Unify dylib loading between proc macros and codegen backends
As bonus this makes the errors when failing to load a proc macro more informative to match the backend loading errors. In addition it makes it slightly easier to patch rustc to work on platforms that don't support dynamic linking like wasm.
never patterns: Fix liveness analysis in the presence of never patterns
There's a bunch of code that only looks at the first alternative of an or-pattern, under the assumption that all alternatives have the same set of bindings. This is true except for never pattern alternatives (e.g. `Ok(x) | Err(!)`), so we skip these. I expect there's other code with this problem, I'll have to check that later.
I don't have tests for this yet because mir lowering causes other issues; I'll have some in the next PR.
r? ``@compiler-errors``
Consistently refer to a test's `revision` instead of `cfg`
Compiletest allows a test file to specify multiple “revisions” (`//@ revisions: foo bar`), with each revision running as a separate test, and having the ability to define revision-specific headers (`//`@[foo]` ignore-blah`) and revision-specific code (`#[cfg(foo)]`).
The code that implements this feature sometimes uses the term “cfg” instead of “revision”. This results in two confusingly-different names for the same concept, one of which is ambiguous with other kinds of configuration (such as compiletest's own config).
This PR replaces those occurrences of `cfg` with `revision`, so that one name is used consistently.
coverage: Remove `pending_dups` from the span refiner
When extracting coverage spans from a function's MIR, we need to decide how to handle spans that are associated with more than one node (BCB) in the coverage control flow graph.
The existing code for managing those duplicate spans is very subtle and difficult to modify. But by eagerly deduplicating those extracted spans in a much simpler way, we can remove a massive chunk of complexity from the span refiner.
There is a tradeoff here, in that we no longer try to retain *all* nondominating BCBs that have the same span, only the last one in the (semi-arbitrary) dominance ordering. But in practice, this produces very little difference in our coverage tests, and the simplification is so significant that I think it's worthwhile.
``@rustbot`` label +A-code-coverage
Top level error handling
The interactions between the following things are surprisingly complicated:
- `emit_stashed_diagnostics`,
- `flush_delayed`,
- normal return vs `abort_if_errors`/`FatalError.raise()` unwinding in the call to the closure in `interface::run_compiler`.
This PR disentangles it all.
r? `@oli-obk`
It currently is infallible and uses `abort_if_errors` and
`FatalError.raise()` to signal errors. It's easy to instead return a
`Result<_, ErrorGuaranteed>`, which is the more usual way of doing
things.
Currently `emit_stashed_diagnostic` is called from four(!) different
places: `print_error_count`, `DiagCtxtInner::drop`, `abort_if_errors`,
and `compile_status`.
And `flush_delayed` is called from two different places:
`DiagCtxtInner::drop` and `Queries`.
This is pretty gross! Each one should really be called from a single
place, but there's a bunch of entanglements. This commit cleans up this
mess.
Specifically, it:
- Removes all the existing calls to `emit_stashed_diagnostic`, and adds
a single new call in `finish_diagnostics`.
- Removes the early `flush_delayed` call in `codegen_and_build_linker`,
replacing it with a simple early return if delayed bugs are present.
- Changes `DiagCtxtInner::drop` and `DiagCtxtInner::flush_delayed` so
they both assert that the stashed diagnostics are empty (i.e.
processed beforehand).
- Changes `interface::run_compiler` so that any errors emitted during
`finish_diagnostics` (i.e. late-emitted stashed diagnostics) are
counted and cannot be overlooked. This requires adding
`ErrorGuaranteed` return values to several functions.
- Removes the `stashed_err_count` call in `analysis`. This is possible
now that we don't have to worry about calling `flush_delayed` early
from `codegen_and_build_linker` when stashed diagnostics are pending.
- Changes the `span_bug` case in `handle_tuple_field_pattern_match` to a
`delayed_span_bug`, because it now can be reached due to the removal
of the `stashed_err_count` call in `analysis`.
- Slightly changes the expected output of three tests. If no errors are
emitted but there are delayed bugs, the error count is no longer
printed. This is because delayed bugs are now always printed after the
error count is printed (or not printed, if the error count is zero).
There is a lot going on in this commit. It's hard to break into smaller
pieces because the existing code is very tangled. It took me a long time
and a lot of effort to understand how the different pieces interact, and
I think the new code is a lot simpler and easier to understand.
Currently `has_errors` excludes lint errors. This commit changes it to
include lint errors.
The motivation for this is that for most places it doesn't matter
whether lint errors are included or not. But there are multiple places
where they must be includes, and only one place where they must not be
included. So it makes sense for `has_errors` to do the thing that fits
the most situations, and the new `has_errors_excluding_lint_errors`
method in the one exceptional place.
The same change is made for `err_count`. Annoyingly, this requires the
introduction of `err_count_excluding_lint_errs` for one place, to
preserve existing error printing behaviour. But I still think the change
is worthwhile overall.
