This commit splits the file implementation into file_unix and file_win32. The
two implementations have diverged to the point that they share almost 0 code at
this point, so it's easier to maintain as separate files.
The other major change accompanied with this commit is that file::open is no
longer based on libc's open function on windows, but rather windows's CreateFile
function. This fixes dealing with binary files on windows (test added in
previous commit).
This also changes the read/write functions to use ReadFile and WriteFile instead
of libc's read/write.
Closes#12406
This weeds out a bunch of warnings building stdtest on windows, and it also adds
a check! macro to the io::fs tests to help diagnose errors that are cropping up
on windows platforms as well.
cc #12516
The printing of the error message on stack overflow had two sometimes false
assumptions previously. The first is that a local task was always available (it
called Local::take) and the second is that it used `println!` instead of
manually writing.
The first assumption isn't necessarily true because while stack overflow will
likely only be detected in situations that a local task is available, it's not
guaranteed to always be in TLS. For example, during a `println!` call a task
may be blocking, causing it to be unavailable. By using Local::try_take(), we
can be resilient against these occurrences.
The second assumption could lead to odd behavior because the stdout logger can
be overwritten to run arbitrary code. Currently this should be possible, but the
utility is much diminished because a stack overflow translates to an abort()
instead of a failure.
The printing of the error message on stack overflow had two sometimes false
assumptions previously. The first is that a local task was always available (it
called Local::take) and the second is that it used println! instead of
manually writing.
The first assumption isn't necessarily true because while stack overflow will
likely only be detected in situations that a local task is available, it's not
guaranteed to always be in TLS. For example, during a println! call a task
may be blocking, causing it to be unavailable. By using Local::try_take(), we
can be resilient against these occurrences.
The second assumption could lead to odd behavior because the stdout logger can
be overwritten to run arbitrary code. Currently this should be possible, but the
utility is much diminished because a stack overflow translates to an abort()
instead of a failure.
Apparently weak linkage and dlopen aren't quite working out for applications
like servo on android. There appears to be a bug or two in how android loads
dynamic libraries and for some reason libservo.so isn't being found.
As a temporary solution, add an extern "C" function to libstd which can be
called if you have a handle to the crate map manually. When crawling the crate
map, we then check this manual symbol before falling back to the old solutions.
cc #11731
This patch series does a couple things:
* replaces manual `Hash` implementations with `#[deriving(Hash)]`
* adds `Hash` back to `std::prelude`
* minor cleanup of whitespace and variable names.
`.reserve_exact` can cause pathological O(n^2) behaviour, so providing a
`.reserve` that ensures that capacity doubles (if you step 1, 2, ..., n)
is more efficient.
cc #11949
Commits for details. Highlights:
- `flate` returns `CVec<u8>` to save reallocating a whole new `&[u8]`
- a lot of `transmute`s removed outright or replaced with `as` (etc.)
Turns out the `timeout` command was exiting immediately because it didn't like
its output piped. Instead use `ping` repeatedly to get a process that will sleep
for awhile.
cc #12516
These two tests are notoriously flaky on the windows bots right now, so I'm
ignoring them until I can investigate them some more. The truncate_works test
has been flaky for quite some time, but it has gotten much worse recently. The
test_exists test has been flaky since the recent std::run rewrite landed.
Finally, the "unix pipe" test failure is a recent discovery on the try bots. I
haven't seen this failing much, but better safe than sorry!
cc #12516
This commit removes deriving(ToStr) in favor of deriving(Show), migrating all impls of ToStr to fmt::Show.
Most of the details can be found in the first commit message.
Closes#12477
The std::run module is a relic from a standard library long since past, and
there's not much use to having two modules to execute processes with where one
is slightly more convenient. This commit merges the two modules, moving lots of
functionality from std::run into std::io::process and then deleting
std::run.
New things you can find in std::io::process are:
* Process::new() now only takes prog/args
* Process::configure() takes a ProcessConfig
* Process::status() is the same as run::process_status
* Process::output() is the same as run::process_output
* I/O for spawned tasks is now defaulted to captured in pipes instead of ignored
* Process::kill() was added (plus an associated green/native implementation)
* Process::wait_with_output() is the same as the old finish_with_output()
* destroy() is now signal_exit()
* force_destroy() is now signal_kill()
Closes#2625Closes#10016
The std::run module is a relic from a standard library long since past, and
there's not much use to having two modules to execute processes with where one
is slightly more convenient. This commit merges the two modules, moving lots of
functionality from std::run into std::io::process and then deleting
std::run.
