Formatting via reflection has been a little questionable for some time now, and
it's a little unfortunate that one of the standard macros will silently use
reflection when you weren't expecting it. This adds small bits of code bloat to
libraries, as well as not always being necessary. In light of this information,
this commit switches assert_eq!() to using {} in the error message instead of
{:?}.
In updating existing code, there were a few error cases that I encountered:
* It's impossible to define Show for [T, ..N]. I think DST will alleviate this
because we can define Show for [T].
* A few types here and there just needed a #[deriving(Show)]
* Type parameters needed a Show bound, I often moved this to `assert!(a == b)`
* `Path` doesn't implement `Show`, so assert_eq!() cannot be used on two paths.
I don't think this is much of a regression though because {:?} on paths looks
awful (it's a byte array).
Concretely speaking, this shaved 10K off a 656K binary. Not a lot, but sometime
significant for smaller binaries.
* All I/O now returns IoResult<T> = Result<T, IoError>
* All formatting traits now return fmt::Result = IoResult<()>
* The if_ok!() macro was added to libstd
`Times::times` was always a second-class loop because it did not support the `break` and `continue` operations. Its playful appeal was then lost after `do` was disabled for closures. It's time to let this one go.
The patch adds the missing pow method for all the implementations of the
Integer trait. This is a small addition that will most likely be
improved by the work happening in #10387.
Fixes#11499
* Reexport io::mem and io::buffered structs directly under io, make mem/buffered
private modules
* Remove with_mem_writer
* Remove DEFAULT_CAPACITY and use DEFAULT_BUF_SIZE (in io::buffered)
The patch adds a `pow` function for types implementing `One`, `Mul` and
`Clone` trait.
The patch also renames f32 and f64 pow into powf in order to still have
a way to easily have float powers. It uses llvms intrinsics.
The pow implementation for all num types uses the exponentiation by
square.
Fixes bug #11499
The `print!` and `println!` macros are now the preferred method of printing, and so there is no reason to export the `stdio` functions in the prelude. The functions have also been replaced by their macro counterparts in the tutorial and other documentation so that newcomers don't get confused about what they should be using.
The methods contained in `std::num::{Algebraic, Trigonometric, Exponential, Hyperbolic}` have now been moved into `std::num::Real`. This is part of an ongoing effort to simplify `std::num` (see issue #10387).
`std::num::RealExt` has also been removed from the prelude because it is not a commonly used trait.
This commit uniforms the short title of modules provided by libstd,
in order to make their roles more explicit when glancing at the index.
Signed-off-by: Luca Bruno <lucab@debian.org>
This moves `std::rand::distribitions::{Normal, StandardNormal}` to `...::distributions::normal`, reexporting `Normal` from `distributions` (and similarly for `Exp` and Exp1`), and adds:
- Log-normal
- Chi-squared
- F
- Student T
all of which are implemented in C++11's random library. Tests in 0424b8aded. Note that these are approximately half documentation & half implementation (of which a significant portion is boilerplate `}`'s and so on).
This reverts commit c54427ddfb.
Leave the #[ignores] in that were added to rustpkg tests.
Conflicts:
src/librustc/driver/driver.rs
src/librustc/metadata/creader.rs
The reasons for doing this are:
* The model on which linked failure is based is inherently complex
* The implementation is also very complex, and there are few remaining who
fully understand the implementation
* There are existing race conditions in the core context switching function of
the scheduler, and possibly others.
* It's unclear whether this model of linked failure maps well to a 1:1 threading
model
Linked failure is often a desired aspect of tasks, but we would like to take a
much more conservative approach in re-implementing linked failure if at all.
Closes#8674Closes#8318Closes#8863
The reasons for doing this are:
* The model on which linked failure is based is inherently complex
* The implementation is also very complex, and there are few remaining who
fully understand the implementation
* There are existing race conditions in the core context switching function of
the scheduler, and possibly others.
* It's unclear whether this model of linked failure maps well to a 1:1 threading
model
Linked failure is often a desired aspect of tasks, but we would like to take a
much more conservative approach in re-implementing linked failure if at all.
Closes#8674Closes#8318Closes#8863
Provide `Closed01` and `Open01` that generate directly from the
closed/open intervals from 0 to 1, in contrast to the plain impls for
f32 and f64 which generate the half-open [0,1).
Fixes#7755.
These two attributes are no longer useful now that Rust has decided to leave
segmented stacks behind. It is assumed that the rust task's stack is always
large enough to make an FFI call (due to the stack being very large).
