At the moment, this moves only a single diagnostic, but the idea is
reafactor the rest to use the same pattern. We are going to have a
single file per diagnostic. This file will define diagnostics code,
rendering range and fixes, if any. It'll also have all of the tests.
This is similar to how we deal with assists.
After we refactor all diagnostics to follow this pattern, we'll probably
move them to a new `ide_diagnostics` crate.
Not that we intentionally want to test all diagnostics on this layer,
despite the fact that they are generally emitted in the guts on the
compiler. Diagnostics care to much about the end presentation
details/fixes to be worth-while "unit" testing. So, we'll unit-test only
the primary output of compilation process (types and name res tables),
and will use integrated UI tests for diagnostics.
9244: feat: Make block-local trait impls work r=flodiebold a=flodiebold
As long as either the trait or the implementing type are defined in the same block.
CC #8961
Co-authored-by: Florian Diebold <flodiebold@gmail.com>
9169: internal: steps towards attribute macro token mapping r=jonas-schievink a=jonas-schievink
This doesn't work yet, but we seem to be getting a bit further along (for example, we now stop highlighting `use` items inside item with attribute macros as if they were written verbatim).
bors r+
Co-authored-by: Jonas Schievink <jonasschievink@gmail.com>
8866: Update salsa r=matklad a=jonas-schievink
This updates salsa to include https://github.com/salsa-rs/salsa/pull/265, and removes all cancellation-related code from rust-analyzer
Co-authored-by: Jonas Schievink <jonasschievink@gmail.com>
The idea here is to eventually get rid of `dyn Diagnostic` and
`DiagnosticSink` infrastructure altogether, and just have a `enum
hir::Diagnostic` instead.
The problem with `dyn Diagnostic` is that it is defined in the lowest
level of the stack (hir_expand), but is used by the highest level (ide).
As a first step, we free hir_expand and hir_def from `dyn Diagnostic`
and kick the can up to `hir_ty`, as an intermediate state. The plan is
then to move DiagnosticSink similarly to the hir crate, and, as final
third step, remove its usage from the ide.
One currently unsolved problem is testing. You can notice that the test
which checks precise diagnostic ranges, unresolved_import_in_use_tree,
was moved to the ide layer. Logically, only IDE should have the infra to
render a specific range.
At the same time, the range is determined with the data produced in
hir_def and hir crates, so this layering is rather unfortunate. Working
on hir_def shouldn't require compiling `ide` for testing.
8885: internal: greatly simplify eager macro representation r=jonas-schievink a=jonas-schievink
- Share structures with lazy macros, make both use `MacroCallLoc`.
- Remove `intern_eager_expansion`, `EagerCallLoc`, `EagerMacroId`, and *many* matches on `MacroCallId`.
- Make a lot of FIXMEs obsolete since the code no longer distinguishes between eager and lazy macros.
- Add `EagerCallInfo`, which is `Some` for calls to eager macros and holds the argument or expansion result and the included file.
8887: fix: fix derive collection after unresolved attribute fallback r=jonas-schievink a=jonas-schievink
Fixes https://github.com/rust-analyzer/rust-analyzer/pull/8882#issuecomment-844379170
bors r+
Co-authored-by: Jonas Schievink <jonasschievink@gmail.com>
8882: internal: resolve attributes in name resolution (minimal version) r=jonas-schievink a=jonas-schievink
Closes https://github.com/rust-analyzer/rust-analyzer/pull/7049
This should not have any observable effect, since we don't attempt to expand attribute macros yet, and I have implemented a fallback that treats items with unresolved attributes as if the attribute wasn't there.
Derive helpers are not yet resolved. `#![register_{attr,tool}]` are not yet supported.
Co-authored-by: Jonas Schievink <jonasschievink@gmail.com>
8813: Get some more array lengths! r=lf- a=lf-
This is built on #8799 and thus contains its changes. I'll rebase it onto master when that one gets merged. It adds support for r-a understanding the length of:
* `let a: [u8; 2] = ...`
* `let a = b"aaa"`
* `let a = [0u8; 4]`
I have added support for getting the values of byte strings, which was not previously there. I am least confident in the correctness of this part and it probably needs some more tests, as we currently have only one test that exercised that part (!).
Fixes#2922.
Co-authored-by: Jade <software@lfcode.ca>