New things you can find in std::io::process are:
* Process::new() now only takes prog/args
* Process::configure() takes a ProcessConfig
* Process::status() is the same as run::process_status
* Process::output() is the same as run::process_output
* I/O for spawned tasks is now defaulted to captured in pipes instead of ignored
* Process::kill() was added (plus an associated green/native implementation)
* Process::wait_with_output() is the same as the old finish_with_output()
* destroy() is now signal_exit()
* force_destroy() is now signal_kill()
Closes#2625Closes#10016
This commit changes the ToStr trait to:
impl<T: fmt::Show> ToStr for T {
fn to_str(&self) -> ~str { format!("{}", *self) }
}
The ToStr trait has been on the chopping block for quite awhile now, and this is
the final nail in its coffin. The trait and the corresponding method are not
being removed as part of this commit, but rather any implementations of the
`ToStr` trait are being forbidden because of the generic impl. The new way to
get the `to_str()` method to work is to implement `fmt::Show`.
Formatting into a `&mut Writer` (as `format!` does) is much more efficient than
`ToStr` when building up large strings. The `ToStr` trait forces many
intermediate allocations to be made while the `fmt::Show` trait allows
incremental buildup in the same heap allocated buffer. Additionally, the
`fmt::Show` trait is much more extensible in terms of interoperation with other
`Writer` instances and in more situations. By design the `ToStr` trait requires
at least one allocation whereas the `fmt::Show` trait does not require any
allocations.
Closes#8242Closes#9806
This adds simple syntax highlighting based off libsyntax's lexer to be sure to
stay up to date with rust's grammar. Some of the highlighting is a bit ad-hoc,
but it definitely seems to get the job done!
This currently doesn't highlight rustdoc-rendered function signatures and
structs that are emitted to each page because the colors already signify what's
clickable and I think we'd have to figure out a different scheme before
colorizing them. This does, however, colorize all code examples and source code.
Closes#11393
With the stability attributes we can put public-but unstable modules next to others, so this moves `intrinsics` and `raw` out of the `unstable` module (and marks both as `#[experimental]`).
These two containers are indeed collections, so their place is in
libcollections, not in libstd. There will always be a hash map as part of the
standard distribution of Rust, but by moving it out of the standard library it
makes libstd that much more portable to more platforms and environments.
This conveniently also removes the stuttering of 'std::hashmap::HashMap',
although 'collections::HashMap' is only one character shorter.
This adds simple syntax highlighting based off libsyntax's lexer to be sure to
stay up to date with rust's grammar. Some of the highlighting is a bit ad-hoc,
but it definitely seems to get the job done!
This currently doesn't highlight rustdoc-rendered function signatures and
structs that are emitted to each page because the colors already signify what's
clickable and I think we'd have to figure out a different scheme before
colorizing them. This does, however, colorize all code examples and source code.
Closes#11393
This PR merges `IterBytes` and `Hash` into a trait that allows for generic non-stream-based hashing. It makes use of @eddyb's default type parameter support in order to have a similar usage to the old `Hash` framework.
Fixes#8038.
Todo:
- [x] Better documentation
- [ ] Benchmark
- [ ] Parameterize `HashMap` on a `Hasher`.
Closes#12366.
Parentheses around assignment statements such as
let mut a = (0);
a = (1);
a += (2);
are not necessary and therefore an unnecessary_parens warning is raised when
statements like this occur.
The warning mechanism was refactored along the way to allow for code reuse
between the routines for checking expressions and statements.
Code had to be adopted throughout the compiler and standard libraries to comply
with this modification of the lint.
One of the most common ways to use the stdin stream is to read it line by line
for a small program. In order to facilitate this common usage pattern, this
commit changes the stdin() function to return a BufferedReader by default. A new
`stdin_raw()` method was added to get access to the raw unbuffered stream.
I have not changed the stdout or stderr methods because they are currently
unable to flush in their destructor, but #12403 should have just fixed that.
