since there are separate checks that apply to Copy (and Send uses the
generic defaulted trait rules). Also prohibit `Sized` from being
manually implemented for now.
now have a simple set of trait def-ids. During coherence, we use a
separate table to track the default impls for any given trait so that we
can report a nice error. This fixes various bugs in the metadata
encoding that led to `ty::trait_has_default_impl` yielding the wrong
values in the cross-crate case. (In particular, default impl def-ids
were not included in the list of all impl def-ids; I debated fixing just
that, but this approach seemed cleaner overall, since we usually treat
the "defaulted" bit on traits as being a property of the trait, and now
iterating over a list of impls doesn't intermingle default impls with
normal impls.)
Executing `configure` seems to create the following error due to how the script [parses Pandoc's version](https://github.com/rust-lang/rust/blob/master/configure#L705):
```text
./configure: line 705: [: pandoc: integer expression expected
./configure: line 705: [: 1.12.4.2: integer expression expected
```
This issue seems to stem from a discrepancy between BSD and GNU versions of sed. This patch changes the sed command to use an extended regex, which works with both flavours of sed.
Unstable items used in a macro expansion will now always trigger
stability warnings, *unless* the unstable items are directly inside a
macro marked with `#[allow_internal_unstable]`. IOW, the compiler warns
unless the span of the unstable item is a subspan of the definition of a
macro marked with that attribute.
E.g.
#[allow_internal_unstable]
macro_rules! foo {
($e: expr) => {{
$e;
unstable(); // no warning
only_called_by_foo!();
}}
}
macro_rules! only_called_by_foo {
() => { unstable() } // warning
}
foo!(unstable()) // warning
The unstable inside `foo` is fine, due to the attribute. But the
`unstable` inside `only_called_by_foo` is not, since that macro doesn't
have the attribute, and the `unstable` passed into `foo` is also not
fine since it isn't contained in the macro itself (that is, even though
it is only used directly in the macro).
In the process this makes the stability tracking much more precise,
e.g. previously `println!("{}", unstable())` got no warning, but now it
does. As such, this is a bug fix that may cause [breaking-change]s.
The attribute is definitely feature gated, since it explicitly allows
side-stepping the feature gating system.
---
This updates `thread_local!` macro to use the attribute, since it uses
unstable features internally (initialising a struct with unstable
fields).
The main gist of this PR is commit 1077efb which removes the list of supertraits from the `TraitDef` and pulls them into a separate table, which is accessed via `lookup_super_predicates`. This is analogous to `lookup_predicates`, which gets the complete where clause. This allows us to create the `TraitDef`, which contains the list generics and so forth, without fully knowing the list of supertraits. This in turn allows the *supertrait listing* to contain references to associated types like `<Self as Foo>::Item`, which were previously impossible because conversion required having the `TraitDef` for `Foo`.
We do not yet support `Self::Item` in a supertrait listing. This doesn't work because to convert that, it attempts to expand out the full set of supertraits, which are in the process of being created. This could potentially be worked out by having the expansion of supertraits proceed in a lazy fashion, but we'd have to define shadowing rules for associated types which we don't currently have.
Along the way (in 9de9ec5) I also removed the restriction against duplicate bounds and generalized the code so that it can handle having the same supertrait multiple times with different arguments, e.g. `Foo : Bar<i32> + Bar<u32>`. This restriction was serving no particular purpose, since the same trait could be extended multiple times indirectly, and in the era of multidispatch it is actively harmful.
This is technically a [breaking-change] because it affects the definition of a super-trait. Anything in a where clause that looks like `where Self : Foo` is now considered a supertrait. Because cycles are disallowed in supertraits, that could lead to some errors. This has not been observed in any existing code.
r? @nrc
Unstable items used in a macro expansion will now always trigger
stability warnings, *unless* the unstable items are directly inside a
macro marked with `#[allow_internal_unstable]`. IOW, the compiler warns
unless the span of the unstable item is a subspan of the definition of a
macro marked with that attribute.
E.g.
#[allow_internal_unstable]
macro_rules! foo {
($e: expr) => {{
$e;
unstable(); // no warning
only_called_by_foo!();
}}
}
macro_rules! only_called_by_foo {
() => { unstable() } // warning
}
foo!(unstable()) // warning
The unstable inside `foo` is fine, due to the attribute. But the
`unstable` inside `only_called_by_foo` is not, since that macro doesn't
have the attribute, and the `unstable` passed into `foo` is also not
fine since it isn't contained in the macro itself (that is, even though
it is only used directly in the macro).
In the process this makes the stability tracking much more precise,
e.g. previously `println!("{}", unstable())` got no warning, but now it
does. As such, this is a bug fix that may cause [breaking-change]s.
The attribute is definitely feature gated, since it explicitly allows
side-stepping the feature gating system.
Automatic has-same-types testing methodology can be found in #22501.
Because most of them don't work with `--pretty=typed`, compile-fail tests were manually audited.
r? @aturon
Automatic has-same-types testing methodology can be found in #22501.
Because most of them don't work with `--pretty=typed`, compile-fail tests were manually audited.
r? @aturon
This same source is being built in the Cargo ecosystem and hence needs to build
on stable Rust as well. This commit places the `no_std` attribute along with the
`no_std` feature behind a `cfg_attr` flag so they are not processed when
compiled on crates.io
This stability attribute was left out by accident and the stability pass has
since picked up the ability to check for this. As a result, crates are currently
getting warnings for implementations of `Index`.
Updates to the bison grammar to account for recent grammar additions and new tests. In particular:
* Support parsing `impl MyTrait for .. { }`
* Support parsing ExprQualifiedPaths without \"as TRAIT_REF\" such as `<Foo>::bar(&Foo)`
* Support parsing \"for\" clauses at the beginning of where clauses such as `where for<'a, 'b> &'a T: Bar<'b>`
Currently, the list of files linted in `tidy.py` is unordered. It seems more appropriate for more frequently appearing files (like `.rs`) to appear at the top of the list and for \"other files\" to appear at the very end. This PR also changes the wildcard import of `check_license()` into an explicit one.
```
Before: After:
* linted 4 .sh files * linted 5034 .rs files
* linted 4 .h files * linted 29 .c files
* linted 29 .c files * linted 28 .py files
* linted 2 .js files * linted 4 .sh files
* linted 0 other files * linted 4 .h files
* linted 28 .py files * linted 2 .js files
* linted 5034 .rs files * linted 0 other files
```
r? @brson
This commit deprecates the majority of std::old_io::fs in favor of std::fs and
its new functionality. Some functions remain non-deprecated but are now behind a
feature gate called `old_fs`. These functions will be deprecated once
suitable replacements have been implemented.
The compiler has been migrated to new `std::fs` and `std::path` APIs where
appropriate as part of this change.
[breaking-change]
This commit deprecates the majority of std::old_io::fs in favor of std::fs and
its new functionality. Some functions remain non-deprecated but are now behind a
feature gate called `old_fs`. These functions will be deprecated once
suitable replacements have been implemented.
The compiler has been migrated to new `std::fs` and `std::path` APIs where
appropriate as part of this change.
us to construct trait-references and do other things without forcing a
full evaluation of the supertraits. One downside of this scheme is that
we must invoke `ensure_super_predicates` before using any construct that
might require knowing about the super-predicates.