Stop using CRATE_DEF_INDEX outside of metadata encoding.
`CRATE_DEF_ID` and `CrateNum::as_def_id` are almost always what we want. We should not manipulate raw `DefIndex` outside of metadata encoding.
Refactor HIR item-like traversal (part 1)
Issue #95004
- Create hir_crate_items query which traverses tcx.hir_crate(()).owners to return a hir::ModuleItems
- use tcx.hir_crate_items in tcx.hir().items() to return an iterator of hir::ItemId
- use tcx.hir_crate_items to introduce a tcx.hir().par_items(impl Fn(hir::ItemId)) to traverse all items in parallel;
Signed-off-by: Miguel Guarniz <mi9uel9@gmail.com>
cc `@cjgillot`
Implement sym operands for global_asm!
Tracking issue: #93333
This PR is pretty much a complete rewrite of `sym` operand support for inline assembly so that the same implementation can be shared by `asm!` and `global_asm!`. The main changes are:
- At the AST level, `sym` is represented as a special `InlineAsmSym` AST node containing a path instead of an `Expr`.
- At the HIR level, `sym` is split into `SymStatic` and `SymFn` depending on whether the path resolves to a static during AST lowering (defaults to `SynFn` if `get_early_res` fails).
- `SymFn` is just an `AnonConst`. It runs through typeck and we just collect the resulting type at the end. An error is emitted if the type is not a `FnDef`.
- `SymStatic` directly holds a path and the `DefId` of the `static` that it is pointing to.
- The representation at the MIR level is mostly unchanged. There is a minor change to THIR where `SymFn` is a constant instead of an expression.
- At the codegen level we need to apply the target's symbol mangling to the result of `tcx.symbol_name()` depending on the target. This is done by calling the LLVM name mangler, which handles all of the details.
- On Mach-O, all symbols have a leading underscore.
- On x86 Windows, different mangling is used for cdecl, stdcall, fastcall and vectorcall.
- No mangling is needed on other platforms.
r? `@nagisa`
cc `@eddyb`
check_doc_alias_value: get argument as Symbol to prevent needless string convertions
check_doc_attrs: don't alloc vec, iterate over slice. Vec introduced in #83149, but no perf run posted on merge
replace as_str() check with symbol check
get_single_str_from_tts: don't prealloc string
trivial string to str replace
LifetimeScopeForPath::NonElided use Vec<Symbol> instead of Vec<String>
AssertModuleSource use BTreeSet<Symbol> instead of BTreeSet<String>
CrateInfo.crate_name replace FxHashMap<CrateNum, String> with FxHashMap<CrateNum, Symbol>
`MultiSpan` contains labels, which are more complicated with the
introduction of diagnostic translation and will use types from
`rustc_errors` - however, `rustc_errors` depends on `rustc_span` so
`rustc_span` cannot use types like `DiagnosticMessage` without
dependency cycles. Introduce a new `rustc_error_messages` crate that can
contain `DiagnosticMessage` and `MultiSpan`.
Signed-off-by: David Wood <david.wood@huawei.com>
Don't emit non-asm contents error for naked function composed of errors
## Motivation
For naked functions an error is emitted when they are composed of anything other than a single asm!() block. However, this error triggers in a couple situations in which it adds no additional information or is actively misleading.
One example is if you do have an asm!() block but simply one with a syntax error:
```rust
#[naked]
unsafe extern "C" fn compiler_errors() {
asm!(invalid_syntax)
}
```
This results in two errors, one for the syntax error itself and another telling you that you need an asm block in your function:
```rust
error[E0787]: naked functions must contain a single asm block
--> src/main.rs:6:1
|
6 | / unsafe extern "C" fn naked_compile_error() {
7 | | asm!(blah)
8 | | }
| |_^
```
This issue also comes up when [utilizing `compile_error!()` for improving your diagnostics](https://twitter.com/steveklabnik/status/1509538243020218372), such as raising a compiler error when compiling for an unsupported target.
## Implementation
The rules this PR implements are as follows:
1. If any non-erroneous non-asm statement is included, an error will still occur
2. If multiple asm statements are included, an error will still occur
3. If 0 or 1 asm statements are present, as well as any non-zero number of erroneous statements, then this error will *not* be raised as it is likely either redundant or incorrect
The rule of thumb is effectively "if an error is present and its correction could change things, don't raise an error".
Add error message suggestion for missing noreturn in naked function
I had to google the syntax for inline asm's `noreturn` option when I got this error earlier today, so I figured I'd save others the trouble and add the syntax/fix as a suggestion in the error.
