This removes a large array of deprecated functionality, regardless of how
recently it was deprecated. The purpose of this commit is to clean out the
standard libraries and compiler for the upcoming alpha release.
Some notable compiler changes were to enable warnings for all now-deprecated
command line arguments (previously the deprecated versions were silently
accepted) as well as removing deriving(Zero) entirely (the trait was removed).
The distribution no longer contains the libtime or libregex_macros crates. Both
of these have been deprecated for some time and are available externally.
closes#20486closes#20474closes#20441
[breaking-change]
The `Index[Mut]` traits now have one less input parameter, as the return type of the indexing operation is an associated type. This breaks all existing implementations.
---
binop traits (`Add`, `Sub`, etc) now have an associated type for their return type. Also, the RHS input parameter now defaults to `Self` (except for the `Shl` and `Shr` traits). For example, the `Add` trait now looks like this:
``` rust
trait Add<Rhs=Self> {
type Output;
fn add(self, Rhs) -> Self::Output;
}
```
The `Neg` and `Not` traits now also have an associated type for their return type.
This breaks all existing implementations of these traits.
---
Affected traits:
- `Iterator { type Item }`
- `IteratorExt` no input/output types, uses `<Self as Iterator>::Item` in its methods
- `DoubleEndedIterator` no input/output types, uses `<Self as Iterator>::Item` in its methods
- `DoubleEndedIteratorExt` no input/output types, uses `<Self as Iterator>::Item` in its methods
- `RandomAccessIterator` no input/output types
- `ExactSizeIterator` no input/output types, uses `<Self as Iterator>::Item` in its methods
This breaks all the implementations of these traits.
and which uses EUV. For now, upvar inference is not any smarter than
it ever was, but regionck is simpler because it doesn't have to do as
many things at once.
`UnboxedClosureTyper`. This requires adding a `tcx` field to
`ParameterEnvironment` but generally simplifies everything since we
only need to pass along an `UnboxedClosureTyper` or `Typer`.
which should always result in an error.
NB. Some of the hunks in this commit rely on a later commit which adds
`tcx` into `param_env` and modifies `ParameterEnvironment` to
implement `Typer`.
expr-use-visitor) early. Turns out I was wrong to remove this; it
causes a lot of pain trying to run EUV etc during typeck without
ICEing on erroneous programs.
check it more easily; also extend object safety to cover sized types
as well as static methods. This makes it sufficient so that we can
always ensure that `Foo : Foo` holds for any trait `Foo`.
This commit is an implementation of [RFC 503][rfc] which is a stabilization
story for the prelude. Most of the RFC was directly applied, removing reexports.
Some reexports are kept around, however:
* `range` remains until range syntax has landed to reduce churn.
* `Path` and `GenericPath` remain until path reform lands. This is done to
prevent many imports of `GenericPath` which will soon be removed.
* All `io` traits remain until I/O reform lands so imports can be rewritten all
at once to `std::io::prelude::*`.
This is a breaking change because many prelude reexports have been removed, and
the RFC can be consulted for the exact list of removed reexports, as well as to
find the locations of where to import them.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0503-prelude-stabilization.md
[breaking-change]
Closes#20068
various bugs in `trait_id_of_impl`. The end result was that looking up
the "trait_id_of_impl" with a trait's def-id yielded the same trait
again, even though it ought to have yielded None.
This is a [breaking-change]. The new rules require that, for an impl of a trait defined
in some other crate, two conditions must hold:
1. Some type must be local.
2. Every type parameter must appear "under" some local type.
Here are some examples that are legal:
```rust
struct MyStruct<T> { ... }
// Here `T` appears "under' `MyStruct`.
impl<T> Clone for MyStruct<T> { }
// Here `T` appears "under' `MyStruct` as well. Note that it also appears
// elsewhere.
impl<T> Iterator<T> for MyStruct<T> { }
```
Here is an illegal example:
```rust
// Here `U` does not appear "under" `MyStruct` or any other local type.
