The new methodology can be found in the re-worded comment, but the gist of it is
that -C prefer-dynamic doesn't turn off static linkage. The error messages
should also be a little more sane now.
Closes#12133
Previously an `unsafe` block created by the compiler (like those in the
formatting macros) would be "ignored" if surrounded by `unsafe`, that
is, the internal unsafety would be being legitimised by the external
block:
unsafe { println!("...") } =(expansion)=> unsafe { ... unsafe { ... } }
And the code in the inner block would be using the outer block, making
it considered used (and the inner one considered unused).
This patch forces the compiler to create a new unsafe context for
compiler generated blocks, so that their internal unsafety doesn't
escape to external blocks.
Fixes#12418.
The new methodology can be found in the re-worded comment, but the gist of it is
that -C prefer-dynamic doesn't turn off static linkage. The error messages
should also be a little more sane now.
Closes#12133
Closes#11692. Instead of returning the original expression, a dummy expression
(with identical span) is returned. This prevents infinite loops of failed
expansions as well as odd double error messages in certain situations.
This is a slightly better fix than #12197, because it does not produce a double error and also fixes a few other cases where an infinite loop could happen.
This does not fix the other issue in #11692 (non-builtin macros not being recognised when expanded inside macros), which I think should be moved into a separate issue.
With Rc no longer trying to statically prevent cycles (and thus no
longer using the Freeze bound), it seems appropriate to remove that
restriction from MutexArc as well.
Closes#9251.
Closes#11692. Instead of returning the original expression, a dummy expression
(with identical span) is returned. This prevents infinite loops of failed
expansions as well as odd double error messages in certain situations.
This patch gets rid of ObsoleteExternModAttributesInParens and
ObsoleteNamedExternModule since the replacement of `extern mod` with
`extern crate` avoids those cases and raises different errors. Both have
been around for at least a version which makes this a good moment to get
rid of them.
This patch adds a new keyword `crate` which is intended to replace mod
in the context of `extern mod` as part of the issue #9880. The patch
doesn't replace all `extern mod` cases since it is necessary to first
push a new snapshot 0.
The implementation could've been less invasive than this. However I
preferred to take this chance to split the `parse_item_foreign_mod`
method and pull the `extern crate` part out of there, hence the new
method `parse_item_foreign_crate`.
While working on #11363 I stumbled over a couple of ignored tests, that seem to be fixed or invalid.
* src/test/run-pass/issue-3559.rs was fixed in #4726
* src/test/compile-fail/borrowck-call-sendfn.rs was fixed in #2978
* update src/test/compile-fail/issue-5500-1.rs to work with current Rust (I'm not 100% sure if the original condition is tested as mentioned in #5500, but I think so)
* removed src/test/compile-fail/issue-5500.rs because it is tested in
src/test/run-fail/issue-5500.rs (they are the same test cases, I just renamed src/test/run-fail/addr-of-bot.rs to be consistent with the other issue name
* src/test/run-pass/issue-3559.rs was fixed in #4726
* src/test/compile-fail/borrowck-call-sendfn.rs was fixed in #2978
* update src/test/compile-fail/issue-5500-1.rs to work with current Rust
* removed src/test/compile-fail/issue-5500.rs because it is tested in
src/test/run-fail/issue-5500.rs
* src/test/compile-fail/view-items-at-top.rs fixed
* #897 fixed
* compile-fail/issue-6762.rs issue was closed as dup of #6801
* deleted compile-fail/issue-2074.rs because it became irelevant and is
irrelevant #2074, a test covering this was added in
4f92f452bd
Loadable syntax extensions don't work when cross compiling (see #12102), so the
fourcc tests all need to be ignored. They're valuable tests, so they shouldn't
be outright ignored, so they're now flagged with ignore-cross-compile
This, the Nth rewrite of channels, is not a rewrite of the core logic behind
channels, but rather their API usage. In the past, we had the distinction
between oneshot, stream, and shared channels, but the most recent rewrite
dropped oneshots in favor of streams and shared channels.
This distinction of stream vs shared has shown that it's not quite what we'd
like either, and this moves the `std::comm` module in the direction of "one
channel to rule them all". There now remains only one Chan and one Port.