Handle rustc_const_stable attribute in library feature collector
The library feature collector in [compiler/rustc_passes/src/lib_features.rs](551b4fa395/compiler/rustc_passes/src/lib_features.rs) has only been looking at `#[stable(…)]`, `#[unstable(…)]`, and `#[rustc_const_unstable(…)]` attributes, while ignoring `#[rustc_const_stable(…)]`. The consequences of this were:
- When any const feature got stabilized (changing one or more `rustc_const_unstable` to `rustc_const_stable`), users who had previously enabled that unstable feature using `#![feature(…)]` would get told "unknown feature", rather than rustc's nicer "the feature … has been stable since … and no longer requires an attribute to enable".
This can be seen in the way that https://github.com/rust-lang/rust/pull/93957#issuecomment-1079794660 failed after rebase:
```console
error[E0635]: unknown feature `const_ptr_offset`
--> $DIR/offset_from_ub.rs:1:35
|
LL | #![feature(const_ptr_offset_from, const_ptr_offset)]
| ^^^^^^^^^^^^^^^^
```
- We weren't enforcing that a particular feature is either stable everywhere or unstable everywhere, and that a feature that has been stabilized has the same stabilization version everywhere, both of which we enforce for the other stability attributes.
This PR updates the library feature collector to handle `rustc_const_stable`, and fixes places in the standard library and test suite where `rustc_const_stable` was being used in a way that does not meet the rules for a stability attribute.
Spellchecking compiler comments
This PR cleans up the rest of the spelling mistakes in the compiler comments. This PR does not change any literal or code spelling issues.
Remember mutability in `DefKind::Static`.
This allows to compute the `BodyOwnerKind` from `DefKind` only, and
removes a direct dependency of some MIR queries onto HIR.
As a side effect, it also simplifies metadata, since we don't need 4
flavours of `EntryKind::*Static` any more.
This allows to compute the `BodyOwnerKind` from `DefKind` only, and
removes a direct dependency of some MIR queries onto HIR.
As a side effect, it also simplifies metadata, since we don't need 4
flavours of `EntryKind::*Static` any more.
There are a few places were we have to construct it, though, and a few
places that are more invasive to change. To do this, we create a
constructor with a long obvious name.
This commit makes `AdtDef` use `Interned`. Much the commit is tedious
changes to introduce getter functions. The interesting changes are in
`compiler/rustc_middle/src/ty/adt.rs`.
Merge `#[deprecated]` and `#[rustc_deprecated]`
The first commit makes "reason" an alias for "note" in `#[rustc_deprecated]`, while still prohibiting it in `#[deprecated]`.
The second commit changes "suggestion" to not just be a feature of `#[rustc_deprecated]`. This is placed behind the new `deprecated_suggestion` feature. This needs a tracking issue; let me know if this PR will be approved and I can create one.
The third commit is what permits `#[deprecated]` to be used when `#![feature(staged_api)]` is enabled. This isn't yet used in stdlib (only tests), as it would require duplicating all deprecation attributes until a bootstrap occurs. I intend to submit a follow-up PR that replaces all uses and removes the remaining `#[rustc_deprecated]` code after the next bootstrap.
`@rustbot` label +T-libs-api +C-feature-request +A-attributes +S-waiting-on-review
Emit `unused_attributes` if a level attr only has a reason
Fixes a comment from `compiler/rustc_lint/src/levels.rs`. Lint level attributes that only contain a reason will also trigger the `unused_attribute` lint. The lint now also checks for the `expect` lint level.
That's it, have a great rest of the day for everyone reasoning this 🙃
cc: #55112
Do not point at whole file missing `fn main`
Only point at the end of the crate. We could try making it point at the
beginning of the crate, but that is confused with `DUMMY_SP`, causing
the output to be *worse*.
This change will make it so that VSCode will *not* underline the whole
file when `main` is missing, so other errors will be visible.
Only point at the end of the crate. We could try making it point at the
beginning of the crate, but that is confused with `DUMMY_SP`, causing
the output to be *worse*.
This change will make it so that VSCode will *not* underline the whole
file when `main` is missing, so other errors will be visible.
Lint against more useless `#[must_use]` attributes
This expands the existing `#[must_use]` check in `unused_attributes` to lint against pretty much everything `#[must_use]` doesn't support.
Fixes#93906.
This expands the existing `#[must_use]` check in `unused_attributes`
to lint against pretty much everything `#[must_use]` doesn't support.
Fixes#93906.
rustc_errors: let `DiagnosticBuilder::emit` return a "guarantee of emission".
That is, `DiagnosticBuilder` is now generic over the return type of `.emit()`, so we'll now have:
* `DiagnosticBuilder<ErrorReported>` for error (incl. fatal/bug) diagnostics
* can only be created via a `const L: Level`-generic constructor, that limits allowed variants via a `where` clause, so not even `rustc_errors` can accidentally bypass this limitation
* asserts `diagnostic.is_error()` on emission, just in case the construction restriction was bypassed (e.g. by replacing the whole `Diagnostic` inside `DiagnosticBuilder`)
* `.emit()` returns `ErrorReported`, as a "proof" token that `.emit()` was called
(though note that this isn't a real guarantee until after completing the work on
#69426)
* `DiagnosticBuilder<()>` for everything else (warnings, notes, etc.)