Yeet `QueryTypeRelatingDelegate`, move `NllTypeRelating` into borrowck crate
We can just use the existing equate relation for query instantiation. I don't expect us to want to move everything into `TypeRelating`.
r? lcnr
Rollup of 8 pull requests
Successful merges:
- #121044 (Support async trait bounds in macros)
- #121175 (match lowering: test one or pattern at a time)
- #121340 (bootstrap: apply most of clippy's suggestions)
- #121347 (compiletest: support auxiliaries with auxiliaries)
- #121359 (miscellaneous type system improvements)
- #121366 (Remove `diagnostic_builder.rs`)
- #121379 (Remove an `unchecked_error_guaranteed` call.)
- #121396 (make it possible for outside crates to inspect a mir::ConstValue with the interpreter)
r? `@ghost`
`@rustbot` modify labels: rollup
make it possible for outside crates to inspect a mir::ConstValue with the interpreter
For MiniRust we need to convert MIR constant values into MiniRust constant values. However, it's not currently possible to get nice high-level access to the inerts of a `ConstValue`: we can access the raw contents (the allocation / `ScalarInt`), but if it is e.g. of enum type and we want to determine which variant is encoded, we are stuck. There's only `try_destructure_mir_constant_for_user_output` which is meant for diagnostics, so it doesn't fit.
The interpreter has all the APIs to traverse such a value, so we just need a way to get such a ConstValue into an interpreter instance. This adds the public functions necessary to make that happen.
Remove an `unchecked_error_guaranteed` call.
If we abort immediately after complaining about the obsolete `impl Trait for ..` syntax, then we avoid reaching HIR lowering. This means we can use `TyKind::Dummy` instead of `TyKind::Err`.
r? `@oli-obk`
Remove `diagnostic_builder.rs`
#120576 moved a big chunk of `DiagnosticBuilder`'s functionality out of `diagnostic_builder.rs` into `diagnostic.rs`, which left `DiagnosticBuilder` spread across the two files.
This PR fixes that messiness by merging what remains of `diagnostic_builder.rs` into `diagnostic.rs`.
This is part of https://github.com/rust-lang/compiler-team/issues/722.
r? `@davidtwco`
compiletest: support auxiliaries with auxiliaries
To test behaviour that depends on the extern options of intermediate crates, compiletest auxiliaries must have their own auxiliaries.
Auxiliary compilation previously did not trigger compilation of any auxiliaries in the auxiliary's headers. In addition, those auxiliaries would need to be in an `auxiliary/auxiliary` directory, which is unnecessary and makes some crate graphs harder to write tests for, such as when A depends on B and C, and B depends on C.
For a test `tests/ui/$path/root.rs`, with the following crate graph:
```
root
|-- grandparent
`-- parent
`-- grandparent
```
then the intermediate outputs from compiletest will be:
```
build/$target/test/ui/$path/
|-- auxiliary
| |-- libgrandparent.dylib
| |-- libparent.dylib
| |-- grandparent
| | |-- grandparent.err
| | `-- grandparent.out
| `-- parent
| |-- parent.err
| `-- parent.out
|-- libroot.rmeta
|-- root.err
`-- root.out
```
match lowering: test one or pattern at a time
This is a bit more opinionated than the previous PRs. On the face of it this is less efficient and more complex than before, but I personally found the loop that digs into `leaf_candidates` on each iteration very confusing. Instead this does "generate code for this or-pattern" then "generate further code for each branch if needed" in two steps.
Incidentally this way we don't _require_ or patterns to be sorted at the end. It's still an important optimization but I find it clearer to not rely on it for correctness.
r? `@matthewjasper`
Support async trait bounds in macros
r? fmease
This is similar to your work on const trait bounds. This theoretically regresses `impl async $ident:ident` in macros, but I doubt this is occurring in practice.
To test behaviour that depends on the extern options of intermediate
crates, compiletest auxiliaries must have their own auxiliaries.
Auxiliary compilation previously did not trigger compilation of any
auxiliaries in the auxiliary's headers. In addition, those auxiliaries
would need to be in an `auxiliary/auxiliary` directory, which is
unnecessary and makes some crate graphs harder to write tests for,
such as when A depends on B and C, and B depends on C.
For a test `tests/ui/$path/root.rs`, with the following crate graph:
```
root
|-- grandparent
`-- parent
`-- grandparent
```
then the intermediate outputs from compiletest will be:
```
build/$target/test/ui/$path/
|-- auxiliary
| |-- libgrandparent.dylib
| |-- libparent.dylib
| |-- grandparent
| | |-- grandparent.err
| | `-- grandparent.out
| `-- parent
| |-- parent.err
| `-- parent.out
|-- libroot.rmeta
|-- root.err
`-- root.out
```
Signed-off-by: David Wood <david@davidtw.co>
As bonus this makes the errors when failing to load a proc macro more
informative to match the backend loading errors. In addition it makes it
slightly easier to patch rustc to work on platforms that don't support
dynamic linking like wasm.