This patch merges IterBytes and Hash traits, which clears up the
confusion of using `#[deriving(IterBytes)]` to support hashing.
Instead, it now is much easier to use the new `#[deriving(Hash)]`
for making a type hashable with a stream hash.
Furthermore, it supports custom non-stream-based hashers, such as
if a value's hash was cached in a database.
This does not yet replace the old IterBytes-hash with this new
version.
This is PR is the beginning of a complete rewrite and ultimate removal of the `std::num::strconv` module (see #6220), and the removal of the `ToStrRadix` trait in favour of using the `std::fmt` functionality directly. This should make for a cleaner API, encourage less allocation, and make the implementation more comprehensible .
The `Formatter::{pad_integral, with_padding}` methods have also been refactored make things easier to understand.
The formatting tests for integers have been moved out of `run-pass/ifmt.rs` in order to provide more immediate feedback when building using `make check-stage2-std NO_REBUILD=1`.
Arbitrary radixes are now easier to use in format strings. For example:
~~~rust
assert_eq!(format!("{:04}", radix(3, 2)), ~"0011");
~~~
The benchmarks have been standardised between `std::num::strconv` and `std::num::fmt` to make it easier to compare the performance of the different implementations.
~~~
type | radix | std::num::strconv | std::num::fmt
======|=======|========================|======================
int | bin | 1748 ns/iter (+/- 150) | 321 ns/iter (+/- 25)
int | oct | 706 ns/iter (+/- 53) | 179 ns/iter (+/- 22)
int | dec | 640 ns/iter (+/- 59) | 207 ns/iter (+/- 10)
int | hex | 637 ns/iter (+/- 77) | 205 ns/iter (+/- 19)
int | 36 | 446 ns/iter (+/- 30) | 309 ns/iter (+/- 20)
------|-------|------------------------|----------------------
uint | bin | 1724 ns/iter (+/- 159) | 322 ns/iter (+/- 13)
uint | oct | 663 ns/iter (+/- 25) | 175 ns/iter (+/- 7)
uint | dec | 613 ns/iter (+/- 30) | 186 ns/iter (+/- 6)
uint | hex | 519 ns/iter (+/- 44) | 207 ns/iter (+/- 20)
uint | 36 | 418 ns/iter (+/- 16) | 308 ns/iter (+/- 32)
~~~
This is in preparation to remove the implementations of ToStrRadix in integers, and to remove the associated logic from `std::num::strconv`.
The parts that still need to be liberated are:
- `std::fmt::Formatter::runplural`
- `num::{bigint, complex, rational}`
This works towards a complete rewrite and ultimate removal of the `std::num::strconv` module (see #6220), and the removal of the `ToStrRadix` trait in favour of using the `std::fmt` functionality directly. This should make for a cleaner API, encourage less allocation, and make the implementation far more comprehensible.
The `Formatter::pad_integral` method has also been refactored make it easier to understand.
The formatting tests for integers have been moved out of `run-pass/ifmt.rs` in order to provide more immediate feedback when building using `make check-stage2-std NO_REBUILD=1`.
The benchmarks have been standardised between std::num::strconv and std::num::fmt to make it easier to compare the performance of the different implementations.
Arbitrary radixes are now easier to use in format strings. For example:
~~~
assert_eq!(format!("{:04}", radix(3, 2)), ~"0011");
~~~
ptr::RawPtr, spell out units used for the `offset` argument.
spell out units used for the `offset` argument, so that callers do not
try to scale to byte units themselves.
(this was originally landed in PR #11002 for the stand-alone functions, but that PR did not modify the `RawPtr` methods, since that had no doc at all at the time. Now `RawPtr` has the *only* documentation for `offset`, since the stand-alone functions went away in PR #12167 / PR #12248.)
Previously an `unsafe` block created by the compiler (like those in the
formatting macros) would be "ignored" if surrounded by `unsafe`, that
is, the internal unsafety would be being legitimised by the external
block:
unsafe { println!("...") } =(expansion)=> unsafe { ... unsafe { ... } }
And the code in the inner block would be using the outer block, making
it considered used (and the inner one considered unused).
This patch forces the compiler to create a new unsafe context for
compiler generated blocks, so that their internal unsafety doesn't
escape to external blocks.
Fixes#12418.