This new channel is actually a hybrid oneshot/stream/shared channel under the
hood in order to optimize for the use cases in question. Additionally, this also
reduces the cognitive burden of having to choose between a Chan or a SharedChan
in an API.
My simple benchmarks show no reduction in efficiency over the existing channels
today, and a 3x improvement in the oneshot case. I sadly don't have a
pre-last-rewrite compiler to test out the old old oneshots, but I would imagine
that the performance is comparable, but slightly slower (due to atomic reference
counting).
This commit also brings the bonus bugfix to channels that the pending queue of
messages are all dropped when a Port disappears rather then when both the Port
and the Chan disappear.
Loadable syntax extensions don't work when cross compiling (see #12102), so the
fourcc tests all need to be ignored. They're valuable tests, so they shouldn't
be outright ignored, so they're now flagged with ignore-cross-compile
This resolves issue #12157. Does that do it already or is there something else that needs taking care of?
As a side note, there seems to be some documentation, in which the old existence of the do keyword is explained. The list of keywords is not up-to-date either. But these are certainly separate issues.
Resolves issue #12157. `do` is hereby reinstated as a keyword; no syntax is
associated with it though. Along the way, a unit test had to be adapted, since
it was using `do` as a method identifier.
Breaking changes:
- Any code using `do` as an identifier will no longer work.
The previous definition was actually describing covariance.
Fixing to describe contravariance while keeping 'static in the definition was tricky so just changed to use 'short and 'long.
Repair a rather embarassingly obvious hole that I created as part of #9629. In particular, prevent `&mut` borrows of data in an aliasable location. This used to be prevented through the restrictions mechanism, but in #9629 I modified those rules incorrectly.
r? @pcwalton
Fixes#11913
fourcc!() allows you to embed FourCC (or OSType) values that are
evaluated as u32 literals. It takes a 4-byte ASCII string and produces
the u32 resulting in interpreting those 4 bytes as a u32, using either
the platform-native endianness, or explicitly as big or little endian.
Error messages cleaned in librustc/middle
Error messages cleaned in libsyntax
Error messages cleaned in libsyntax more agressively
Error messages cleaned in librustc more aggressively
Fixed affected tests
Fixed other failing tests
Last failing tests fixed
This removes @[] from the parser as well as much of the handling of it (and `@str`) from the compiler as I can find.
I've just rebased @pcwalton's (already reviewed) `@str` removal (and fixed the problems in a separate commit); the only new work is the trailing commits with my authorship.
Closes#11967
This is has been obsolete for quite a while now (including a release),
so removing the special handling seems fine. (The error message is quite
good still anyway.)
Fixes#9580.
It was possible to trigger a stack overflow in rustc because the routine used to verify enum representability,
type_structurally_contains, would recurse on inner types until hitting the original type. The overflow condition was when a different structurally recursive type (enum or struct) was contained in the type being checked.
I suspect my solution isn't as efficient as it could be. I pondered adding a cache of previously-seen types to avoid duplicating work (if enums A and B both contain type C, my code goes through C twice), but I didn't want to do anything that may not be necessary.
I'm a new contributor, so please pay particular attention to any unidiomatic code, misuse of terminology, bad naming of tests, or similar horribleness :)
Updated to verify struct representability as well.
Fixes#3008.
Fixes#3779.
`Times::times` was always a second-class loop because it did not support the `break` and `continue` operations. Its playful appeal (which I liked) was then lost after `do` was disabled for closures. It's time to let this one go.
`Times::times` was always a second-class loop because it did not support the `break` and `continue` operations. Its playful appeal was then lost after `do` was disabled for closures. It's time to let this one go.
The general consensus is that we want to move away from conditions for I/O, and I propose a two-step plan for doing so:
1. Warn about unused `Result` types. When all of I/O returns `Result`, it will require you inspect the return value for an error *only if* you have a result you want to look at. By default, for things like `write` returning `Result<(), Error>`, these will all go silently ignored. This lint will prevent blind ignorance of these return values, letting you know that there's something you should do about them.
