This removes another special case of Switch by replacing it with the more general SwitchInt. While
this is more clunky currently, there’s no reason we can’t make it nice (and efficient) to use.
Exclude top-level macro expansions from source location override.
It occurred to me that a simple heuristic can address the issue #36382: any macros that expand into items (including `include!()`) don't need to be stepped over because there's not code to step through above a function scope level.
r? @michaelwoerister
According to the LLVM reference:
> A value of 0 or an omitted align argument means that the operation has
the ABI alignment for the target.
So loads/stores of fields of packed structs need to have their align set
to 1. Implement that by tracking the alignment of `LvalueRef`s.
Fixes#39376.
Add warning for () to ! switch
With feature(never_type) enabled diverging type variables will default to `!` instead of `()`. This can cause breakages where a trait is resolved on such a type.
This PR emits a future-compatibility warning when it sees this happen.
This commit updates the version number to 1.17.0 as we're not on that version of
the nightly compiler, and at the same time this updates src/stage0.txt to
bootstrap from freshly minted beta compiler and beta Cargo.
Remove unnecessary LLVMRustPersonalityFn binding
LLVM Core C bindings provide this function for all the versions back to what we support (3.7), and
helps to avoid this unnecessary builder->function transition every time. Also a negative diff.
Fixes#38462 (although it was pretty much fixed already)
LLVM Core C bindings provide this function for all the versions back to what we support (3.7), and
helps to avoid this unnecessary builder->function transition every time. Also a negative diff.
[11/n] Separate ty::Tables into one per each body.
_This is part of a series ([prev](https://github.com/rust-lang/rust/pull/38449) | [next]()) of patches designed to rework rustc into an out-of-order on-demand pipeline model for both better feature support (e.g. [MIR-based](https://github.com/solson/miri) early constant evaluation) and incremental execution of compiler passes (e.g. type-checking), with beneficial consequences to IDE support as well.
If any motivation is unclear, please ask for additional PR description clarifications or code comments._
<hr>
In order to track the results of type-checking and inference for incremental recompilation, they must be stored separately for each function or constant value, instead of lumped together.
These side-`Tables` also have to be tracked by various passes, as they visit through bodies (all of which have `Tables`, even if closures share the ones from their parent functions). This is usually done by switching a `tables` field in an override of `visit_nested_body` before recursing through `visit_body`, to the relevant one and then restoring it - however, in many cases the nesting is unnecessary and creating the visitor for each body in the crate and then visiting that body, would be a much cleaner solution.
To simplify handling of inlined HIR & its side-tables, their `NodeId` remapping and entries HIR map were fully stripped out, which means that `NodeId`s from inlined HIR must not be used where a local `NodeId` is expected. It might be possible to make the nodes (`Expr`, `Block`, `Pat`, etc.) that only show up within a `Body` have IDs that are scoped to that `Body`, which would also allow `Tables` to use `Vec`s.
That last part also fixes#38790 which was accidentally introduced in a previous refactor.
Fix transmute::<T, U> where T requires a bigger alignment than U
For transmute::<T, U> we simply pointercast the destination from a U
pointer to a T pointer, without providing any alignment information,
thus LLVM assumes that the destination is aligned to hold a value of
type T, which is not necessarily true. This can lead to LLVM emitting
machine instructions that assume said alignment, and thus cause aborts.
To fix this, we need to provide the actual alignment to store_operand()
and in turn to store() so they can set the proper alignment information
on the stores and LLVM can emit the proper machine instructions.
Fixes#32947
For transmute::<T, U> we simply pointercast the destination from a U
pointer to a T pointer, without providing any alignment information,
thus LLVM assumes that the destination is aligned to hold a value of
type T, which is not necessarily true. This can lead to LLVM emitting
machine instructions that assume said alignment, and thus cause aborts.
To fix this, we need to provide the actual alignment to store_operand()
and in turn to store() so they can set the proper alignment information
on the stores and LLVM can emit the proper machine instructions.
Fixes#32947
Since discriminants do not support i128 yet, lets just calculate the boundaries within the 64 bits
that are supported. This also avoids an issue with bootstrapping on 32 bit systems due to #38727.
Fixes rebase fallout, makes code correct in presence of 128-bit constants.
This commit includes manual merge conflict resolution changes from a rebase by @est31.
This commit introduces 128-bit integers. Stage 2 builds and produces a working compiler which
understands and supports 128-bit integers throughout.
The general strategy used is to have rustc_i128 module which provides aliases for iu128, equal to
iu64 in stage9 and iu128 later. Since nowhere in rustc we rely on large numbers being supported,
this strategy is good enough to get past the first bootstrap stages to end up with a fully working
128-bit capable compiler.
In order for this strategy to work, number of locations had to be changed to use associated
max_value/min_value instead of MAX/MIN constants as well as the min_value (or was it max_value?)
had to be changed to use xor instead of shift so both 64-bit and 128-bit based consteval works
(former not necessarily producing the right results in stage1).
This commit includes manual merge conflict resolution changes from a rebase by @est31.