There's always the case of stack overflow, however, to consider. This does not
change the behavior of stack overflow in Rust. This is still normally triggered
by the __morestack function and aborts the whole process.
C stack overflow will continue to corrupt the stack, however (as it did before
this commit as well). The future improvement of a guard page at the end of every
rust stack is still unimplemented and is intended to be the mechanism through
which we attempt to detect C stack overflow.
Closes#8822Closes#10155
This adds bindings to the remaining functions provided by libuv, all of which
are useful operations on files which need to get exposed somehow.
Some highlights:
* Dropped `FileReader` and `FileWriter` and `FileStream` for one `File` type
* Moved all file-related methods to be static methods under `File`
* All directory related methods are still top-level functions
* Created `io::FilePermission` types (backed by u32) that are what you'd expect
* Created `io::FileType` and refactored `FileStat` to use FileType and
FilePermission
* Removed the expanding matrix of `FileMode` operations. The mode of reading a
file will not have the O_CREAT flag, but a write mode will always have the
O_CREAT flag.
Closes#10130Closes#10131Closes#10121
This commit moves all thread-blocking I/O functions from the std::os module.
Their replacements can be found in either std::rt::io::file or in a hidden
"old_os" module inside of native::file. I didn't want to outright delete these
functions because they have a lot of special casing learned over time for each
OS/platform, and I imagine that these will someday get integrated into a
blocking implementation of IoFactory. For now, they're moved to a private module
to prevent bitrot and still have tests to ensure that they work.
I've also expanded the extensions to a few more methods defined on Path, most of
which were previously defined in std::os but now have non-thread-blocking
implementations as part of using the current IoFactory.
The api of io::file is in flux, but I plan on changing it in the next commit as
well.
Closes#10057
Implements the [Gamma distribution](https://en.wikipedia.org/wiki/Gamma_distribution), using the algorithm described by Marsaglia & Tsang 2000[1]. I added tests checking that the mean and variance of this implementation is as expected for a range of values of the parameters in 5d87c00a0f (they pass locally, but obviously won't even build on Travis until this is merged).
Also, moves `std::rand::distributions` to a subfolder, and performs a minor clean-up of the benchmarking (makes the number of iterations shared by the whole `std::rand` subtree).
[1]: George Marsaglia and Wai Wan Tsang. 2000. "A Simple Method for Generating Gamma Variables" *ACM Trans. Math. Softw.* 26, 3 (September 2000), 363-372. DOI:[10.1145/358407.358414](http://doi.acm.org/10.1145/358407.358414).
Fix the implementation of `std::rand::Rng::fill_bytes()` for
`std::rand::reseeding::ReseedingRng` to call the `fill_bytes()` method
of the underlying RNG rather than itself, which causes infinite
recursion.
Fixes#10202.
Fix the implementation of `std::rand::Rng::fill_bytes()` for
`std::rand::reseeding::ReseedingRng` to call the `fill_bytes()` method
of the underlying RNG rather than itself, which causes infinite
recursion.
Fixes#10202.
The code was using (in the notation of Doornik 2005) `f(x_{i+1}) -
f(x_{i+2})` rather than `f(x_i) - f(x_{i+1})`. This corrects that, and
removes the F_DIFF tables which caused this problem in the first place.
They `F_DIFF` tables are a micro-optimisation (in theory, they could
easily be a micro-pessimisation): that `if` gets hit about 1% of the
time for Exp/Normal, and the rest of the condition involves RNG calls
and a floating point `exp`, so it is unlikely that saving a single FP
subtraction will be very useful (especially as more tables means more
memory reads and higher cache pressure, as well as taking up space in
the binary (although only ~2k in this case)).
Closes#10084. Notably, unlike that issue suggests, this wasn't a
problem with the Exp tables. It affected Normal too, but since it is
symmetric, there was no bias in the mean (as the bias was equal on the
positive and negative sides and so cancelled out) but it was visible as
a variance slightly lower than it should be.
- Adds the `Sample` and `IndependentSample` traits for generating numbers where there are parameters (e.g. a list of elements to draw from, or the mean/variance of a normal distribution). The former takes `&mut self` and the latter takes `&self` (this is the only difference).
- Adds proper `Normal` and `Exp`-onential distributions
- Adds `Range` which generates `[lo, hi)` generically & properly (via a new trait) replacing the incorrect behaviour of `Rng.gen_integer_range` (this has become `Rng.gen_range` for convenience, it's far more efficient to use `Range` itself)
- Move the `Weighted` struct from `std::rand` to `std::rand::distributions` & improve it
- optimisations and docs
Slice transmutes are now (and, really, always were) dangerous, so we
avoid them and do the (only?) non-(undefined behaviour in C) pointer
cast: casting to *u8.
