expr-use-visitor) early. Turns out I was wrong to remove this; it
causes a lot of pain trying to run EUV etc during typeck without
ICEing on erroneous programs.
check it more easily; also extend object safety to cover sized types
as well as static methods. This makes it sufficient so that we can
always ensure that `Foo : Foo` holds for any trait `Foo`.
This commit is an implementation of [RFC 503][rfc] which is a stabilization
story for the prelude. Most of the RFC was directly applied, removing reexports.
Some reexports are kept around, however:
* `range` remains until range syntax has landed to reduce churn.
* `Path` and `GenericPath` remain until path reform lands. This is done to
prevent many imports of `GenericPath` which will soon be removed.
* All `io` traits remain until I/O reform lands so imports can be rewritten all
at once to `std::io::prelude::*`.
This is a breaking change because many prelude reexports have been removed, and
the RFC can be consulted for the exact list of removed reexports, as well as to
find the locations of where to import them.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0503-prelude-stabilization.md
[breaking-change]
Closes#20068
various bugs in `trait_id_of_impl`. The end result was that looking up
the "trait_id_of_impl" with a trait's def-id yielded the same trait
again, even though it ought to have yielded None.
This is a [breaking-change]. The new rules require that, for an impl of a trait defined
in some other crate, two conditions must hold:
1. Some type must be local.
2. Every type parameter must appear "under" some local type.
Here are some examples that are legal:
```rust
struct MyStruct<T> { ... }
// Here `T` appears "under' `MyStruct`.
impl<T> Clone for MyStruct<T> { }
// Here `T` appears "under' `MyStruct` as well. Note that it also appears
// elsewhere.
impl<T> Iterator<T> for MyStruct<T> { }
```
Here is an illegal example:
```rust
// Here `U` does not appear "under" `MyStruct` or any other local type.
// We call `U` "uncovered".
impl<T,U> Iterator<U> for MyStruct<T> { }
```
There are a couple of ways to rewrite this last example so that it is
legal:
1. In some cases, the uncovered type parameter (here, `U`) should be converted
into an associated type. This is however a non-local change that requires access
to the original trait. Also, associated types are not fully baked.
2. Add `U` as a type parameter of `MyStruct`:
```rust
struct MyStruct<T,U> { ... }
impl<T,U> Iterator<U> for MyStruct<T,U> { }
```
3. Create a newtype wrapper for `U`
```rust
impl<T,U> Iterator<Wrapper<U>> for MyStruct<T,U> { }
```
Because associated types are not fully baked, which in the case of the
`Hash` trait makes adhering to this rule impossible, you can
temporarily disable this rule in your crate by using
`#![feature(old_orphan_check)]`. Note that the `old_orphan_check`
feature will be removed before 1.0 is released.
These changes fix various problems encountered getting japaric's `at-iter` branch to work. This branch converts the `Iterator` trait to use an associated type.
This pass performs a second pass of stabilization through the `std::sync`
module, avoiding modules/types that are being handled in other PRs (e.g.
mutexes, rwlocks, condvars, and channels).
The following items are now stable
* `sync::atomic`
* `sync::atomic::ATOMIC_BOOL_INIT` (was `INIT_ATOMIC_BOOL`)
* `sync::atomic::ATOMIC_INT_INIT` (was `INIT_ATOMIC_INT`)
* `sync::atomic::ATOMIC_UINT_INIT` (was `INIT_ATOMIC_UINT`)
* `sync::Once`
* `sync::ONCE_INIT`
* `sync::Once::call_once` (was `doit`)
* C == `pthread_once(..)`
* Boost == `call_once(..)`
* Windows == `InitOnceExecuteOnce`
* `sync::Barrier`
* `sync::Barrier::new`
* `sync::Barrier::wait` (now returns a `bool`)
* `sync::Semaphore::new`
* `sync::Semaphore::acquire`
* `sync::Semaphore::release`
The following items remain unstable
* `sync::SemaphoreGuard`
* `sync::Semaphore::access` - it's unclear how this relates to the poisoning
story of mutexes.
* `sync::TaskPool` - the semantics of a failing task and whether a thread is
re-attached to a thread pool are somewhat unclear, and the
utility of this type in `sync` is question with respect to
the jobs of other primitives. This type will likely become
stable or move out of the standard library over time.
* `sync::Future` - futures as-is have yet to be deeply re-evaluated with the
recent core changes to Rust's synchronization story, and will
likely become stable in the future but are unstable until
that time comes.
[breaking-change]
Doesn't yet converge on a fixed point, but generally works. A better algorithm
will come with the implementation of default type parameter fallback.
If inference fails to determine an exact integral or floating point type, it
will set the type to i32 or f64, respectively.
Closes#16968
Doesn't yet converge on a fixed point, but generally works. A better algorithm
will come with the implementation of default type parameter fallback.
If inference fails to determine an exact integral or floating point type, it
will set the type to i32 or f64, respectively.