* can also be obtained from other `DiagnosticBuilder`s by calling `.forget_guarantee()`
This PR is a companion to other ongoing work, namely:
* #69426
and it's ongoing implementation:
#93222
the API changes in this PR are needed to get statically-checked "only errors produce `ErrorReported` from `.emit()`", but doesn't itself provide any really strong guarantees without those other `ErrorReported` changes
* #93244
would make the choices of API changes (esp. naming) in this PR fit better overall
In order to be able to let `.emit()` return anything trustable, several changes had to be made:
* `Diagnostic`'s `level` field is now private to `rustc_errors`, to disallow arbitrary "downgrade"s from "some kind of error" to "warning" (or anything else that doesn't cause compilation to fail)
* it's still possible to replace the whole `Diagnostic` inside the `DiagnosticBuilder`, sadly, that's harder to fix, but it's unlikely enough that we can paper over it with asserts on `.emit()`
* `.cancel()` now consumes `DiagnosticBuilder`, preventing `.emit()` calls on a cancelled diagnostic
* it's also now done internally, through `DiagnosticBuilder`-private state, instead of having a `Level::Cancelled` variant that can be read (or worse, written) by the user
* this removes a hazard of calling `.cancel()` on an error then continuing to attach details to it, and even expect to be able to `.emit()` it
* warnings were switched to *only* `can_emit_warnings` on emission (instead of pre-cancelling early)
* `struct_dummy` was removed (as it relied on a pre-`Cancelled` `Diagnostic`)
* since `.emit()` doesn't consume the `DiagnosticBuilder` <sub>(I tried and gave up, it's much more work than this PR)</sub>,
we have to make `.emit()` idempotent wrt the guarantees it returns
* thankfully, `err.emit(); err.emit();` can return `ErrorReported` both times, as the second `.emit()` call has no side-effects *only* because the first one did do the appropriate emission
* `&mut Diagnostic` is now used in a lot of function signatures, which used to take `&mut DiagnosticBuilder` (in the interest of not having to make those functions generic)
* the APIs were already mostly identical, allowing for low-effort porting to this new setup
* only some of the suggestion methods needed some rework, to have the extra `DiagnosticBuilder` functionality on the `Diagnostic` methods themselves (that change is also present in #93259)
* `.emit()`/`.cancel()` aren't available, but IMO calling them from an "error decorator/annotator" function isn't a good practice, and can lead to strange behavior (from the caller's perspective)
* `.downgrade_to_delayed_bug()` was added, letting you convert any `.is_error()` diagnostic into a `delay_span_bug` one (which works because in both cases the guarantees available are the same)
This PR should ideally be reviewed commit-by-commit, since there is a lot of fallout in each.
r? `@estebank` cc `@Manishearth` `@nikomatsakis` `@mark-i-m`
Require const stability attribute on all stable functions that are `const`
This PR requires all stable functions (of all kinds) that are `const fn` to have a `#[rustc_const_stable]` or `#[rustc_const_unstable]` attribute. Stability was previously implied if omitted; a follow-up PR is planned to change the fallback to be unstable.
Make dead code check a query.
Dead code check is run for each invocation of the compiler, even if no modifications were involved.
This PR makes dead code check a query keyed on the module. This allows to skip the check when a module has not changed.
To perform this, a query `live_symbols_and_ignored_derived_traits` is introduced to encapsulate the global analysis of finding live symbols. The second query `check_mod_deathness` outputs diagnostics for each module based on this first query's results.
Transition unsupported naked functions future incompatibility lint into
an error:
* Naked functions must contain a single inline assembly block.
Introduced as future incompatibility lint in 1.50 #79653.
Change into an error fixes a soundness issue described in #32489.
* Naked functions must not use any forms of inline attribute.
Introduced as future incompatibility lint in 1.56 #87652.
Introduce drop range tracking to generator interior analysis
This PR addresses cases such as this one from #57478:
```rust
struct Foo;
impl !Send for Foo {}
let _: impl Send = || {
let guard = Foo;
drop(guard);
yield;
};
```
Previously, the `generator_interior` pass would unnecessarily include the type `Foo` in the generator because it was not aware of the behavior of `drop`. We fix this issue by introducing a drop range analysis that finds portions of the code where a value is guaranteed to be dropped. If a value is dropped at all suspend points, then it is no longer included in the generator type. Note that we are using "dropped" in a generic sense to include any case in which a value has been moved. That is, we do not only look at calls to the `drop` function.