The comments say that the prelude imports std::io::println since it would
be annoying to have to import it in every program that uses it. However,
the prelude doesn't actually import that function anymore. So, update the
comments to better match reality.
This "bubble up an error" macro was originally named if_ok! in order to get it
landed, but after the fact it was discovered that this name is not exactly
desirable.
The name `if_ok!` isn't immediately clear that is has much to do with error
handling, and it doesn't look fantastic in all contexts (if if_ok!(...) {}). In
general, the agreed opinion about `if_ok!` is that is came in as subpar.
The name `try!` is more invocative of error handling, it's shorter by 2 letters,
and it looks fitting in almost all circumstances. One concern about the word
`try!` is that it's too invocative of exceptions, but the belief is that this
will be overcome with documentation and examples.
Close#12037
One of the most common ways to use the stdin stream is to read it line by line
for a small program. In order to facilitate this common usage pattern, this
commit changes the stdin() function to return a BufferedReader by default. A new
`stdin_raw()` method was added to get access to the raw unbuffered stream.
I have not changed the stdout or stderr methods because they are currently
unable to flush in their destructor, but #12403 should have just fixed that.
Previously an `unsafe` block created by the compiler (like those in the
formatting macros) would be "ignored" if surrounded by `unsafe`, that
is, the internal unsafety would be being legitimised by the external
block:
unsafe { println!("...") } =(expansion)=> unsafe { ... unsafe { ... } }
And the code in the inner block would be using the outer block, making
it considered used (and the inner one considered unused).
This patch forces the compiler to create a new unsafe context for
compiler generated blocks, so that their internal unsafety doesn't
escape to external blocks.
Fixes#12418.
The fairness yield mistakenly called `Local::take()` which meant that it would
only work if a local task was available. In theory sending on a channel (or calling try_recv) requires
no runtime because it never blocks, so there's no reason it shouldn't support
such a use case.
Closes#12391
I don't think `extra` is a good/meaningful name for a library. `libextra` should disappear, and we move all of its sub modules out of it. This PR is just one of that steps: move `extra::test` to `libtest`.
I didn't add `libtest` to doc index, because it's an internal library currently.
**Update:**
All comments addressed. All tests passed. Rebased and squashed.
On windows, the GetEnvironmentVariable function will return the necessary buffer
size if the buffer provided was too small. This case previously fell through the
checks inside of fill_utf16_buf_and_decode, tripping an assertion in the `slice`
method.
This adds an extra case for when the return value is >= the buffer size, in
which case we assume the return value as the new buffer size and try again.
Closes#12376
The comments say that the prelude imports std::io::println since it would
be annoying to have to import it in every program that uses it. However,
the prelude doesn't actually import that function anymore. So, update the
comments to better match reality.
The fairness yield mistakenly called `Local::take()` which meant that it would
only work if a local task was available. In theory sending on a channel (or
calling try_recv) requires no runtime because it never blocks, so there's no
reason it shouldn't support such a use case.
Closes#12391
On windows, the GetEnvironmentVariable function will return the necessary buffer
size if the buffer provided was too small. This case previously fell through the
checks inside of fill_utf16_buf_and_decode, tripping an assertion in the `slice`
method.
This adds an extra case for when the return value is >= the buffer size, in
which case we assume the return value as the new buffer size and try again.
Closes#12376
Any macro tagged with #[macro_export] will be showed in the documentation for
that module. This also documents all the existing macros inside of std::macros.
Closes#3163
cc #5605Closes#9954
Iterators! Use them (in `is_utf16`), create them (in `utf16_items`).
Handle errors gracefully (`from_utf16_lossy`) and `from_utf16` returning `Option<~str>` instead of failing.
Add a pile of tests.
Many of the functions interacting with Windows APIs allocate a vector of
0's and do not retrieve a length directly from the API call, and so need
to be sure to remove the unmodified junk at the end of the vector.
See the commit messages for more details, but this makes `std::str::is_utf8` slightly faster and 100% non-`unsafe` and uses a similar thing to make the first scan of `from_utf8_lossy` 100% safe & faster.
This uses a vector iterator to avoid the necessity for unsafe indexing,
and makes this function slightly faster. Unfortunately #11751 means that
the iterator comes with repeated `null` checks which means the
pure-ASCII case still has room for significant improvement (and the
other cases too, but it's most significant for just ASCII).