Closes#16968
Uses the same approach as https://github.com/rust-lang/rust/pull/17286 (and
subsequent changes making it more correct), where the visitor will skip any
pieces of the AST that are from "foreign code", where the spans don't line up,
indicating that that piece of code is due to a macro expansion.
If this breaks your code, read the error message to determine which feature
gate you should add to your crate.
Closes#18102
[breaking-change]
Uses the same approach as https://github.com/rust-lang/rust/pull/17286 (and
subsequent changes making it more correct), where the visitor will skip any
pieces of the AST that are from "foreign code", where the spans don't line up,
indicating that that piece of code is due to a macro expansion.
If this breaks your code, read the error message to determine which feature
gate you should add to your crate, and bask in the knowledge that your code
won't mysteriously break should you try to use the 1.0 release.
Closes#18102
[breaking-change]
The the last argument of the `ItemDecorator::expand` method has changed to `Box<FnMut>`. Syntax extensions will break.
[breaking-change]
---
This PR removes pretty much all the remaining uses of boxed closures from the libraries. There are still boxed closures under the `test` directory, but I think those should be removed or replaced with unboxed closures at the same time we remove boxed closures from the language.
In a few places I had to do some contortions (see the first commit for an example) to work around issue #19596. I have marked those workarounds with FIXMEs. In the future when `&mut F where F: FnMut` implements the `FnMut` trait, we should be able to remove those workarounds. I've take care to avoid placing the workaround functions in the public API.
Since `let f = || {}` always gets type checked as a boxed closure, I have explictly annotated those closures (with e.g. `|&:| {}`) to force the compiler to type check them as unboxed closures.
Instead of removing the type aliases (like `GetCrateDataCb`), I could have replaced them with newtypes. But this seemed like overcomplicating things for little to no gain.
I think we should be able to remove the boxed closures from the languge after this PR lands. (I'm being optimistic here)
r? @alexcrichton or @aturon
cc @nikomatsakis
As discovered in #20376, the MSYS shell will silently rewrite arguemnts that
look like unix paths into their windows path counterparts for compatibility, but
the recently added `:kind` syntax added to the `-L` flag does not allow for this
form of rewriting. This means that the syntax can be difficult to use at an MSYS
prompt, as well as causing tests to fail when run manuall right now.
This commit takes the other option presented in the original issue to prefix the
path with `kind=` instead of suffixing it with `:kind`. For consistence, the
`-l` flag is also now migrating to `kind=name`.
This is a breaking change due to the *removal* of behavior with `-L`. All code
using `:kind` should now pass `kind=` for `-L` arguments. This is not currently,
but will become, a breaking change for `-l` flags. The old `name:kind` syntax is
still accepted, but all code should update to `kind=name`.
[breaking-change]
Closes#20376
is still probably wrong since it fails to incorporate the ambiguity
resolution measures that `select` uses. Also, made more complicated by
the fact that trait object types do not impl their own traits yet.
This pull request adds the `rust-gdb` shell script which starts GDB with Rust pretty printers enabled. The PR also makes `rustc` add a special `.debug_gdb_scripts` ELF section on Linux which tells GDB that the produced binary should use the Rust pretty printers.
Note that at the moment this script will only work and be installed on Linux. On Mac OS X there's `rust-lldb` which works much better there. On Windows I had too many problems making this stable. I'll give it another try soonish.
You can use this script just like you would use GDB from the command line. It will use the pretty printers from the Rust "installation" found first in PATH. E.g. if you have `~/rust/x86_64-linux-gnu/stage1/bin` in your path, it will use the pretty printer scripts in `~/rust/x86_64-linux-gnu/stage1/lib/rustlib/etc`.
Rewrite associated types to use projection rather than dummy type parameters. This closes almost every (major) open issue, but I'm holding off on that until the code has landed and baked a bit. Probably it should have more tests, as well, but I wanted to get this landed as fast as possible so that we can collaborate on improving it.
The commit history is a little messy, particularly the merge commit at the end. If I get some time, I might just "reset" to the beginning and try to carve up the final state into logical pieces. Let me know if it seems hard to follow. By far the most crucial commit is "Implement associated type projection and normalization."
r? @nick29581
for lack of impl-trait-for-trait just a bit more targeted (don't
substitute err, just drop the troublesome bound for now) -- otherwise
substituting false types leads us into trouble when we normalize etc.
1. Produced more unique types than is necessary. This increases memory consumption.
2. Linking the type parameter to its definition *seems* like a good idea, but it
encourages reliance on the bounds listing.
3. It made pretty-printing harder and in particular was causing bad error messages
when errors occurred before the `TypeParameterDef` entries were fully stored.
This commit adds support for the compiler to distinguish between different forms
of lookup paths in the compiler itself. Issue #19767 has some background on this
topic, as well as some sample bugs which can occur if these lookup paths are not
separated.
This commits extends the existing command line flag `-L` with the same trailing
syntax as the `-l` flag. Each argument to `-L` can now have a trailing `:all`,
`:native`, `:crate`, or `:dependency`. This suffix indicates what form of lookup
path the compiler should add the argument to. The `dependency` lookup path is
used when looking up crate dependencies, the `crate` lookup path is used when
looking for immediate dependencies (`extern crate` statements), and the `native`
lookup path is used for probing for native libraries to insert into rlibs. Paths
with `all` are used for all of these purposes (the default).