There are several phases to the drop tracking algorithm, and we'll go into more detail below.
1. Use `ExprUseVisitor` to find values that are consumed and borrowed.
2. `DropRangeVisitor` uses consume and borrow information to gather drop and reinitialization events, as well as build a control flow graph.
3. We then propagate drop and reinitialization information through the CFG until we reach a fix point (see `DropRanges::propagate_to_fixpoint`).
4. When recording a type (see `InteriorVisitor::record`), we check the computed drop ranges to see if that value is definitely dropped at the suspend point. If so, we skip including it in the type.
## 1. Use `ExprUseVisitor` to find values that are consumed and borrowed.
We use `ExprUseVisitor` to identify the places where values are consumed. We track both the `hir_id` of the value, and the `hir_id` of the expression that consumes it. For example, in the expression `[Foo]`, the `Foo` is consumed by the array expression, so after the array expression we can consider the `Foo` temporary to be dropped.
In this process, we also collect values that are borrowed. The reason is that the MIR transform for generators conservatively assumes anything borrowed is live across a suspend point (see `rustc_mir_transform::generator::locals_live_across_suspend_points`). We match this behavior here as well.
## 2. Gather drop events, reinitialization events, and control flow graph
After finding the values of interest, we perform a post-order traversal over the HIR tree to find the points where these values are dropped or reinitialized. We use the post-order index of each event because this is how the existing generator interior analysis refers to the position of suspend points and the scopes of variables.
During this traversal, we also record branching and merging information to handle control flow constructs such as `if`, `match`, and `loop`. This is necessary because values may be dropped along some control flow paths but not others.
## 3. Iterate to fixed point
The previous pass found the interesting events and locations, but now we need to find the actual ranges where things are dropped. Upon entry, we have a list of nodes ordered by their position in the post-order traversal. Each node has a set of successors. For each node we additionally keep a bitfield with one bit per potentially consumed value. The bit is set if we the value is dropped along all paths entering this node.
To compute the drop information, we first reverse the successor edges to find each node's predecessors. Then we iterate through each node, and for each node we set its dropped value bitfield to the intersection of all incoming dropped value bitfields.
If any bitfield for any node changes, we re-run the propagation loop again.
## 4. Ignore dropped values across suspend points
At this point we have a data structure where we can ask whether a value is guaranteed to be dropped at any post order index for the HIR tree. We use this information in `InteriorVisitor` to check whether a value in question is dropped at a particular suspend point. If it is, we do not include that value's type in the generator type.
Note that we had to augment the region scope tree to include all yields in scope, rather than just the last one as we did before.
r? `@nikomatsakis`
This change adds the basic infrastructure for tracking drop ranges in
generator interior analysis, which allows us to exclude dropped types
from the generator type.
Not yet complete, but many of the async/await and generator tests pass.
The main missing piece is tracking branching control flow (e.g. around
an `if` expression). The patch does include support, however, for
multiple yields in th e same block.
Issue #57478
Avoid unnecessary monomorphization of inline asm related functions
This should reduce build time for codegen backends by avoiding duplicated monomorphization of certain inline asm related functions for each passed in closure type.
Add some more attribute validation
This adds some more validation for the position of attributes:
* `link` is only valid on an `extern` block
* `windows_subsystem` and `no_builtins` are only valid at the crate level
Replace `NestedVisitorMap` with generic `NestedFilter`
This is an attempt to make the `intravisit::Visitor` API simpler and "more const" with regard to nested visiting.
With this change, `intravisit::Visitor` does not visit nested things by default, unless you specify `type NestedFilter = nested_filter::OnlyBodies` (or `All`). `nested_visit_map` returns `Self::Map` instead of `NestedVisitorMap<Self::Map>`. It panics by default (unreachable if `type NestedFilter` is omitted).
One somewhat trixty thing here is that `nested_filter::{OnlyBodies, All}` live in `rustc_middle` so that they may have `type Map = map::Map` and so that `impl Visitor`s never need to specify `type Map` - it has a default of `Self::NestedFilter::Map`.
Remove deprecated LLVM-style inline assembly
The `llvm_asm!` was deprecated back in #87590 1.56.0, with intention to remove
it once `asm!` was stabilized, which already happened in #91728 1.59.0. Now it
is time to remove `llvm_asm!` to avoid continued maintenance cost.
Closes#70173.
Closes#92794.
Closes#87612.
Closes#82065.
cc `@rust-lang/wg-inline-asm`
r? `@Amanieu`
expand: Pick `cfg`s and `cfg_attrs` one by one, like other attributes
This is a rebase of https://github.com/rust-lang/rust/pull/83354, but without any language-changing parts ~(except for https://github.com/rust-lang/rust/pull/84110)~, i.e. the attribute expansion order is the same.
