This first patch starts by moving around pieces of state related to
type checking. The goal is to slowly unify the type checking state
into a single typing context. This initial patch moves the
ParameterEnvironment into the InferCtxt and moves shared tables
from Inherited and ty::ctxt into their own struct Tables. This
is the foundational work to refactoring the type checker to
enable future evolution of the language and tooling.
At the moment, it only mentions the fix to parallel codegen.
I was going to add more, but I have to go for a while - If this isn't reviewed when I get back, I'll remove it and resubmit it after filling in more :)
Now that LLVM has been updated, the only remaining roadblock to implementing
unwinding for MSVC is to fill out the runtime support in `std::rt::unwind::seh`.
This commit does precisely that, fixing up some other bits and pieces along the
way:
* The `seh` unwinding module now uses `RaiseException` to initiate a panic.
* The `rust_try.ll` file was rewritten for MSVC (as it's quite different) and is
located at `rust_try_msvc_64.ll`, only included on MSVC builds for now.
* The personality function for all landing pads generated by LLVM is hard-wired
to `__C_specific_handler` instead of the standard `rust_eh_personality` lang
item. This is required to get LLVM to emit SEH unwinding information instead
of DWARF unwinding information. This also means that on MSVC the
`rust_eh_personality` function is entirely unused (but is defined as it's a
lang item).
More details about how panicking works on SEH can be found in the
`rust_try_msvc_64.ll` or `seh.rs` files, but I'm always open to adding more
comments!
A key aspect of this PR is missing, however, which is that **unwinding is still
turned off by default for MSVC**. There is a [bug in llvm][llvm-bug] which
causes optimizations to inline enough landing pads that LLVM chokes. If the
compiler is optimized at `-O1` (where inlining isn't enabled) then it can
bootstrap with unwinding enabled, but when optimized at `-O2` (inlining is
enabled) then it hits a fatal LLVM error.
[llvm-bug]: https://llvm.org/bugs/show_bug.cgi?id=23884
Storing them as FCAs is a regression from the recent change that made
fat pointers immediate return values so that they are passed in
registers instead of memory.
Storing them as FCAs is a regression from the recent change that made
fat pointers immediate return values so that they are passed in
registers instead of memory.
This removes a footgun, since it is a reasonable assumption to make that
pointers to `T` will be aligned to `align_of::<T>()`. This also matches
the behaviour of C/C++. `min_align_of` is now deprecated.
Closes#21611.
In the release notes, the link name `[err]` was used to refer both to the error index and the error chaining RFC. Another problem I noticed was that `[fs-expand]` is never defined.
If a dylib doesn't actually export any symbols then link.exe won't emit a
`foo.lib` file to link against (as one isn't necessary). Detect this case in the
backend by omitting the `foo.lib` argument to the linker if it doesn't actually
exist.
Now that LLVM has been updated, the only remaining roadblock to implementing
unwinding for MSVC is to fill out the runtime support in `std::rt::unwind::seh`.
This commit does precisely that, fixing up some other bits and pieces along the
way:
* The `seh` unwinding module now uses `RaiseException` to initiate a panic.
* The `rust_try.ll` file was rewritten for MSVC (as it's quite different) and is
located at `rust_try_msvc_64.ll`, only included on MSVC builds for now.
* The personality function for all landing pads generated by LLVM is hard-wired
to `__C_specific_handler` instead of the standard `rust_eh_personality` lang
item. This is required to get LLVM to emit SEH unwinding information instead
of DWARF unwinding information. This also means that on MSVC the
`rust_eh_personality` function is entirely unused (but is defined as it's a
lang item).
More details about how panicking works on SEH can be found in the
`rust_try_msvc_64.ll` or `seh.rs` files, but I'm always open to adding more
comments!
A key aspect of this PR is missing, however, which is that **unwinding is still
turned off by default for MSVC**. There is a [bug in llvm][llvm-bug] which
causes optimizations to inline enough landing pads that LLVM chokes. If the
compiler is optimized at `-O1` (where inlining isn't enabled) then it can
bootstrap with unwinding enabled, but when optimized at `-O2` (inlining is
enabled) then it hits a fatal LLVM error.
[llvm-bug]: https://llvm.org/bugs/show_bug.cgi?id=23884