Before:
is_utf8_100_ascii ... bench: 143 ns/iter (+/- 6)
is_utf8_100_multibyte ... bench: 134 ns/iter (+/- 4)
After:
is_utf8_100_ascii ... bench: 123 ns/iter (+/- 4)
is_utf8_100_multibyte ... bench: 115 ns/iter (+/- 5)
There's a few parts to this PR
* Implement unix pipes in libnative for unix platforms (thanks @Geal!)
* Implement named pipes in libnative for windows (terrible, terrible code)
* Remove `#[cfg(unix)]` from `mod unix` in `std::io::net`. This is a terrible name for what it is, but that's the topic of #12093.
The windows implementation was significantly more complicated than I thought it would be, but it seems to be passing all the tests. now.
Closes#11201
Delete all the documentation from std::task that references linked
failure.
Tweak TaskBuilder to be more builder-like. `.name()` is now `.named()` and
`.add_wrapper()` is now `.with_wrapper()`. Remove `.watched()` and
`.unwatched()` as they didn't actually do anything.
Closes#6399.
This deadlock was caused when the channel was closed at just the right time, so
the extra `self.cnt.fetch_add` actually should have preserved the DISCONNECTED
state of the channel. by modifying this the channel entered a state such that
the port would never succeed in dropping.
This also moves the increment of self.steals until after the MAX_STEALS block.
The reason for this is that in 'fn recv()' the steals variable is decremented
immediately after the try_recv(), which could in theory set steals to -1 if it
was previously set to 0 in try_recv().
Closes#12340
This is inspired by the [function naming in the Julia standard library](http://docs.julialang.org/en/release-0.2/stdlib/base/#Base.count_ones). It seems like a more self-explanatory name, and is more consistent with the accompanying methods, `leading_zeros` and `trailing_zeros`.
This replaces the iterator with one that handles lone surrogates
gracefully and uses that to implement `from_utf16_lossy` which replaces
invalid `u16`s with U+FFFD.
* Implementation of pipe_win32 filled out for libnative
* Reorganize pipes to be clone-able
* Fix a few file descriptor leaks on error
* Factor out some common code into shared functions
* Make use of the if_ok!() macro for less indentation
Closes#11201
Delete all the documentation from std::task that references linked
failure.
Tweak TaskBuilder to be more builder-like. .name() is now .named() and
.add_wrapper() is now .with_wrapper(). Remove .watched() and
.unwatched() as they didn't actually do anything.
This renames the `n*` and `n*_ref` tuple getters to `val*` and `ref*` respectively, and adds `mut*` getters. It also removes the `CloneableTuple` and `ImmutableTuple` traits.
The previous code erroneously assumed that 'steals > cnt' was always true, but
that was a false assumption. The code was altered to decrement steals to a
minimum of 0 instead of taking all of cnt into account.
I didn't include the exact test from #12295 because it could run for quite
awhile, and instead set the threshold for MAX_STEALS to much lower during
testing. I found that this triggered the old bug quite frequently when running
without this fix.
Closes#12295
This is useful in contexts like this:
```rust
let size = rdr.read_be_i32() as uint;
let mut limit = LimitReader::new(rdr.by_ref(), size);
let thing = read_a_thing(&mut limit);
assert!(limit.limit() == 0);
```
The previous code erroneously assumed that 'steals > cnt' was always true, but
that was a false assumption. The code was altered to decrement steals to a
minimum of 0 instead of taking all of cnt into account.
I didn't include the exact test from #12295 because it could run for quite
awhile, and instead set the threshold for MAX_STEALS to much lower during
testing. I found that this triggered the old bug quite frequently when running
without this fix.
Closes#12295
- adds a `LockGuard` type returned by `.lock` and `.trylock` that unlocks the mutex in the destructor
- renames `mutex::Mutex` to `StaticNativeMutex`
- adds a `NativeMutex` type with a destructor
- removes `LittleLock`
- adds `#[must_use]` to `sync::mutex::Guard` to remind people to use it
This is useful in contexts like this:
let size = rdr.read_be_i32() as uint;
let mut limit = LimitReader::new(rdr.by_ref(), size);
let thing = read_a_thing(&mut limit);
assert!(limit.limit() == 0);
Change `os::args()` and `os::env()` to use `str::from_utf8_lossy()`.