The default compiler lookup path (the rustlib libdir) is by default added to all
of these paths. Additionally, the `RUST_PATH` lookup path is added to all of
these paths.
Closes#19767
This commit performs a second pass over the `std::string` module, performing the
following actions:
* The name `std::string` is now stable.
* The `String::from_utf8` function is now stable after having been altered to
return a new `FromUtf8Error` structure. The `FromUtf8Error` structure is now
stable as well as its `into_bytes` and `utf8_error` methods.
* The `String::from_utf8_lossy` function is now stable.
* The `String::from_chars` method is now deprecated in favor of `.collect()`
* The `String::from_raw_parts` method is now stable
* The `String::from_str` function remains experimental
* The `String::from_raw_buf` function remains experimental
* The `String::from_raw_buf_len` function remains experimental
* The `String::from_utf8_unchecked` function is now stable
* The `String::from_char` function is now deprecated in favor of
`repeat(c).take(n).collect()`
* The `String::grow` function is now deprecated in favor of
`.extend(repeat(c).take(n)`
* The `String::capacity` method is now stable
* The `String::reserve` method is now stable
* The `String::reserve_exact` method is now stable
* The `String::shrink_to_fit` method is now stable
* The `String::pop` method is now stable
* The `String::as_mut_vec` method is now stable
* The `String::is_empty` method is now stable
* The `IntoString` trait is now deprecated (there are no implementors)
* The `String::truncate` method is now stable
* The `String::insert` method is now stable
* The `String::remove` method is now stable
* The `String::push` method is now stable
* The `String::push_str` method is now stable
* The `String::from_utf16` function is now stable after its error type has now
become an opaque structure to carry more semantic information in the future.
A number of these changes are breaking changes, but the migrations should be
fairly straightforward on a case-by-case basis (outlined above where possible).
[breaking-change]
[breaking-change]
The `mut` in slices is now redundant. Mutability is 'inferred' from position. This means that if mutability is only obvious from the type, you will need to use explicit calls to the slicing methods.
This commit performs a second pass over the `std::string` module, performing the
following actions:
* The name `std::string` is now stable.
* The `String::from_utf8` function is now stable after having been altered to
return a new `FromUtf8Error` structure. The `FromUtf8Error` structure is now
stable as well as its `into_bytes` and `utf8_error` methods.
* The `String::from_utf8_lossy` function is now stable.
* The `String::from_chars` method is now deprecated in favor of `.collect()`
* The `String::from_raw_parts` method is now stable
* The `String::from_str` function remains experimental
* The `String::from_raw_buf` function remains experimental
* The `String::from_raw_buf_len` function remains experimental
* The `String::from_utf8_unchecked` function is now stable
* The `String::from_char` function is now deprecated in favor of
`repeat(c).take(n).collect()`
* The `String::grow` function is now deprecated in favor of
`.extend(repeat(c).take(n)`
* The `String::capacity` method is now stable
* The `String::reserve` method is now stable
* The `String::reserve_exact` method is now stable
* The `String::shrink_to_fit` method is now stable
* The `String::pop` method is now stable
* The `String::as_mut_vec` method is now stable
* The `String::is_empty` method is now stable
* The `IntoString` trait is now deprecated (there are no implementors)
* The `String::truncate` method is now stable
* The `String::insert` method is now stable
* The `String::remove` method is now stable
* The `String::push` method is now stable
* The `String::push_str` method is now stable
* The `String::from_utf16` function is now stable after its error type has now
become an opaque structure to carry more semantic information in the future.
A number of these changes are breaking changes, but the migrations should be
fairly straightforward on a case-by-case basis (outlined above where possible).
[breaking-change]
This stabilizes most methods on `&str` working with patterns in a way that is forwards-compatible with a generic string pattern matching API:
- Methods that are using the primary name for their operation are marked as `#[stable]`, as they can be upgraded to a full `Pattern` API later without existing code breaking. Example: `contains(&str)`
- Methods that are using a more specific name in order to not clash with the primary one are marked as `#[unstable]`, as they will likely be removed once their functionality is merged into the primary one. Example: `contains_char<C: CharEq>(C)`
- The method docs got changed to consistently refer to the pattern types as a pattern.
- Methods whose names do not match in the context of the more generic API got renamed. Example: `trim_chars -> trim_matches`
Additionally, all methods returning iterators got changed to return unique new types with changed names in accordance with the new naming guidelines.
See also https://github.com/rust-lang/rfcs/pull/528
Due to some deprecations and type changes, this is a
[breaking-change]
This cuts memory use dramatically from the previous commit, and reduces
use overall. E.g. the memory usage of `rustc -O librustc/lib.rs` seems
to drop 100MB from 1.98GB to 1.88GB (on one run anyway).