Compiletest code sometimes refers to a test's revision as its `cfg`. This
results in two different names for the same thing, one of which is ambiguous
with other kinds of configuration (such as compiletest's own config).
This patch replaces those occurrences of `cfg` with `revision`.
Add "algebraic" fast-math intrinsics, based on fast-math ops that cannot return poison
Setting all of LLVM's fast-math flags makes our fast-math intrinsics very dangerous, because some inputs are UB. This set of flags permits common algebraic transformations, but according to the [LangRef](https://llvm.org/docs/LangRef.html#fastmath), only the flags `nnan` (no nans) and `ninf` (no infs) can produce poison.
And this uses the algebraic float ops to fix https://github.com/rust-lang/rust/issues/120720
cc `@orlp`
Print proper relative path for descriptive name check
The `stripped_path` starts with `ui/...`, while we are mostly working in `rust` directory.
print a relative path starting with `tests/ui/...` so that we can copy and use the path when renaming.
Hardcoding the `tests` maybe not good style, but seems we have a lot of hardcoded `tests/..` paths in tidy check :(.
Downgrade ambiguous_wide_pointer_comparisons suggestions to MaybeIncorrect
In certain cases like #121330, it is possible to have more than one suggestion from the `ambiguous_wide_pointer_comparisons` lint (which before this PR are `MachineApplicable`). When this gets passed to rustfix, rustfix makes *multiple* changes according to the suggestions which result in incorrect code.
This is a temporary workaround. The real long term solution to problems like these is to address <https://github.com/rust-lang/rust/issues/53934>.
This PR also includes a drive-by edit to the panic message emitted by compiletest because "ui" test suite now uses `//`@`` directives.
Fixes#121330.
Make --verbose imply -Z write-long-types-to-disk=no
When shortening the type it is necessary to take into account the `--verbose` flag, if it is activated, we must always show the entire type and not write it in a file.
Fixes: https://github.com/rust-lang/rust/issues/119130
Convert `delayed_bug`s to `bug`s.
I have a suspicion that quite a few delayed bug paths are impossible to reach, so I did an experiment.
I converted every `delayed_bug` to a `bug`, ran the full test suite, then converted back every `bug` that was hit. A surprising number were never hit.
This is too dangerous to merge. Increased coverage (fuzzing or a crater run) would likely hit more cases. But it might be useful for people to look at and think about which paths are genuinely unreachable.
r? `@ghost`
wasm: Store rlib metadata in wasm object files
The goal of this commit is to remove warnings using LLVM tip-of-tree `wasm-ld`. In llvm/llvm-project#78658 the `wasm-ld` LLD driver no longer looks at archive indices and instead looks at all the objects in archives. Previously `lib.rmeta` files were simply raw rustc metadata bytes, not wasm objects, meaning that `wasm-ld` would emit a warning indicating so.
WebAssembly targets previously passed `--fatal-warnings` to `wasm-ld` by default which meant that if Rust were to update to LLVM 18 then all wasm targets would not work. This immediate blocker was resolved in rust-lang/rust#120278 which removed `--fatal-warnings` which enabled a theoretical update to LLVM 18 for wasm targets. This current state is ok-enough for now because rustc squashes all linker output by default if it doesn't fail. This means, for example, that rustc squashes all the linker warnings coming out of `wasm-ld` about `lib.rmeta` files with LLVM 18. This again isn't a pressing issue because the information is all hidden, but it runs the risk of being annoying if another linker error were to happen and then the output would have all these unrelated warnings that couldn't be fixed.
Thus, this PR comes into the picture. The goal of this PR is to resolve these warnings by using the WebAssembly object file format on wasm targets instead of using raw rustc metadata. When I first implemented the rlib-in-objects scheme in #84449 I remember either concluding that `wasm-ld` would either include the metadata in the output or I thought we didn't have to do anything there at all. I think I was wrong on both counts as `wasm-ld` does not include the metadata in the final output unless the object is referenced and we do actually need to do something to resolve these warnings.
This PR updates the object file format containing rustc metadata on WebAssembly targets to be an actual WebAssembly file. To avoid bringing in any new dependencies I've opted to hand-code this encoding at this time. If the object gets more complicated though it'd probably be best to pull in `wasmparser` and `wasm-encoder`. For now though there's two adjacent functions reading/writing wasm.
The only caveat I know of with this is that if `wasm-ld` does indeed look at the object file then the metadata will be included in the final output. I believe the only thing that could cause that at this time is `--whole-archive` which I don't think is passed for rlibs. I would clarify that I'm not 100% certain about this, however.