Add new functions `os::args_as_bytes()` and `os::env_as_bytes()` to retrieve the args/env as byte vectors instead.
The existing methods were left returning strings because I expect that the common use-case is to want string handling.
Fixes#7188.
Parse the environment by default with from_utf8_lossy. Also provide
byte-vector equivalents (e.g. os::env_as_bytes()).
Unfortunately, setenv() can't have a byte-vector equivalent because of
Windows support, unless we want to define a setenv_bytes() that fails
under Windows for non-UTF8 (or non-UTF16).
os::args() was using str::raw::from_c_str(), which would assert if the
C-string wasn't valid UTF-8. Switch to using from_utf8_lossy() instead,
and add a separate function os::args_as_bytes() that returns the ~[u8]
byte-vectors instead.
This will hopefully bring us closer to #11937. We're still using gcc's idea of
"startup files", but this should prevent us from leaking in dependencies that we
don't quite want (libgcc for example once compiler-rt is what we use).
When tests fail, their stdout and stderr is printed as part of the summary, but
this helps suppress failure messages from #[should_fail] tests and generally
clean up the output of the test runner.
Any single-threaded task benchmark will spend a good chunk of time in `kqueue()` on osx and `epoll()` on linux, and the reason for this is that each time a task is terminated it will hit the syscall. When a task terminates, it context switches back to the scheduler thread, and the scheduler thread falls out of `run_sched_once` whenever it figures out that it did some work.
If we know that `epoll()` will return nothing, then we can continue to do work locally (only while there's work to be done). We must fall back to `epoll()` whenever there's active I/O in order to check whether it's ready or not, but without that (which is largely the case in benchmarks), we can prevent the costly syscall and can get a nice speedup.
I've separated the commits into preparation for this change and then the change itself, the last commit message has more details.
These commits pick off some low-hanging fruit which were slowing down spawning green threads. The major speedup comes from fixing a bug in stack caching where we never used any cached stacks!
The program I used to benchmark is at the end. It was compiled with `rustc --opt-level=3 bench.rs --test` and run as `RUST_THREADS=1 ./bench --bench`. I chose to use `RUST_THREADS=1` due to #11730 as the profiles I was getting interfered too much when all the schedulers were in play (and shouldn't be after #11730 is fixed). All of the units below are in ns/iter as reported by `--bench` (lower is better).
| | green | native | raw |
| ------------- | ----- | ------ | ------ |
| osx before | 12699 | 24030 | 19734 |
| linux before | 10223 | 125983 | 122647 |
| osx after | 3847 | 25771 | 20835 |
| linux after | 2631 | 135398 | 122765 |
Note that this is *not* a benchmark of spawning green tasks vs native tasks. I put in the native numbers just to get a ballpark of where green tasks are. This is benchmark is *clearly* benefiting from stack caching. Also, OSX is clearly not 5x faster than linux, I think my VM is just much slower.
All in all, this ended up being a nice 4x speedup for spawning a green task when you're using a cached stack.
```rust
extern mod extra;
extern mod native;
use std::rt:🧵:Thread;
#[bench]
fn green(bh: &mut extra::test::BenchHarness) {
let (p, c) = SharedChan::new();
bh.iter(|| {
let c = c.clone();
spawn(proc() {
c.send(());
});
p.recv();
});
}
#[bench]
fn native(bh: &mut extra::test::BenchHarness) {
let (p, c) = SharedChan::new();
bh.iter(|| {
let c = c.clone();
native::task::spawn(proc() {
c.send(());
});
p.recv();
});
}
#[bench]
fn raw(bh: &mut extra::test::BenchHarness) {
bh.iter(|| {
Thread::start(proc() {}).join()
});
}
```
Two unfortunate allocations were wrapping a proc() in a proc() with
GreenTask::build_start_wrapper, and then boxing this proc in a ~proc() inside of
Context::new(). Both of these allocations were a direct result from two
conditions:
1. The Context::new() function has a nice api of taking a procedure argument to
start up a new context with. This inherently required an allocation by
build_start_wrapper because extra code needed to be run around the edges of a
user-provided proc() for a new task.
