Abstract more over ItemTreeLoc-like structs
Allows reducing some code duplication by using functions generic over said structs. The diff isn't negative due to me adding some additional impls for completeness.
feat: Add incorrect case diagnostics for traits and their associated items
Updates incorrect case diagnostic to:
- Check traits and their associated items
- Ignore trait implementations except for patterns in associated function bodies
Also cleans up `hir-ty::diagnostics::decl_check` a bit (mostly to make it a bit more DRY and easier to maintain)
Also fixes: #8675 and fixes: #8225
internal: even more `tracing`
As part of profiling completions, I added some additional spans and moved `TyBuilder::subst_for_def` closer to its usage site (the latter had a small impact on completion performance. Thanks for the tip, Lukas!)
This commit also adds `tracing` to NotificationDispatcher/RequestDispatcher,
bumps `rust-analyzer-salsa` to 0.17.0-pre.6, `always-assert` to 0.2, and
removes the homegrown `hprof` implementation in favor of a vendored
tracing-span-tree.
feat: Support for GOTO def from *inside* files included with include! macro
close#14937
Try to implement goto def from *inside* files included with include! macro.
This implementation has two limitations:
1. Only **one** file which calls include! will be tracked. (I think multiple file be included is a rare case and we may let it go for now)
2. Mapping token from included file to macro call file (semantics.rs:646~658) works fine but I am not sure is this the correct way to implement.
internal: Move query limits to the caller
Prior we calculated up to `limit` entries from a query, then filtered from that leaving us with less entries than the limit in some cases (which might give odd completion behavior due to items disappearing). This changes it so we filter before checking the limit.
This commit changes how the expected type is calculated when working
with Fn pointers, making the parenthesis stop vanishing when completing
the function name.
I've been bugged by the behaviour on parenthesis completion for a long
while now. R-a assumes that the `LetStmt` type is the same as the
function type I've just written. Worse is that all parenthesis vanish,
even from functions that have completely different signatures. It will
now verify if the signature is the same.
While working on this, I noticed that record fields behave the same, so
I also made it prioritize the field type instead of the current
expression when possible, but I'm unsure if this is OK, so input is
appreciated.
ImplTraits as return types will still behave weirdly because lowering is
disallowed at the time it resolves the function types.
fix: rewrite code_action `generate_delegate_trait`
I've made substantial enhancements to the "generate delegate trait" code action in rust-analyzer. Here's a summary of the changes:
#### Resolved the "Can’t find CONST_ARG@158..159 in AstIdMap" error
Fix#15804, fix#15968, fix#15108
The issue stemmed from an incorrect application of PathTransform in the original code. Previously, a new 'impl' was generated first and then transformed, causing PathTransform to fail in locating the correct AST node, resulting in an error. I rectified this by performing the transformation before generating the new 'impl' (using make::impl_trait), ensuring a step-by-step transformation of associated items.
#### Rectified generation of `Self` type
`generate_delegate_trait` is unable to properly handle trait with `Self` type.
Let's take the following code as an example:
```rust
trait Trait {
fn f() -> Self;
}
struct B {}
impl Trait for B {
fn f() -> B { B{} }
}
struct S {
b: B,
}
```
Here, if we implement `Trait` for `S`, the type of `f` should be `() -> Self`, i.e. `() -> S`. However we cannot automatically generate a function that constructs `S`.
To ensure that the code action doesn't generate delegate traits for traits with Self types, I add a function named `has_self_type` to handle it.
#### Extended support for generics in structs and fields within this code action
The former version of `generate_delegate_trait` cannot handle structs with generics properly. Here's an example:
```rust
struct B<T> {
a: T
}
trait Trait<T> {
fn f(a: T);
}
impl<T1, T2> Trait<T1> for B<T2> {
fn f(a: T1) -> T2 { self.a }
}
struct A {}
struct S {
b$0 : B<A>,
}
```
The former version will generates improper code:
```rust
impl<T1, T2> Trait<T1, T2> for S {
fn f(&self, a: T1) -> T1 {
<B as Trait<T1, T2>>::f( &self.b , a)
}
}
```
The rewritten version can handle generics properly:
```rust
impl<T1> Trait<T1> for S {
fn f(&self, a: T1) -> T1 {
<B<A> as Trait<T1>>::f(&self.b, a)
}
}
```
See more examples in added unit tests.
I enabled support for generic structs in `generate_delegate_trait` through the following steps (using the code example provided):
1. Initially, to prevent conflicts between the generic parameters in struct `S` and the ones in the impl of `B`, I renamed the generic parameters of `S`.
2. Then, since `B`'s parameters are instantiated within `S`, the original generic parameters of `B` needed removal within `S` (to avoid errors from redundant parameters). An important consideration here arises when Trait and B share parameters in `B`'s impl. In such cases, these shared generic parameters cannot be removed.
3. Next, I addressed the matching of types between `B`'s type in `S` and its type in the impl. Given that some generic parameters in the impl are instantiated in `B`, I replaced these parameters with their instantiated results using PathTransform. For instance, in the example provided, matching `B<A>` and `B<T2>`, where `T2` is instantiated as `A`, I replaced all occurrences of `T2` in the impl with `A` (i.e. apply the instantiated generic arguments to the params).
4. Finally, I performed transformations on each assoc item (also to prevent the initial issue) and handled redundant where clauses.
For a more detailed explanation, please refer to the code and comments. I welcome suggestions and any further questions!
fix: Don't emit "missing items" diagnostic for negative impls
Negative impls can't have items, so there is no reason for this diagnostic.
LMK if I should add a test somewhere. Also LMK if that's not how we usually check multiple things in an if in r-a.