2. Implement a `try!` macro:
```
macro_rules! try( ($e:expr) => (match $e { Ok(e) => e, Err(e) => return Err(e) }) )
```
With these two tools combined, I feel that we get almost all the benefits of conditions. The first step (the lint) is a sanity check that you're not ignoring return values at callsites. The second step is to provide a convenience method of returning early out of a sequence of computations. After thinking about this for awhile, I don't think that we need the so-called "do-notation" in the compiler itself because I think it's just *too* specialized. Additionally, the `try!` macro is super lightweight, easy to understand, and works almost everywhere. As soon as you want to do something more fancy, my answer is "use match".
Basically, with these two tools in action, I would be comfortable removing conditions. What do others think about this strategy?
----
This PR specifically implements the `unused_result` lint. I actually added two lints, `unused_result` and `unused_must_use`, and the first commit has the rationale for why `unused_result` is turned off by default.
I attempted to implement the lint in two steps. My first attempt was a
default-warn lint about *all* unused results. While this attempt did indeed find
many possible bugs, I felt that the false-positive rate was too high to be
turned on by default for all of Rust.
My second attempt was to make unused-result a default-allow lint, but allow
certain types to opt-in to the notion of "you must use this". For example, the
Result type is now flagged with #[must_use]. This lint about "must use" types is
warn by default (it's different from unused-result).
The unused_must_use lint had a 100% hit rate in the compiler, but there's not
that many places that return Result right now. I believe that this lint is a
crucial step towards moving away from conditions for I/O (because all I/O will
return Result by default). I'm worried that this lint is a little too specific
to Result itself, but I believe that the false positive rate for the
unused_result lint is too high to make it useful when turned on by default.
cc #7621.
See the commit message. I'm not sure if we should merge this now, or wait until we can write `Clone::clone(x)` which will directly solve the above issue with perfect error messages.
This unfortunately changes an error like
error: mismatched types: expected `&&NotClone` but found `&NotClone`
into
error: type `NotClone` does not implement any method in scope named `clone`
Non-exhaustive change list:
* `self` is now present in argument lists (modulo type-checking code I don't trust myself to refactor)
* methods have the same calling convention as bare functions (including the self argument)
* the env param is gone from all bare functions (and methods), only used by closures and `proc`s
* bare functions can only be coerced to closures and `proc`s if they are statically resolved, as they now require creating a wrapper specific to that function, to avoid indirect wrappers (equivalent to `impl<..Args, Ret> Fn<..Args, Ret> for fn(..Args) -> Ret`) that might not be optimizable by LLVM and don't work for `proc`s
* refactored some `trans::closure` code, leading to the removal of `trans::glue::make_free_glue` and `ty_opaque_closure_ptr`
I'd forgotten to update them when I changed this a while ago; it now displays error messages linked to the struct/variant field, rather than the `#[deriving(Trait)]` line, for all traits.
This also adds a very large number of autogenerated tests. I can easily remove/tone down that commit if necessary.
This was the original intention of the privacy of structs, and it was
erroneously implemented before. A pub struct will now have default-pub fields,
and a non-pub struct will have default-priv fields. This essentially brings
struct fields in line with enum variants in terms of inheriting visibility.
As usual, extraneous modifiers to visibility are disallowed depend on the case
that you're dealing with.
Closes#11522
They all have to go into a single module at the moment unfortunately.
Ideally, the logging macros would live in std::logging, condition! would
live in std::condition, format! in std::fmt, etc. However, this
introduces cyclic dependencies between those modules and the macros they
use which the current expansion system can't deal with. We may be able
to get around this by changing the expansion phase to a two-pass system
but that's for a later PR.
Closes#2247
cc #11763
A mutable and immutable borrow place some restrictions on what you can
with the variable until the borrow ends. This commit attempts to convey
to the user what those restrictions are. Also, if the original borrow is
a mutable borrow, the error message has been changed (more specifically,
i. "cannot borrow `x` as immutable because it is also borrowed as
mutable" and ii. "cannot borrow `x` as mutable more than once" have
been changed to "cannot borrow `x` because it is already borrowed as
mutable").
In addition, this adds a (custom) span note to communicate where the
original borrow ends.
Previously, they were treated like ~[] and &[] (which can have length
0), but fixed length vectors are fixed length, i.e. we know at compile
time if it's possible to have length zero (which is only for [T, .. 0]).
Fixes#11659.