Implements [RFC 486](https://github.com/rust-lang/rfcs/pull/486). Fixes#19908.
* Rename `to_ascii_{lower,upper}` to `to_ascii_{lower,upper}case`, per #14401
* Remove the `Ascii` type and associated traits: `AsciiCast`, `OwnedAsciiCast`, `AsciiStr`, `IntoBytes`, and `IntoString`.
* As a replacement, add `.is_ascii()` to `AsciiExt`, and implement `AsciiExt` for `u8` and `char`.
[breaking-change]
More work on opt-in built in traits. `Send` and `Sync` are not opt-in, `OwnedPtr` renamed to `UniquePtr` and the `Send` and `Sync` traits are now unsafe.
NOTE: This likely needs to be rebased on top of the yet-to-land snapshot.
r? @nikomatsakis
cc #13231
Various refactorings simplifying the mem-categorization and regionck interface. This is working towards an improvement for closure-and-upvar-mode inference.
r? @eddyb
There is also some work here to make resolve a bit more stable - it no longer overwrites a specific import with a glob import.
[breaking-change]
Import shadowing of single/list imports by globs is now forbidden. An interesting case is where a glob import imports a re-export (`pub use`) of a single import. This still counts as a single import for the purposes of shadowing .You can usually fix any bustage by re-ordering such imports. A single import may still shadow (override) a glob import or the prelude.
This commit adds support for the compiler to distinguish between different forms
of lookup paths in the compiler itself. Issue #19767 has some background on this
topic, as well as some sample bugs which can occur if these lookup paths are not
separated.
This commits extends the existing command line flag `-L` with the same trailing
syntax as the `-l` flag. Each argument to `-L` can now have a trailing `:all`,
`:native`, `:crate`, or `:dependency`. This suffix indicates what form of lookup
path the compiler should add the argument to. The `dependency` lookup path is
used when looking up crate dependencies, the `crate` lookup path is used when
looking for immediate dependencies (`extern crate` statements), and the `native`
lookup path is used for probing for native libraries to insert into rlibs. Paths
with `all` are used for all of these purposes (the default).
The default compiler lookup path (the rustlib libdir) is by default added to all
of these paths. Additionally, the `RUST_PATH` lookup path is added to all of
these paths.
Closes#19767
This pull request updates the rustc manual page to represent current state of rustc option handling better. Moved the apparently deprecated options (#19900) to their own section and added all the new codegen options.
A bit unrelatedly, I also updated description of `-O` and `-g` flags to point to the new codegen options rather than old, deprecated ones.
Fixes#20111.
This commit completes the deprecation story for the in-tree serialization
library. The compiler will now emit a warning whenever it encounters
`deriving(Encodable)` or `deriving(Decodable)`, and the library itself is now
marked `#[unstable]` for when feature staging is enabled.
All users of serialization can migrate to the `rustc-serialize` crate on
crates.io which provides the exact same interface as the libserialize library
in-tree. The new deriving modes are named `RustcEncodable` and `RustcDecodable`
and require `extern crate "rustc-serialize" as rustc_serialize` at the crate
root in order to expand correctly.
To migrate all crates, add the following to your `Cargo.toml`:
[dependencies]
rustc-serialize = "0.1.1"
And then add the following to your crate root:
extern crate "rustc-serialize" as rustc_serialize;
Finally, rename `Encodable` and `Decodable` deriving modes to `RustcEncodable`
and `RustcDecodable`.
[breaking-change]
This pull request updates the rustc manual page to represent post-#19900
state of rustc options better.
A bit unrelatedly, --help output is changed to fix some issues too:
* -g and -O descriptions were changed from deprected flags to the new
codegen flags.
* dep-info value was moved from crate-type to emit flag.
Fixes#20111Fixes#20131
This commit completes the deprecation story for the in-tree serialization
library. The compiler will now emit a warning whenever it encounters
`deriving(Encodable)` or `deriving(Decodable)`, and the library itself is now
marked `#[unstable]` for when feature staging is enabled.
All users of serialization can migrate to the `rustc-serialize` crate on
crates.io which provides the exact same interface as the libserialize library
in-tree. The new deriving modes are named `RustcEncodable` and `RustcDecodable`
and require `extern crate "rustc-serialize" as rustc_serialize` at the crate
root in order to expand correctly.
To migrate all crates, add the following to your `Cargo.toml`:
[dependencies]
rustc-serialize = "0.1.1"
And then add the following to your crate root:
extern crate "rustc-serialize" as rustc_serialize;
Finally, rename `Encodable` and `Decodable` deriving modes to `RustcEncodable`
and `RustcDecodable`.
[breaking-change]
This commit starts out by consolidating all `str` extension traits into one
`StrExt` trait to be included in the prelude. This means that
`UnicodeStrPrelude`, `StrPrelude`, and `StrAllocating` have all been merged into
one `StrExt` exported by the standard library. Some functionality is currently
duplicated with the `StrExt` present in libcore.
This commit also currently avoids any methods which require any form of pattern
to operate. These functions will be stabilized via a separate RFC.