This is a pre-requisite for any other changes making cfg attributes closer to regular macro attributes
- Possibly changing their expansion order (https://github.com/rust-lang/rust/issues/83331)
- Keeping macro backtraces for cfg attributes, or otherwise making them visible after expansion without keeping them in place literally (https://github.com/rust-lang/rust/pull/84110).
Two exceptions to the "one by one" behavior are:
- cfgs eagerly expanded by `derive` and `cfg_eval`, they are still expanded in a batch, that's by design.
- cfgs at the crate root, they are currently expanded not during the main expansion pass, but before that, during `#![feature]` collection. I'll try to disentangle that logic later in a separate PR.
r? `@Aaron1011`
Closure capture cleanup & refactor
Follow up of #89648
Each commit is self-contained and the rationale/changes are documented in the commit message, so it's advisable to review commit by commit.
The code is significantly cleaner (at least IMO), but that could have some perf implication, so I'd suggest a perf run.
r? `@wesleywiser`
cc `@arora-aman`
Remove `SymbolStr`
This was originally proposed in https://github.com/rust-lang/rust/pull/74554#discussion_r466203544. As well as removing the icky `SymbolStr` type, it allows the removal of a lot of `&` and `*` occurrences.
Best reviewed one commit at a time.
r? `@oli-obk`
Implement let-else type annotations natively
Tracking issue: #87335Fixes#89688, fixes#89807, edit: fixes #89960 as well
As explained in https://github.com/rust-lang/rust/issues/89688#issuecomment-940405082, the previous desugaring moved the let-else scrutinee into a dummy variable, which meant if you wanted to refer to it again in the else block, it had moved.
This introduces a new hir type, ~~`hir::LetExpr`~~ `hir::Let`, which takes over all the fields of `hir::ExprKind::Let(...)` and adds an optional type annotation. The `hir::Let` is then treated like a `hir::Local` when type checking a function body, specifically:
* `GatherLocalsVisitor` overrides a new `Visitor::visit_let_expr` and does pretty much exactly what it does for `visit_local`, assigning a local type to the `hir::Let` ~~(they could be deduplicated but they are right next to each other, so at least we know they're the same)~~
* It reuses the code in `check_decl_local` to typecheck the `hir::Let`, simply returning 'bool' for the expression type after doing that.
* ~~`FnCtxt::check_expr_let` passes this local type in to `demand_scrutinee_type`, and then imitates check_decl_local's pattern checking~~
* ~~`demand_scrutinee_type` (the blindest change for me, please give this extra scrutiny) uses this local type instead of of creating a new one~~
* ~~Just realised the `check_expr_with_needs` was passing NoExpectation further down, need to pass the type there too. And apparently this Expectation API already exists.~~
Some other misc notes:
* ~~Is the clippy code supposed to be autoformatted? I tried not to give huge diffs but maybe some rustfmt changes simply haven't hit it yet.~~
* in `rustc_ast_lowering/src/block.rs`, I noticed some existing `self.alias_attrs()` calls in `LoweringContext::lower_stmts` seem to be copying attributes from the lowered locals/etc to the statements. Is that right? I'm new at this, I don't know.
Stabilize `iter::zip`
Hello all!
As the tracking issue (#83574) for `iter::zip` completed the final commenting period without any concerns being raised, I hereby submit this stabilization PR on the issue.
As the pull request that introduced the feature (#82917) states, the `iter::zip` function is a shorter way to zip two iterators. As it's generally a quality-of-life/ergonomic improvement, it has been integrated into the codebase without any trouble, and has been
used in many places across the rust compiler and standard library since March without any issues.
For more details, I would refer to `@cuviper's` original PR, or the [function's documentation](https://doc.rust-lang.org/std/iter/fn.zip.html).
Tweak errors coming from `for`-loop, `?` and `.await` desugaring
* Suggest removal of `.await` on non-`Future` expression
* Keep track of obligations introduced by desugaring
* Remove span pointing at method for obligation errors coming from desugaring
* Point at called local sync `fn` and suggest making it `async`
```
error[E0277]: `()` is not a future
--> $DIR/unnecessary-await.rs:9:10
|
LL | boo().await;
| -----^^^^^^ `()` is not a future
| |
| this call returns `()`
|
= help: the trait `Future` is not implemented for `()`
help: do not `.await` the expression
|
LL - boo().await;
LL + boo();
|
help: alternatively, consider making `fn boo` asynchronous
|
LL | async fn boo () {}
| +++++
```
Fix#66731.
tidy run
update invalid crate attributes, improve error
update test outputs
de-capitalise error
update tests
Update invalid crate attributes, add help message
Update - generate span without using BytePos
Add correct dependancies
Update - generate suggestion without BytePos
Tidy run
update tests
Generate Suggestion without BytePos
Add all builtin attributes
add err builtin inner attr at top of crate
fix tests
add err builtin inner attr at top of crate
tidy fix
add err builtin inner attr at top of crate
Take a LocalDefId in expect_*item.