// We call `U` "uncovered".
impl<T,U> Iterator<U> for MyStruct<T> { }
```
There are a couple of ways to rewrite this last example so that it is
legal:
1. In some cases, the uncovered type parameter (here, `U`) should be converted
into an associated type. This is however a non-local change that requires access
to the original trait. Also, associated types are not fully baked.
2. Add `U` as a type parameter of `MyStruct`:
```rust
struct MyStruct<T,U> { ... }
impl<T,U> Iterator<U> for MyStruct<T,U> { }
```
3. Create a newtype wrapper for `U`
```rust
impl<T,U> Iterator<Wrapper<U>> for MyStruct<T,U> { }
```
Because associated types are not fully baked, which in the case of the
`Hash` trait makes adhering to this rule impossible, you can
temporarily disable this rule in your crate by using
`#![feature(old_orphan_check)]`. Note that the `old_orphan_check`
feature will be removed before 1.0 is released.
These changes fix various problems encountered getting japaric's `at-iter` branch to work. This branch converts the `Iterator` trait to use an associated type.
This pass performs a second pass of stabilization through the `std::sync`
module, avoiding modules/types that are being handled in other PRs (e.g.
mutexes, rwlocks, condvars, and channels).
The following items are now stable
* `sync::atomic`
* `sync::atomic::ATOMIC_BOOL_INIT` (was `INIT_ATOMIC_BOOL`)
* `sync::atomic::ATOMIC_INT_INIT` (was `INIT_ATOMIC_INT`)
* `sync::atomic::ATOMIC_UINT_INIT` (was `INIT_ATOMIC_UINT`)
* `sync::Once`
* `sync::ONCE_INIT`
* `sync::Once::call_once` (was `doit`)
* C == `pthread_once(..)`
* Boost == `call_once(..)`
* Windows == `InitOnceExecuteOnce`
* `sync::Barrier`
* `sync::Barrier::new`
* `sync::Barrier::wait` (now returns a `bool`)
* `sync::Semaphore::new`
* `sync::Semaphore::acquire`
* `sync::Semaphore::release`
The following items remain unstable
* `sync::SemaphoreGuard`
* `sync::Semaphore::access` - it's unclear how this relates to the poisoning
story of mutexes.
* `sync::TaskPool` - the semantics of a failing task and whether a thread is
re-attached to a thread pool are somewhat unclear, and the
utility of this type in `sync` is question with respect to
the jobs of other primitives. This type will likely become
stable or move out of the standard library over time.
* `sync::Future` - futures as-is have yet to be deeply re-evaluated with the
recent core changes to Rust's synchronization story, and will
likely become stable in the future but are unstable until
that time comes.
[breaking-change]
Doesn't yet converge on a fixed point, but generally works. A better algorithm
will come with the implementation of default type parameter fallback.
If inference fails to determine an exact integral or floating point type, it
will set the type to i32 or f64, respectively.
Closes#16968
Doesn't yet converge on a fixed point, but generally works. A better algorithm
will come with the implementation of default type parameter fallback.
If inference fails to determine an exact integral or floating point type, it
will set the type to i32 or f64, respectively.
Closes#16968
Uses the same approach as https://github.com/rust-lang/rust/pull/17286 (and
subsequent changes making it more correct), where the visitor will skip any
pieces of the AST that are from "foreign code", where the spans don't line up,
indicating that that piece of code is due to a macro expansion.
If this breaks your code, read the error message to determine which feature
gate you should add to your crate.
Closes#18102
[breaking-change]
Uses the same approach as https://github.com/rust-lang/rust/pull/17286 (and
subsequent changes making it more correct), where the visitor will skip any
pieces of the AST that are from "foreign code", where the spans don't line up,
indicating that that piece of code is due to a macro expansion.
If this breaks your code, read the error message to determine which feature
gate you should add to your crate, and bask in the knowledge that your code
won't mysteriously break should you try to use the 1.0 release.
Closes#18102
[breaking-change]