Next, stability of methods and structures are as follows:
Stable
* from_utf8_unchecked
* CowString - after moving to std::string
* StrExt::as_bytes
* StrExt::as_ptr
* StrExt::bytes/Bytes - also made a struct instead of a typedef
* StrExt::char_indices/CharIndices - CharOffsets was renamed
* StrExt::chars/Chars
* StrExt::is_empty
* StrExt::len
* StrExt::lines/Lines
* StrExt::lines_any/LinesAny
* StrExt::slice_unchecked
* StrExt::trim
* StrExt::trim_left
* StrExt::trim_right
* StrExt::words/Words - also made a struct instead of a typedef
Unstable
* from_utf8 - the error type was changed to a `Result`, but the error type has
yet to prove itself
* from_c_str - this function will be handled by the c_str RFC
* FromStr - this trait will have an associated error type eventually
* StrExt::escape_default - needs iterators at least, unsure if it should make
the cut
* StrExt::escape_unicode - needs iterators at least, unsure if it should make
the cut
* StrExt::slice_chars - this function has yet to prove itself
* StrExt::slice_shift_char - awaiting conventions about slicing and shifting
* StrExt::graphemes/Graphemes - this functionality may only be in libunicode
* StrExt::grapheme_indices/GraphemeIndices - this functionality may only be in
libunicode
* StrExt::width - this functionality may only be in libunicode
* StrExt::utf16_units - this functionality may only be in libunicode
* StrExt::nfd_chars - this functionality may only be in libunicode
* StrExt::nfkd_chars - this functionality may only be in libunicode
* StrExt::nfc_chars - this functionality may only be in libunicode
* StrExt::nfkc_chars - this functionality may only be in libunicode
* StrExt::is_char_boundary - naming is uncertain with container conventions
* StrExt::char_range_at - naming is uncertain with container conventions
* StrExt::char_range_at_reverse - naming is uncertain with container conventions
* StrExt::char_at - naming is uncertain with container conventions
* StrExt::char_at_reverse - naming is uncertain with container conventions
* StrVector::concat - this functionality may be replaced with iterators, but
it's not certain at this time
* StrVector::connect - as with concat, may be deprecated in favor of iterators
Deprecated
* StrAllocating and UnicodeStrPrelude have been merged into StrExit
* eq_slice - compiler implementation detail
* from_str - use the inherent parse() method
* is_utf8 - call from_utf8 instead
* replace - call the method instead
* truncate_utf16_at_nul - this is an implementation detail of windows and does
not need to be exposed.
* utf8_char_width - moved to libunicode
* utf16_items - moved to libunicode
* is_utf16 - moved to libunicode
* Utf16Items - moved to libunicode
* Utf16Item - moved to libunicode
* Utf16Encoder - moved to libunicode
* AnyLines - renamed to LinesAny and made a struct
* SendStr - use CowString<'static> instead
* str::raw - all functionality is deprecated
* StrExt::into_string - call to_string() instead
* StrExt::repeat - use iterators instead
* StrExt::char_len - use .chars().count() instead
* StrExt::is_alphanumeric - use .chars().all(..)
* StrExt::is_whitespace - use .chars().all(..)
Pending deprecation -- while slicing syntax is being worked out, these methods
are all #[unstable]
* Str - while currently used for generic programming, this trait will be
replaced with one of [], deref coercions, or a generic conversion trait.
* StrExt::slice - use slicing syntax instead
* StrExt::slice_to - use slicing syntax instead
* StrExt::slice_from - use slicing syntax instead
* StrExt::lev_distance - deprecated with no replacement
Awaiting stabilization due to patterns and/or matching
* StrExt::contains
* StrExt::contains_char
* StrExt::split
* StrExt::splitn
* StrExt::split_terminator
* StrExt::rsplitn
* StrExt::match_indices
* StrExt::split_str
* StrExt::starts_with
* StrExt::ends_with
* StrExt::trim_chars
* StrExt::trim_left_chars
* StrExt::trim_right_chars
* StrExt::find
* StrExt::rfind
* StrExt::find_str
* StrExt::subslice_offset
There is currently no way to specify the stability level for a trait
impl produced by `deriving`. This patch is a stopgap solution that:
* Turns of stability inheritance for trait impls, and
* Uses the stability level of the *trait* if no level is directly
specified.
That is, manual trait impls may still provide a directly stability
level, but `deriving` will use the level of the trait. While not a
perfect solution, it should be good enough for 1.0 API stabilization, as
we will like *remove* any unwanted impls outright.
r? @alexcrichton
#16081 fixed an issue where a nested return statement would cause incorrect behaviour due to the inner return writing over the return stack slot that had already been written too. However, the check was very broad and picked many cases that wouldn't ever be affected by this issue.
As a result, the number of allocas increased dramatically and therefore stack-size increased. LLVM is not able to remove all of the extraneous allocas. Any code that had multiple return values in a compound expression at the end of a function (including loops) would be hit by the issue.