This reifies the computations required for uniformity done by
(the old) `Rng.gen_integer_range` (now Rng.gen_range), so that they can
be amortised over many invocations, if it is called in a loop.
Also, it makes it correct, but using a trait + impls for each type,
rather than trying to coerce `Int` + `u64` to do the right thing. This
also makes it more extensible, e.g. big integers could & should
implement SampleRange.
Complete the implementation of Exp and Normal started by Exp1 and
StandardNormal by creating types implementing Sample & IndependentSample
with the appropriate parameters.
This lets the C++ code in the rt handle the (slightly) tricky parts of
random number generation: e.g. error detection/handling, and using the
values of the `#define`d options to the various functions.
It now:
- can be explicitly seeded from user code (`seed_task_rng`) or from the
environment (`RUST_SEED`, a positive integer)
- automatically reseeds itself from the OS *unless* it was seeded by
either method above
- has more documentation
This provides 2 methods: .reseed() and ::from_seed that modify and
create respecitively.
Implement this trait for the RNGs in the stdlib for which this makes
sense.
This is implemented as a wrapper around another RNG. It is designed
to allow the actual implementation to be changed without changing
the external API (e.g. it currently uses a 64-bit generator on 64-
bit platforms, and a 32-bit one on 32-bit platforms; but one could
imagine that the IsaacRng may be deprecated later, and having this
ability to switch algorithms without having to update the points of
use is convenient.)
This is the recommended general use RNG.
The former reads from e.g. /dev/urandom, the latter just wraps any
std::rt::io::Reader into an interface that implements Rng.
This also adds Rng.fill_bytes for efficient implementations of the above
(reading 8 bytes at a time is inefficient when you can read 1000), and
removes the dependence on src/rt (i.e. rand_gen_seed) although this last
one requires implementing hand-seeding of the XorShiftRng used in the
scheduler on Linux/unixes, since OSRng relies on a scheduler existing to
be able to read from /dev/urandom.
This is 2x faster on 64-bit computers at generating anything larger
than 32-bits.
It has been verified against the canonical C implementation from the
website of the creator of ISAAC64.
Also, move `Rng.next` to `Rng.next_u32` and add `Rng.next_u64` to
take full advantage of the wider word width; otherwise Isaac64 will
always be squeezed down into a u32 wasting half the entropy and
offering no advantage over the 32-bit variant.
This PR solves one of the pain points with c-style enums. Simplifies writing a fn to convert from an int/uint to an enum. It does this through a `#[deriving(FromPrimitive)]` syntax extension.
Before this is committed though, we need to discuss if `ToPrimitive`/`FromPrimitive` has the right design (cc #4819). I've changed all the `.to_int()` and `from_int()` style functions to return `Option<int>` so we can handle partial functions. For this PR though only enums and `extra::num::bigint::*` take advantage of returning None for unrepresentable values. In the long run it'd be better if `i64.to_i8()` returned `None` if the value was too large, but I'll save this for a future PR.
Closes#3868.
It is simply defined as `f64` across every platform right now.
A use case hasn't been presented for a `float` type defined as the
highest precision floating point type implemented in hardware on the
platform. Performance-wise, using the smallest precision correct for the
use case greatly saves on cache space and allows for fitting more
numbers into SSE/AVX registers.
If there was a use case, this could be implemented as simply a type
alias or a struct thanks to `#[cfg(...)]`.
Closes#6592
The mailing list thread, for reference:
https://mail.mozilla.org/pipermail/rust-dev/2013-July/004632.html
Also, documentation & general clean-up:
- remove `gen_char_from`: better served by `sample` or `choose`.
- `gen_bytes` generalised to `gen_vec`.
- `gen_int_range`/`gen_uint_range` merged into `gen_integer_range` and
made to be properly uniformly distributed. Fixes#8644.
Minor adjustments to other functions.
The free-standing functions in f32, f64, i8, i16, i32, i64, u8, u16,
u32, u64, float, int, and uint are replaced with generic functions in
num instead.
If you were previously using any of those functions, just replace them
with the corresponding function with the same name in num.
Note: If you were using a function that corresponds to an operator, use
the operator instead.
Fix a laundry list of warnings involving unused imports that glutted
up compilation output. There are more, but there seems to be some
false positives (where 'remedy' appears to break the build), but this
particular set of fixes seems safe.