#[plugin] #[no_link] extern crate bleh;
becomes a crate attribute
#![plugin(bleh)]
The feature gate is still required.
It's almost never correct to link a plugin into the resulting library /
executable, because it will bring all of libsyntax and librustc with it.
However if you really want this behavior, you can get it with a separate
`extern crate` item in addition to the `plugin` attribute.
Fixes#21043.
Fixes#20769.
[breaking-change]
This is an implementation of [RFC 578][rfc] which adds a new `std::env` module
to replace most of the functionality in the current `std::os` module. More
details can be found in the RFC itself, but as a summary the following methods
have all been deprecated:
[rfc]: https://github.com/rust-lang/rfcs/pull/578
* `os::args_as_bytes` => `env::args`
* `os::args` => `env::args`
* `os::consts` => `env::consts`
* `os::dll_filename` => no replacement, use `env::consts` directly
* `os::page_size` => `env::page_size`
* `os::make_absolute` => use `env::current_dir` + `join` instead
* `os::getcwd` => `env::current_dir`
* `os::change_dir` => `env::set_current_dir`
* `os::homedir` => `env::home_dir`
* `os::tmpdir` => `env::temp_dir`
* `os::join_paths` => `env::join_paths`
* `os::split_paths` => `env::split_paths`
* `os::self_exe_name` => `env::current_exe`
* `os::self_exe_path` => use `env::current_exe` + `pop`
* `os::set_exit_status` => `env::set_exit_status`
* `os::get_exit_status` => `env::get_exit_status`
* `os::env` => `env::vars`
* `os::env_as_bytes` => `env::vars`
* `os::getenv` => `env::var` or `env::var_string`
* `os::getenv_as_bytes` => `env::var`
* `os::setenv` => `env::set_var`
* `os::unsetenv` => `env::remove_var`
Many function signatures have also been tweaked for various purposes, but the
main changes were:
* `Vec`-returning APIs now all return iterators instead
* All APIs are now centered around `OsString` instead of `Vec<u8>` or `String`.
There is currently on convenience API, `env::var_string`, which can be used to
get the value of an environment variable as a unicode `String`.
All old APIs are `#[deprecated]` in-place and will remain for some time to allow
for migrations. The semantics of the APIs have been tweaked slightly with regard
to dealing with invalid unicode (panic instead of replacement).
The new `std::env` module is all contained within the `env` feature, so crates
must add the following to access the new APIs:
#![feature(env)]
[breaking-change]
Instead of copy-pasting the whole macro_rules! item from the original .rs file,
we serialize a separate name, attributes list, and body, the latter as
pretty-printed TTs. The compilation of macro_rules! macros is decoupled
somewhat from the expansion of macros in item position.
This filters out comments, and facilitates selective imports.
os::getcwd() panics if the current directory is not available. According
to getcwd(3), there are three cases:
- EACCES: Permission denied.
- ENOENT: The current working directory has been removed.
- ERANGE: The buffer size is less than the actual absolute path.
This commit makes os::getcwd() return IoResult<Path>, not just Path,
preventing it from panicking.
As os::make_absolute() depends on os::getcwd(), it is also modified to
return IoResult<Path>.
Fixes#16946.
[breaking-change]
https://github.com/rust-lang/rfcs/pull/221
The current terminology of "task failure" often causes problems when
writing or speaking about code. You often want to talk about the
possibility of an operation that returns a Result "failing", but cannot
because of the ambiguity with task failure. Instead, you have to speak
of "the failing case" or "when the operation does not succeed" or other
circumlocutions.
Likewise, we use a "Failure" header in rustdoc to describe when
operations may fail the task, but it would often be helpful to separate
out a section describing the "Err-producing" case.
We have been steadily moving away from task failure and toward Result as
an error-handling mechanism, so we should optimize our terminology
accordingly: Result-producing functions should be easy to describe.
To update your code, rename any call to `fail!` to `panic!` instead.
Assuming you have not created your own macro named `panic!`, this
will work on UNIX based systems:
grep -lZR 'fail!' . | xargs -0 -l sed -i -e 's/fail!/panic!/g'
You can of course also do this by hand.
[breaking-change]
Spring cleaning is here! In the Fall! This commit removes quite a large amount
of deprecated functionality from the standard libraries. I tried to ensure that
only old deprecated functionality was removed.
This is removing lots and lots of deprecated features, so this is a breaking
change. Please consult the deprecation messages of the deleted code to see how
to migrate code forward if it still needs migration.
[breaking-change]
Change to resolve and update compiler and libs for uses.
[breaking-change]
Enum variants are now in both the value and type namespaces. This means that
if you have a variant with the same name as a type in scope in a module, you
will get a name clash and thus an error. The solution is to either rename the
type or the variant.
The other extension types already worked this way and it can be useful to track some state along with the extension.
I also removed the `BasicMacroExpander` and `BasicIdentMacroExpander` since the span inside of them was never used. The expander function types now directly implement the relevant trait.
The spans inside of these types were always None and never used. Pass
the expander function directly instead of wrapping it in one of these
types.
[breaking-change]
This adds support for lint groups to the compiler. Lint groups are a way of
grouping a number of lints together under one name. For example, this also
defines a default lint for naming conventions, named `bad_style`. Writing
`#[allow(bad_style)]` is equivalent to writing
`#[allow(non_camel_case_types, non_snake_case, non_uppercase_statics)]`. These
lint groups can also be defined as a compiler plugin using the new
`Registry::register_lint_group` method.
This also adds two built-in lint groups, `bad_style` and `unused`. The contents
of these groups can be seen by running `rustc -W help`.
Our AST definition can include macro invocations, which can expand into all kinds of things. Macro invocations are expanded away during expansion time, and the rest of the compiler doesn't have to deal with them. However, we have no way of enforcing this.
This patch adds two protective mechanisms.
First, it adds a (quick) explicit check that ensures there are no macro invocations remaining in the AST after expansion. Second, it updates the visit and fold mechanisms so that by default, they will not traverse macro invocations. It's easy enough to add this, if desired (it's documented in the source, and examples appear, e.g. in the IdentFinder.
Along the way, I also consulted with @sfackler to refactor the macro export mechanism so that it stores macro text spans in a side table, rather than leaving them in the AST.
macros can expand into arbitrary items, exprs, etc. This
means that using a default walker or folder on an AST before
macro expansion is complete will miss things (the things that
the macros expand into). As a partial fence against this, this
commit moves the default traversal of macros into a separate
procedure, and makes the default trait implementation signal
an error. This means that Folders and Visitors can traverse
macros if they want to, but they need to explicitly add an
impl that calls the walk_mac or fold_mac procedure
This should prevent problems down the road.
The let-syntax expander is different in that it doesn't apply
a mark to its token trees before expansion. This is used
for macro_rules, and it's because macro_rules is essentially
MTWT's let-syntax. You don't want to mark before expand sees
let-syntax, because there's no "after" syntax to mark again.
In some sense, the cleaner approach might be to introduce a new
AST node that macro_rules expands into; this would make it clearer
that the expansion of a macro is distinct from the addition of a
new macro binding.
This should work for now, though...
only known post-monomorphization, and report `transmute` errors before
the code is generated for that `transmute`.
This can break code that looked like:
unsafe fn f<T>(x: T) {
let y: int = transmute(x);
}
Change such code to take a type parameter that has the same size as the
type being transmuted to.
Closes#12898.
[breaking-change]