The check now uses a control-flow graph to only consider the case when the inner return is executed conditionally. By itself, this narrowed definition causes #15763 to return, so the control-flow graph is also used to avoid passing the return slot as a destination when the result won't be used.
This change allows the stack-size of the main rustc task to be reduced to 8MB from 32MB.
This commit shuffles around some CLI flags of the compiler to some more stable
locations with some renamings. The changes made were:
* The `-v` flag has been repurposes as the "verbose" flag. The version flag has
been renamed to `-V`.
* The `-h` screen has been split into two parts. Most top-level options (not
all) show with `-h`, and the remaining options (generally obscure) can be
shown with `--help -v` which is a "verbose help screen"
* The `-V` flag (version flag now) has lost its argument as it is now requested
with `rustc -vV` "verbose version".
* The `--emit` option has had its `ir` and `bc` variants renamed to `llvm-ir`
and `llvm-bc` to emphasize that they are LLVM's IR/bytecode.
* The `--emit` option has grown a new variant, `dep-info`, which subsumes the
`--dep-info` CLI argument. The `--dep-info` flag is now deprecated.
* The `--parse-only`, `--no-trans`, `--no-analysis`, and `--pretty` flags have
moved behind the `-Z` family of flags.
* The `--debuginfo` and `--opt-level` flags were moved behind the top-level `-C`
flag.
* The `--print-file-name` and `--print-crate-name` flags were moved behind one
global `--print` flag which now accepts one of `crate-name`, `file-names`, or
`sysroot`. This global `--print` flag is intended to serve as a mechanism for
learning various metadata about the compiler itself.
* The top-level `--pretty` flag was moved to a number of `-Z` options.
No warnings are currently enabled to allow tools like Cargo to have time to
migrate to the new flags before spraying warnings to all users.
cc https://github.com/rust-lang/rust/issues/19051
This commit shuffles around some CLI flags of the compiler to some more stable
locations with some renamings. The changes made were:
* The `-v` flag has been repurposes as the "verbose" flag. The version flag has
been renamed to `-V`.
* The `-h` screen has been split into two parts. Most top-level options (not
all) show with `-h`, and the remaining options (generally obscure) can be
shown with `--help -v` which is a "verbose help screen"
* The `-V` flag (version flag now) has lost its argument as it is now requested
with `rustc -vV` "verbose version".
* The `--emit` option has had its `ir` and `bc` variants renamed to `llvm-ir`
and `llvm-bc` to emphasize that they are LLVM's IR/bytecode.
* The `--emit` option has grown a new variant, `dep-info`, which subsumes the
`--dep-info` CLI argument. The `--dep-info` flag is now deprecated.
* The `--parse-only`, `--no-trans`, and `--no-analysis` flags have
moved behind the `-Z` family of flags.
* The `--debuginfo` and `--opt-level` flags were moved behind the top-level `-C`
flag.
* The `--print-file-name` and `--print-crate-name` flags were moved behind one
global `--print` flag which now accepts one of `crate-name`, `file-names`, or
`sysroot`. This global `--print` flag is intended to serve as a mechanism for
learning various metadata about the compiler itself.
No warnings are currently enabled to allow tools like Cargo to have time to
migrate to the new flags before spraying warnings to all users.
This fixes#19978. The bug was introduced by 570325d, where if the type
of an Fn has not been inferred (strs[0] is "_") we slice from 1 to
0. We now explicitly check if `strs[0]` is a single element tuple.
read (`//!` is intrusive) and annoying to edit (must maintain a prefix
on every line). Since the only purpose of a `doc.rs` file is to have a
bunch of text, using `/*!` and `*/` without indentations seems
appropriate.
- The following operator traits now take their argument by value: `Neg`, `Not`. This breaks all existing implementations of these traits.
- The unary operation `OP a` now "desugars" to `OpTrait::op_method(a)` and consumes its argument.
[breaking-change]
---
r? @nikomatsakis This PR is very similar to the binops-by-value PR
cc @aturon
followed by a semicolon.
This allows code like `vec![1i, 2, 3].len();` to work.
This breaks code that uses macros as statements without putting
semicolons after them, such as:
fn main() {
...
assert!(a == b)
assert!(c == d)
println(...);
}
It also breaks code that uses macros as items without semicolons:
local_data_key!(foo)
fn main() {
println("hello world")
}
Add semicolons to fix this code. Those two examples can be fixed as
follows:
fn main() {
...
assert!(a == b);
assert!(c == d);
println(...);
}
local_data_key!(foo);
fn main() {
println("hello world")
}
RFC #378.
Closes#18635.
[breaking-change]
There is currently no way to specify the stability level for a trait
impl produced by `deriving`. This patch is a stopgap solution that:
* Turns of stability inheritance for trait impls, and
* Uses the stability level of the *trait* if no level is directly
specified.
That is, manual trait impls may still provide a directly stability
level, but `deriving` will use the level of the trait. While not a
perfect solution, it should be good enough for 1.0 API stabilization, as
we will like *remove* any unwanted impls outright.