Items and item-likes are always HIR owners.
When trying to find such nodes, there is no ambiguity, the `LocalDefId` and the `HirId::owner` always match.
In such cases, `local_def_id_to_hir_id` does not carry any meaningful information, so we can just skip calling it altogether.
Various fixes for const_trait_impl
A few problems I found while making `Iterator` easier to const-implement.
1. More generous `~const Drop` check.
We check for nested fields with caller bounds.
For example, an ADT type with fields of types `A`, `B`, `C`, check if all of them are either:
- Bounded (`A: ~const Drop`, `B: Copy`)
- Known to be able to destruct at compile time (`C = i32`, `struct C(i32)`, `C = some_fn`)
2. Don't treat trait functions marked with `#[default_method_body_is_const]` as stable const fns when checking `const_for` and `const_try` feature gates.
I think anyone can review this, so no r? this time.
warn on must_use use on async fn's
As referenced in #78149
This only works on `async` fn's for now, I can also look into if I can get `Box<dyn Future>` and `impl Future` working at this level (hir)
Type inference for inline consts
Fixes#78132Fixes#78174Fixes#81857Fixes#89964
Perform type checking/inference of inline consts in the same context as the outer def, similar to what is currently done to closure.
Doing so would require `closure_base_def_id` of the inline const to return the outer def, and since `closure_base_def_id` can be called on non-local crate (and thus have no HIR available), a new `DefKind` is created for inline consts.
The type of the generated anon const can capture lifetime of outer def, so we couldn't just use the typeck result as the type of the inline const's def. Closure has a similar issue, and it uses extra type params `CK, CS, U` to capture closure kind, input/output signature and upvars. I use a similar approach for inline consts, letting it have an extra type param `R`, and then `typeof(InlineConst<[paremt generics], R>)` would just be `R`. In borrowck region requirements are also propagated to the outer MIR body just like it's currently done for closure.
With this PR, inline consts in expression position are quitely usable now; however the usage in pattern position is still incomplete -- since those does not remain in the MIR borrowck couldn't verify the lifetime there. I have left an ignored test as a FIXME.
Some disucssions can be found on [this Zulip thread](https://rust-lang.zulipchat.com/#narrow/stream/260443-project-const-generics/topic/inline.20consts.20typeck).
cc `````@spastorino````` `````@lcnr`````
r? `````@nikomatsakis`````
`````@rustbot````` label A-inference F-inline_const T-compiler
Unify titles in rustdoc book doc attributes chapter
As discussed in https://github.com/rust-lang/rust/pull/90339.
I wasn't able to find out where the link to the titles was used so let's see if the CI fails. :)
r? ``@camelid``
Rollup of 7 pull requests
Successful merges:
- #89298 (Issue 89193 - Fix ICE when using `usize` and `isize` with SIMD gathers )
- #89461 (Add `deref_into_dyn_supertrait` lint.)
- #89477 (Move items related to computing diffs to a separate file)
- #89559 (RustWrapper: adapt for LLVM API change)
- #89585 (Emit item no type error even if type inference fails)
- #89596 (Make cfg imply doc(cfg))
- #89615 (Add InferCtxt::with_opaque_type_inference to get_body_with_borrowck_facts)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Make cfg imply doc(cfg)
This is a reopening of #79341, rebased and modified a bit (we made a lot of refactoring in rustdoc's types so they needed to be reflected in this PR as well):
* `hidden_cfg` is now in the `Cache` instead of `DocContext` because `cfg` information isn't stored anymore on `clean::Attributes` type but instead computed on-demand, so we need this information in later parts of rustdoc.
* I removed the `bool_to_options` feature (which makes the code a bit simpler to read for `SingleExt` trait implementation.
* I updated the version for the feature.
There is only one thing I couldn't figure out: [this comment](https://github.com/rust-lang/rust/pull/79341#discussion_r561855624)
> I think I'll likely scrap the whole `SingleExt` extension trait as the diagnostics for 0 and >1 items should be different.
How/why should they differ?
EDIT: this part has been solved, the current code was fine, just needed a little simplification.
cc `@Nemo157`
r? `@jyn514`
Original PR description:
This is only active when the `doc_cfg` feature is active.
The implicit cfg can be overridden via `#[doc(cfg(...))]`, so e.g. to hide a `#[cfg]` you can use something like:
```rust
#[cfg(unix)]
#[doc(cfg(all()))]
pub struct Unix;
```
By adding `#![doc(cfg_hide(foobar))]` to the crate attributes the cfg `#[cfg(foobar)]` (and _only_ that _exact_ cfg) will not be implicitly treated as a `doc(cfg)` to render a message in the documentation.