2. The initial bootstrap code only understood how to pass one argument to the
next function. By modifying the assembly and entry points to understand more
than one argument, more information is passed through in registers instead of
allocating a pointer-sized context.
This is sadly where I end up throwing mips under a bus because I have no idea
what's going on in the mips context switching code and don't know how to modify
it.
Closes#7767
cc #11389
Instead, use an enum to allow running both a procedure and sending the task
result over a channel. I expect the common case to be sending on a channel (e.g.
task::try), so don't require an extra allocation in the common case.
cc #11389
If you were writing to something along the lines of `self.foo` then with the new
closure rules it meant that you were borrowing `self` for the entirety of the
closure, meaning that you couldn't format other fields of `self` at the same
time as writing to a buffer contained in `self`.
By lifting the borrow outside of the closure the borrow checker can better
understand that you're only borrowing one of the fields at a time. This had to
use type ascription as well in order to preserve trait object coercions.
It asserted that the previous count was always nonnegative, but DISCONNECTED is
a valid value for it to see. In order to continue to remember to store
DISCONNECTED after DISCONNECTED was seen, I also added a helper method.
Closes#12226
The `id` shouldn't be changed by external code, and exposing it publicly
allows to be accidentally changed.
Also, remove the first element special case in the `select!` macro.
The green scheduler can optimize its runtime based on this by deciding to not go
to sleep in epoll() if there is no active I/O and there is a task to be stolen.
This is implemented for librustuv by keeping a count of the number of tasks
which are currently homed. If a task is homed, and then performs a blocking I/O
operation, the count will be nonzero while the task is blocked. The homing count
is intentionally 0 when there are I/O handles, but no handles currently blocked.
The reason for this is that epoll() would only be used to wake up the scheduler
anyway.
The crux of this change was to have a `HomingMissile` contain a mutable borrowed
reference back to the `HomeHandle`. The rest of the change was just dealing with
this fallout. This reference is used to decrement the homed handle count in a
HomingMissile's destructor.
Also note that the count maintained is not atomic because all of its
increments/decrements/reads are all on the same I/O thread.
This adopts the rules posted in #10432:
1. If a seek position is negative, then an error is generated
2. Seeks beyond the end-of-file are allowed. Future writes will fill the gap
with data and future reads will return errors.
3. Seeks within the bounds of a file are fine.
Closes#10432
This adopts the rules posted in #10432:
1. If a seek position is negative, then an error is generated
2. Seeks beyond the end-of-file are allowed. Future writes will fill the gap
with data and future reads will return errors.
3. Seeks within the bounds of a file are fine.
Closes#10432
This, the Nth rewrite of channels, is not a rewrite of the core logic behind
channels, but rather their API usage. In the past, we had the distinction
between oneshot, stream, and shared channels, but the most recent rewrite
dropped oneshots in favor of streams and shared channels.
This distinction of stream vs shared has shown that it's not quite what we'd
like either, and this moves the `std::comm` module in the direction of "one
channel to rule them all". There now remains only one Chan and one Port.
This new channel is actually a hybrid oneshot/stream/shared channel under the
hood in order to optimize for the use cases in question. Additionally, this also
reduces the cognitive burden of having to choose between a Chan or a SharedChan
in an API.
My simple benchmarks show no reduction in efficiency over the existing channels
today, and a 3x improvement in the oneshot case. I sadly don't have a
pre-last-rewrite compiler to test out the old old oneshots, but I would imagine
that the performance is comparable, but slightly slower (due to atomic reference
counting).
This commit also brings the bonus bugfix to channels that the pending queue of
messages are all dropped when a Port disappears rather then when both the Port
and the Chan disappear.
Beforehand, using a concurrent queue always mandated that the "shared state" be
stored internally to the queues in order to provide a safe interface. This isn't
quite as flexible as one would want in some circumstances, so instead this
commit moves the queues to not containing the shared state.
The queues no longer have a "default useful safe" interface, but rather a
"default safe" interface (minus the useful part). The queues have to be shared
manually through an Arc or some other means. This allows them to be a little
more flexible at the cost of a usability hindrance.
I plan on using this new flexibility to upgrade a channel to a shared channel
seamlessly.