This narrows the definition of nested returns such that only when the
outer return has a chance of being executed (due to the inner return
being conditional) do we mark the function as having nested returns.
Fixes#19684
This is to encourage the use of the sugary syntax instead of the `<>` syntax, which will not be usable post-1.0. Rustdoc [still uses the `<>` syntax](https://github.com/rust-lang/rust/issues/19909), so if a rustdoc wizard is looking for something to do, it would be nice to use the parenthetical syntax there as well. (I tried to patch rustdoc as well, but failed…)
Added -Z print-region-graph debugging option; produces graphviz visualization of region inference constraint graph.
Optionally uses environment variables `RUST_REGION_GRAPH=<path_template>` and `RUST_REGION_GRAPH_NODE=<node-id>` to select which file to output to and which AST node to print.
This commit takes a second pass through the `std::option` module to fully
stabilize any lingering methods inside of it.
These items were made stable as-is
* Some
* None
* as_mut
* expect
* unwrap
* unwrap_or
* unwrap_or_else
* map
* map_or
* map_or_else
* and_then
* or_else
* unwrap_or_default
* Default implementation
* FromIterator implementation
* Copy implementation
These items were made stable with modifications
* iter - now returns a struct called Iter
* iter_mut - now returns a struct called IterMut
* into_iter - now returns a struct called IntoIter, Clone is never implemented
This is a breaking change due to the modifications to the names of the iterator
types returned. Code referencing the old names should updated to referencing the
newer names instead. This is also a breaking change due to the fact that
`IntoIter` no longer implements the `Clone` trait.
These items were explicitly not stabilized
* as_slice - waiting on indexing conventions
* as_mut_slice - waiting on conventions with as_slice as well
* cloned - the API was still just recently added
* ok_or - API remains experimental
* ok_or_else - API remains experimental
[breaking-change]
Normalize late-bound regions in bare functions, stack closures, and traits and include them in the generated hash.
Closes#19791
r? @nikomatsakis (does my normalization make sense?)
cc @alexcrichton
per rfc 459
cc https://github.com/rust-lang/rust/issues/19390
One question is: should we start by warning, and only switch to hard error later? I think we discussed something like this in the meeting.
r? @alexcrichton
- The following operator traits now take their arguments by value: `Add`, `Sub`, `Mul`, `Div`, `Rem`, `BitAnd`, `BitOr`, `BitXor`, `Shl`, `Shr`. This breaks all existing implementations of these traits.
- The binary operation `a OP b` now "desugars" to `OpTrait::op_method(a, b)` and consumes both arguments.
- `String` and `Vec` addition have been changed to reuse the LHS owned value, and to avoid internal cloning. Only the following asymmetric operations are available: `String + &str` and `Vec<T> + &[T]`, which are now a short-hand for the "append" operation.
[breaking-change]
---
This passes `make check` locally. I haven't touch the unary operators in this PR, but converting them to by value should be very similar to this PR. I can work on them after this gets the thumbs up.
@nikomatsakis r? the compiler changes
@aturon r? the library changes. I think the only controversial bit is the semantic change of the `Vec`/`String` `Add` implementation.
cc #19148
visualization of region inference constraint graph.
Optionally uses environment variables `RUST_REGION_GRAPH=<path_template>`
and `RUST_REGION_GRAPH_NODE=<node-id>` to select which file to output
to and which AST node to print.
Note that in some cases of method AST's, the identification of AST
node is based on the id for the *body* of the method; this is largely
due to having the body node-id already available at the relevant point
in the control-flow of rustc in its current incarnation. Ideally we
would handle identifying AST's by name in addition to node-id,
e.g. the same way that the pretty-printer supports path suffixes as
well as node-ids for identifying subtrees to print.
This is not technically a [breaking-change], but it will be soon, so
you should update your code. Typically, shadowing is accidental, and
the shadowing lifetime can simply be removed. This frequently occurs
in constructor patterns:
```rust
// Old:
impl<'a> SomeStruct<'a> { fn new<'a>(..) -> SomeStruct<'a> { ... } }
// Should be:
impl<'a> SomeStruct<'a> { fn new(..) -> SomeStruct<'a> { ... } }
```
Otherwise, you should rename the inner lifetime to something
else. Note though that lifetime elision frequently applies:
```rust
// Old
impl<'a> SomeStruct<'a> {
fn get<'a>(x: &'a self) -> &'a T { &self.field }
}
// Should be:
impl<'a> SomeStruct<'a> {
fn get(x: &self) -> &T { &self.field }
}
``
This commit takes a second pass through the `std::option` module to fully
stabilize any lingering methods inside of it.
These items were made stable as-is
* Some
* None
* as_mut
* expect
* unwrap
* unwrap_or
* unwrap_or_else
* map
* map_or
* map_or_else
* and_then
* or_else
* unwrap_or_default
* Default implementation
* FromIterator implementation
* Copy implementation
These items were made stable with modifications
* iter - now returns a struct called Iter
* iter_mut - now returns a struct called IterMut
* into_iter - now returns a struct called IntoIter, Clone is never implemented
This is a breaking change due to the modifications to the names of the iterator
types returned. Code referencing the old names should updated to referencing the
newer names instead. This is also a breaking change due to the fact that
`IntoIter` no longer implements the `Clone` trait.