Introduce `tcx.get_diagnostic_name`
Introduces a "reverse lookup" for diagnostic items. This is mainly intended for `@rust-lang/clippy` which often does a long series of `is_diagnostic_item` calls for the same `DefId`.
r? `@oli-obk`
perf: only check for `rustc_trivial_field_reads` attribute on traits, not items, impls, etc.
The checks that are removed in this PR (originally added in #85200) caused a small perf regression: https://github.com/rust-lang/rust/pull/88824#issuecomment-932664761
Since the attribute is currently only applied to traits, I don't think it's worth keeping the additional checks for now.
If/when we decide to apply the attribute somewhere else, we can (partially) revert this and reevaluate the perf impact.
r? `@nikomatsakis` cc `@FabianWolff`
The checks removed here caused a small perf regression:
https://github.com/rust-lang/rust/pull/88824#issuecomment-932664761
Since the attribute is currently only applied to traits, I don't think
it's worth keeping the additional checks for now.
If/when we decide to apply the attribute somewhere else, we can
(partially) revert this and evaluate if the perf impact is acceptable.
Implement `#[must_not_suspend]`
implements #83310
Some notes on the impl:
1. The code that searches for the attribute on the ADT is basically copied from the `must_use` lint. It's not shared, as the logic did diverge
2. The RFC does specify that the attribute can be placed on fn's (and fn-like objects), like `must_use`. I think this is a direct copy from the `must_use` reference definition. This implementation does NOT support this, as I felt that ADT's (+ `impl Trait` + `dyn Trait`) cover the usecase's people actually want on the RFC, and adding an imp for the fn call case would be significantly harder. The `must_use` impl can do a single check at fn call stmt time, but `must_not_suspend` would need to answer the question: "for some value X with type T, find any fn call that COULD have produced this value". That would require significant changes to `generator_interior.rs`, and I would need mentorship on that. `@eholk` and I are discussing it.
3. `@estebank` do you know a way I can make the user-provided `reason` note pop out? right now it seems quite hidden
Also, I am not sure if we should run perf on this
r? `@nikomatsakis`
Migrate in-tree crates to 2021
This replaces #89075 (cherry picking some of the commits from there), and closes#88637 and fixes#89074.
It excludes a migration of the library crates for now (see tidy diff) because we have some pending bugs around macro spans to fix there.
I instrumented bootstrap during the migration to make sure all crates moved from 2018 to 2021 had the compatibility warnings applied first.
Originally, the intent was to support cargo fix --edition within bootstrap, but this proved fairly difficult to pull off. We'd need to architect the check functionality to support running cargo check and cargo fix within the same x.py invocation, and only resetting sysroots on check. Further, it was found that cargo fix doesn't behave too well with "not quite workspaces", such as Clippy which has several crates. Bootstrap runs with --manifest-path ... for all the tools, and this makes cargo fix only attempt migration for that crate. We can't use e.g. --workspace due to needing to maintain sysroots for different phases of compilation appropriately.
It is recommended to skip the mass migration of Cargo.toml's to 2021 for review purposes; you can also use `git diff d6cd2c6c87 -I'^edition = .20...$'` to ignore the edition = 2018/21 lines in the diff.
Gather module items after lowering.
This avoids having a non-local analysis inside lowering.
By implementing `hir_module_items` using a visitor, we make sure that iterations and visitors are consistent.
If #![feature] is used outside the nightly channel for only lib
features, the check will be delayed to the stability pass after
parsing. This is done so that appropriate help messages can be shown if
the #![feature] has been used needlessly
Avoid invoking the hir_crate query to traverse the HIR
Walking the HIR tree is done using the `hir_crate` query. However, this is unnecessary, since `hir_owner(CRATE_DEF_ID)` provides the same information. Since depending on `hir_crate` forces dependents to always be executed, this leads to unnecessary work.
By splitting HIR and attributes visits, we can avoid an edge to `hir_crate` when trying to visit the HIR tree.
Provide `layout_of` automatically (given tcx + param_env + error handling).
After #88337, there's no longer any uses of `LayoutOf` within `rustc_target` itself, so I realized I could move the trait to `rustc_middle::ty::layout` and redesign it a bit.
This is similar to #88338 (and supersedes it), but at no ergonomic loss, since there's no funky `C: LayoutOf<Ty = Ty>` -> `Ty: TyAbiInterface<C>` generic `impl` chain, and each `LayoutOf` still corresponds to one `impl` (of `LayoutOfHelpers`) for the specific context.
