the guard succeeds.
2. The second temporary also corresponds to the same value as the first, but we are just constructing this temporarily for use during the scope of the guard; it is unaliased and its sole referrer is the third temporary.
3. The third temporary is a reference to the second temporary.
* (This sounds complicated, I know, but its actually *simpler* than what I was doing before and had checked into the repo, which was to sometimes construct the final value and then take a reference to it before evaluating the guard. See also PR #49870.)
Fix#27282
This also provides a path towards resolving #24535 aka rust-lang/rfcs#1006, at least once the `-Z disable-ast-check-for-mutation-in-guard` is just turned on by default (under NLL, that is. It is not sound under AST-borrowck).
* But I did not want to make `#![feature(nll)]` imply that as part of this PR; that seemed like too drastic a change to me.
fs: copy: use copy_file_range on Linux
Linux 4.5 introduced a new system call [copy_file_range](http://man7.org/linux/man-pages/man2/copy_file_range.2.html) to copy data from one file to another.
This PR uses the new system call (if available). This has several advantages:
1. No need to constantly copy data from userspace to kernel space, if the buffer is small or the file is large
2. On some filesystems, like BTRFS, the kernel can leverage internal fs mechanisms for huge performance gains
3. Filesystems on the network dont need to copy data between the host and the client machine (they have to in the current read/write implementation)
I have created a small library that also implements the new system call for some huge performance gains here: https://github.com/nicokoch/fastcopy
Benchmark results are in the README
```rust
fn main() {
fn reuse<X>(_: &mut X) {}
let mut t = 2f64;
match t {
ref mut _b if { false } => { reuse(_b); }
_ => {}
}
}
```
Note: The way this is currently written is confusing; when `autoref`
is off, then the arm body bindings (introduced by
`bind_matched_candidate_for_arm_body`) are *also* used for the guard.
(Any attempt to fix this needs to still ensure that the bindings used
by the guard are introduced before the guard is evaluated.)
(Once we turn NLL on by default, we can presumably simplify all of
that.)
For some reason, allowing restricted mutation in match arms exposed an
obvious case where a unique borrow can indeed fail, namely something
like:
```rust
match b {
...
ref mut r if { (|| { let bar = &mut *r; **bar = false; })(); false } => { &mut *r }
// ~~~~~~~
// |
// This ends up holding a `&unique` borrow of `r`, but there ends up being an
// implicit shared borrow in the guard thanks to rust-lang/rust#49870
...
}
```
In particular, I am adding an implicit injected borrow on the pattern
matches, and when we go around the loop, the compiler is reporting
that this injected borrow is conflicting with the move of the original
value when the match succeeds.