These items were explicitly not stabilized
* as_slice - waiting on indexing conventions
* as_mut_slice - waiting on conventions with as_slice as well
* cloned - the API was still just recently added
* ok_or - API remains experimental
* ok_or_else - API remains experimental
[breaking-change]
They are replaced with unboxed closures.
cc @pcwalton @aturon
This is a [breaking-change]. Mostly, uses of `proc()` simply need to be converted to `move||` (unboxed closures), but in some cases the adaptations required are more complex (particularly for library authors). A detailed write-up can be found here: http://smallcultfollowing.com/babysteps/blog/2014/11/26/purging-proc/
The commits are ordered to emphasize the more important changes, but are not truly standalone.
Unlike a tuple variant constructor which can be called as a function, a struct variant constructor is not a function, so cannot be called.
If the user tries to assign the constructor to a variable, an ICE occurs, because there is no way to use it later. So we should stop the constructor from being used like that.
A similar mechanism already exists for a normal struct, as it prohibits a struct from being resolved. This commit does the same for a struct variant.
This commit also includes some changes to the existing tests.
Fixes#19452.
in most cases, just the error message changed, but in some cases we
are reporting new errors that OUGHT to have been reported before but
we're overlooked (mostly involving the `'static` bound on `Send`).
This pull request tries to fix#19340, which states two ICE cases related to enum struct variants.
It is my first attempt to fix the compiler. I found this solution by trial and error, so the method used to fix the issue looks very hacky. Please review it, and direct me to find a better solution.
I'm also to add test cases. Where should I put them? Maybe `src/test/run-pass/issue-19340.rs`?
Unlike a tuple variant constructor which can be called as a function, a
struct variant constructor is not a function, so cannot be called.
If the user tries to assign the constructor to a variable, an ICE
occurs, because there is no way to use it later. So we should stop the
constructor from being used like that.
A similar mechanism already exists for a normal struct, as it prohibits
a struct from being resolved. This commit does the same for a struct
variant.
This commit also includes some changes to the existing tests.
Fixes#19452.
One of the causes of #19501 was that the metadata on OSX was getting corrupted.
For any one particular invocation of the compiler the metadata file inside of an
rlib archive would have extra bytes appended to the end of it. These extra bytes
end up confusing rbml and have it run off the end of the array (resulting in the
out of bounds detected).
This commit prepends the length of metadata to the start of the metadata to
ensure that we always slice the precise amount that we want, and it also
un-ignores the test from #19502.
Closes#19501
This is particularly important for deeply nested types, which generate deeply nested impls. This is a fix for #19318. It's possible we could also improve this particular case not to increment the recursion count, but it's worth being able to adjust the recursion limit anyhow.
cc @jdm
r? @pcwalton
One of the causes of #19501 was that the metadata on OSX was getting corrupted.
For any one particular invocation of the compiler the metadata file inside of an
rlib archive would have extra bytes appended to the end of it. These extra bytes
end up confusing rbml and have it run off the end of the array (resulting in the
out of bounds detected).
This commit prepends the length of metadata to the start of the metadata to
ensure that we always slice the precise amount that we want, and it also
un-ignores the test from #19502.
Closes#19501
This change makes the compiler no longer infer whether types (structures
and enumerations) implement the `Copy` trait (and thus are implicitly
copyable). Rather, you must implement `Copy` yourself via `impl Copy for
MyType {}`.
A new warning has been added, `missing_copy_implementations`, to warn
you if a non-generic public type has been added that could have
implemented `Copy` but didn't.
For convenience, you may *temporarily* opt out of this behavior by using
`#![feature(opt_out_copy)]`. Note though that this feature gate will never be
accepted and will be removed by the time that 1.0 is released, so you should
transition your code away from using it.
This breaks code like:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
Change this code to:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
impl Copy for Point2D {}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
This is the backwards-incompatible part of #13231.
Part of RFC #3.
[breaking-change]
Now that we have an overloaded comparison (`==`) operator, and that `Vec`/`String` deref to `[T]`/`str` on method calls, many `as_slice()`/`as_mut_slice()`/`to_string()` calls have become redundant. This patch removes them. These were the most common patterns:
- `assert_eq(test_output.as_slice(), "ground truth")` -> `assert_eq(test_output, "ground truth")`
- `assert_eq(test_output, "ground truth".to_string())` -> `assert_eq(test_output, "ground truth")`
- `vec.as_mut_slice().sort()` -> `vec.sort()`
- `vec.as_slice().slice(from, to)` -> `vec.slice(from_to)`
---
Note that e.g. `a_string.push_str(b_string.as_slice())` has been left untouched in this PR, since we first need to settle down whether we want to favor the `&*b_string` or the `b_string[]` notation.
This is rebased on top of #19167
cc @alexcrichton @aturon