coverage: Fix inconsistent handling of function signature spans
While doing some more cleanup of `spans`, I noticed a strange inconsistency in how function signatures are handled. Normally the function signature span is treated as though it were executable as part of the start of the function, but in some cases the signature span disappears entirely from coverage, for no obvious reason.
This is caused by the fact that spans created by `CoverageSpan::for_fn_sig` don't add the span to their `merged_spans` field (unlike normal statement/terminator spans). In cases where the span-processing code looks at those merged spans, it thinks the signature span is no longer visible and deletes it.
Adding the signature span to `merged_spans` resolves the inconsistency.
(Prior to #116409 this wouldn't have been possible, because there was no case in the old `CoverageStatement` enum representing a signature. Now that `merged_spans` is just a list of spans, that's no longer an obstacle.)
Implement rustc part of RFC 3127 trim-paths
This PR implements (or at least tries to) [RFC 3127 trim-paths](https://github.com/rust-lang/rust/issues/111540), the rustc part. That is `-Zremap-path-scope` with all of it's components/scopes.
`@rustbot` label: +F-trim-paths
Even though expression details are now stored in the info structure, we still
need to inject `ExpressionUsed` statements into MIR, because if one is missing
during codegen then we know that it was optimized out and we can remap all of
its associated code regions to zero.
Previously, mappings were attached to individual coverage statements in MIR.
That necessitated special handling in MIR optimizations to avoid deleting those
statements, since otherwise codegen would be unable to reassemble the original
list of mappings.
With this change, a function's list of mappings is now attached to its MIR
body, and survives intact even if individual statements are deleted by
optimizations.
Coverage codegen can now allocate arrays based on the number of
counters/expressions originally used by the instrumentor.
The existing query that inspects coverage statements is still used for
determining the number of counters passed to `llvm.instrprof.increment`. If
some high-numbered counters were removed by MIR optimizations, the instrumented
binary can potentially use less memory and disk space at runtime.
This allows coverage information to be attached to the function as a whole when
appropriate, instead of being smuggled through coverage statements in the
function's basic blocks.
As an example, this patch moves the `function_source_hash` value out of
individual `CoverageKind::Counter` statements and into the per-function info.
When synthesizing unused functions for coverage purposes, the absence of this
info is taken to indicate that a function was not eligible for coverage and
should not be synthesized.
Interacting with `basic_coverage_blocks` directly makes it easier to satisfy
the borrow checker when mutating `pending_dups` while reading other fields.
Format all the let-chains in compiler crates
Since rust-lang/rustfmt#5910 has landed, soon we will have support for formatting let-chains (as soon as rustfmt syncs and beta gets bumped).
This PR applies the changes [from master rustfmt to rust-lang/rust eagerly](https://rust-lang.zulipchat.com/#narrow/stream/122651-general/topic/out.20formatting.20of.20prs/near/374997516), so that the next beta bump does not have to deal with a 200+ file diff and can remain concerned with other things like `cfg(bootstrap)` -- #113637 was a pain to land, for example, because of let-else.
I will also add this commit to the ignore list after it has landed.
The commands that were run -- I'm not great at bash-foo, but this applies rustfmt to every compiler crate, and then reverts the two crates that should probably be formatted out-of-tree.
```
~/rustfmt $ ls -1d ~/rust/compiler/* | xargs -I@ cargo run --bin rustfmt -- `@/src/lib.rs` --config-path ~/rust --edition=2021 # format all of the compiler crates
~/rust $ git checkout HEAD -- compiler/rustc_codegen_{gcc,cranelift} # revert changes to cg-gcc and cg-clif
```
cc `@rust-lang/rustfmt`
r? `@WaffleLapkin` or `@Nilstrieb` who said they may be able to review this purely mechanical PR :>
cc `@Mark-Simulacrum` and `@petrochenkov,` who had some thoughts on the order of operations with big formatting changes in https://github.com/rust-lang/rust/pull/95262#issue-1178993801. I think the situation has changed since then, given that let-chains support exists on master rustfmt now, and I'm fairly confident that this formatting PR should land even if *bootstrap* rustfmt doesn't yet format let-chains in order to lessen the burden of the next beta bump.
const-eval: make misalignment a hard error
It's been a future-incompat error (showing up in cargo's reports) since https://github.com/rust-lang/rust/pull/104616, Rust 1.68, released in March. That should be long enough.
The question for the lang team is simply -- should we move ahead with this, making const-eval alignment failures a hard error? (It turns out some of them accidentally already were hard errors since #104616. But not all so this is still a breaking change. Crater found no regression.)
Having to keep passing in a graph reference was a holdover from when the graph
was partly mutated during traversal. As of #114354 that is no longer necessary,
so we can simplify the traversal code by storing a graph reference as a field
in `TraverseCoverageGraphWithLoops`.
The previous code was storing the worklist in a vector, and then selectively
adding items to the start or end of the vector. That's a perfect use-case for a
double-ended queue.
This change also reveals that the existing code was a bit confused about which
end of the worklist is the front or back. For now, items are always removed
from the front of the queue (instead of the back), and code that adds items to
the queue has been flipped, to preserve the existing behaviour.
Do not check for impossible predicates in const-prop lint.
The enclosing query already checks for them, and replaces the body with a single `unreachable` if they are indeed impossible.
Also consider call and yield as MIR SSA.
The SSA analysis on MIR only considered `Assign` statements as defining a SSA local.
This PR adds assignments as part of a `Call` or `Yield` terminator in that category.
This mainly allows to perform CopyProp on a call return place.
The only subtlety is in the dominance property: the assignment is only complete at the beginning of the target block.
coverage: Unbox and simplify `bcb_filtered_successors`
This is a small cleanup in the coverage instrumentor's graph-building code.
---
This function already has access to the MIR body, so instead of taking a reference to a terminator, it's simpler and easier to pass in a basic block index.
There is no need to box the returned iterator if we instead add appropriate lifetime captures, and make `short_circuit_preorder` generic over the type of iterator it expects.
We can also greatly simplify the function's implementation by observing that the only difference between its two cases is whether we take all of a BB's successors, or just the first one.
---
`@rustbot` label +A-code-coverage
This function already has access to the MIR body, so instead of taking a
reference to a terminator, it's simpler and easier to pass in a basic block
index.
There is no need to box the returned iterator if we instead add appropriate
lifetime captures, since `short_circuit_preorder` is now generic over the type
of iterator it expects.
We can also greatly simplify the function's implementation by observing that
the only difference between its two cases is whether we take all of a BB's
successors, or just the first one.
This enum was mainly needed to track the precise origin of a span in MIR, for
debug printing purposes. Since the old debug code was removed in #115962, we
can replace it with just the span itself.