I factored the commits by affected files, for the most part. The last 7 or 8 contain the meat of the PR. The rest are small changes to closures found in the codebase. Maybe interesting to read to see some of the impact of the rules.
r? @pcwalton
Fixes#6801
This is a fairly trivial (but IMHO handy) change to implement IterBytes for IpAddr and SocketAddr.
I originally stumbled across this because I wanted to use a SocketAddr as a HashMap key and discovered that I couldn't do it directly. Had to impl IterBytes on a new intermediate type to work around it.
Thinking about swap as an example of unsafe programming. This cleans it up a bit. It also removes type parametrization over `RawPtr` from the memcpy functions to make this compile.
It unsafe assumptions that any impl of RawPtr is for actual pointers,
that they can be copied by memcpy. Removing it is easy, so I don't
think it's solving a real problem.
Declare a `type SendStr = MaybeOwned<'static>` to ease readibility of
types that needed the old SendStr behavior.
Implement all the traits for MaybeOwned that SendStr used to implement.
- Convert the formatting traits to `&self` rather than `_: &Self`
- Rejig `syntax::ext::{format,deriving}` a little in preparation
- Implement `#[deriving(Show)]`
This also drops support for the managed pointer POISON_ON_FREE feature
as it's not worth adding back the support for it. After a snapshot, the
leftovers can be removed.
This pull request:
1) Changes the initial insertion sort to be in-place, and defers allocation of working set until merge is needed.
2) Increases the increases the maximum run length to use insertion sort for from 8 to 32 elements. This increases the size of vectors that will not allocate, and reduces the number of merge passes by two. It seemed to be the sweet spot in the benchmarks that I ran.
Here are the results of some benchmarks. Note that they are sorting u64s, so types that are more expensive to compare or copy may have different behaviors.
Before changes:
```
test vec::bench::sort_random_large bench: 719753 ns/iter (+/- 130173) = 111 MB/s
test vec::bench::sort_random_medium bench: 4726 ns/iter (+/- 742) = 169 MB/s
test vec::bench::sort_random_small bench: 344 ns/iter (+/- 76) = 116 MB/s
test vec::bench::sort_sorted bench: 437244 ns/iter (+/- 70043) = 182 MB/s
```
Deferred allocation (8 element insertion sort):
```
test vec::bench::sort_random_large bench: 702630 ns/iter (+/- 88158) = 113 MB/s
test vec::bench::sort_random_medium bench: 4529 ns/iter (+/- 497) = 176 MB/s
test vec::bench::sort_random_small bench: 185 ns/iter (+/- 49) = 216 MB/s
test vec::bench::sort_sorted bench: 425853 ns/iter (+/- 60907) = 187 MB/s
```
Deferred allocation (16 element insertion sort):
```
test vec::bench::sort_random_large bench: 692783 ns/iter (+/- 165837) = 115 MB/s
test vec::bench::sort_random_medium bench: 4434 ns/iter (+/- 722) = 180 MB/s
test vec::bench::sort_random_small bench: 187 ns/iter (+/- 38) = 213 MB/s
test vec::bench::sort_sorted bench: 393783 ns/iter (+/- 85548) = 203 MB/s
```
Deferred allocation (32 element insertion sort):
```
test vec::bench::sort_random_large bench: 682556 ns/iter (+/- 131008) = 117 MB/s
test vec::bench::sort_random_medium bench: 4370 ns/iter (+/- 1369) = 183 MB/s
test vec::bench::sort_random_small bench: 179 ns/iter (+/- 32) = 223 MB/s
test vec::bench::sort_sorted bench: 358353 ns/iter (+/- 65423) = 223 MB/s
```
Deferred allocation (64 element insertion sort):
```
test vec::bench::sort_random_large bench: 712040 ns/iter (+/- 132454) = 112 MB/s
test vec::bench::sort_random_medium bench: 4425 ns/iter (+/- 784) = 180 MB/s
test vec::bench::sort_random_small bench: 179 ns/iter (+/- 81) = 223 MB/s
test vec::bench::sort_sorted bench: 317812 ns/iter (+/- 62675) = 251 MB/s
```
This is the best I could manage with the basic merge sort while keeping the invariant that the original vector must contain each element exactly once when the comparison function is called. If one is not married to a stable sort, an in-place n*log(n) sorting algorithm may have better performance in some cases.
for #12011
cc @huonw