After this PR, this is what's needed to get `trait LayoutOf` (with the `layout_of` method) implemented on some context type:
* `TyCtxt`, via `HasTyCtxt`
* `ParamEnv`, via `HasParamEnv`
* a way to transform `LayoutError`s into the desired error type
* an error type of `!` can be paired with having `cx.layout_of(...)` return `TyAndLayout` *without* `Result<...>` around it, such as used by codegen
* this is done through a new `LayoutOfHelpers` trait (and so is specifying the type of `cx.layout_of(...)`)
When going through this path (and not bypassing it with a manual `impl` of `LayoutOf`), the end result is that only the error case can be customized, the query itself and the success paths are guaranteed to be uniform.
(**EDIT**: just noticed that because of the supertrait relationship, you cannot actually implement `LayoutOf` yourself, the blanket `impl` fully covers all possible context types that could ever implement it)
Part of the motivation for this shape of API is that I've been working on querifying `FnAbi::of_*`, and what I want/need to introduce for that looks a lot like the setup in this PR - in particular, it's harder to express the `FnAbi` methods in `rustc_target`, since they're much more tied to `rustc` concepts.
r? `@nagisa` cc `@oli-obk` `@bjorn3`
MIR lowering for `if let` expressions is now more complicated now that
`if let` exists in HIR. This PR adds a scope for the variables bound in
an `if let` expression and then uses an approach similar to how we
handle loops to ensure that we reliably drop the correct variables.
Emit specific warning to clarify that `#[no_mangle]` should not be applied on foreign statics or functions
Foreign statics and foreign functions should not have `#[no_mangle]` applied, as it does nothing to the name and has some extra hidden behavior that is normally unwanted. There was an existing warning for this, but it says the attribute is only allowed on "statics or functions", which to the user can be confusing.
This PR adds a specific version of the unused `#[no_mangle]` warning that explains that the target is a *foreign* static or function and that they do not need the attribute.
Fixes#78989
rustc_target: `TyAndLayout::field` should never error.
This refactor (making `TyAndLayout::field` return `TyAndLayout` without any `Result` around it) is based on a simple observation, regarding `TyAndLayout::field`:
If `cx.layout_of(ty)` succeeds (for some `cx` and `ty`), then `.field(cx, i)` on the resulting `TyAndLayout` should *always* succeed in computing `cx.layout_of(field_ty)` (where `field_ty` is the type of the `i`th field of `ty`).
The reason for this is that no matter which field is chosen, `cx.layout_of(field_ty)` *will have already been computed*, as part of computing `cx.layout_of(ty)`, as we cannot determine the layout of *any* type without considering the layouts of *all* of its fields.
And so it should be fine to turn any errors into ICEs, since they likely indicate a `cx` mismatch, or some other edge case that is due to a compiler bug (as opposed to ever being an user-facing error).
<hr/>
Each commit should probably be reviewed separately, though note that there's some `where` clauses (in `rustc_target::abi::call::*`) that change in most commits.
cc `@nagisa` `@oli-obk`
Improve detection of generics on lang items
Adds detection for the required generics for all lang items. Many lang items require an exact or minimum amount of generic arguments and if they don't exist, the compiler will ICE. This does not add any additional validation about bounds on generics or any other lang item restrictions.
Fixes one of the ICEs in #87573
cc `@FabianWolff`
Improve liveness analysis for generators
Liveness analysis for generators assumes that execution always continues
normally after a yield point, not accounting for the fact that generator
could be dropped before completion.
If generators captures any variables by reference, those variables could
be used within a generator, or when the generator completes, but also
after each yield point in the case the generator is dropped.
Account for the case when generator is dropped after yielding, but
before running to the completion. This effectively considers all
variables captured by reference to be used after a yield point.
Fixes#84292.
Liveness analysis for generators assumes that execution always continues
normally after a yield point, not accounting for the fact that generator
could be dropped before completion.
If generators captures any variables by reference, those variables could
be used within a generator, or when the generator completes, but also
after each yield point in the case the generator is dropped.
Account for the case when generator is dropped after yielding, but
before running to the completion. This effectively considers all
variables captured by reference to be used after a yield point.
Remove `Session.used_attrs` and move logic to `CheckAttrVisitor`
Instead of updating global state to mark attributes as used,
we now explicitly emit a warning when an attribute is used in
an unsupported position. As a side effect, we are to emit more
detailed warning messages (instead of just a generic "unused" message).
`Session.check_name` is removed, since its only purpose was to mark
the attribute as used. All of the callers are modified to use
`Attribute.has_name`
Additionally, `AttributeType::AssumedUsed` is removed - an 'assumed
used' attribute is implemented by simply not performing any checks
in `CheckAttrVisitor` for a particular attribute.
We no longer emit unused attribute warnings for the `#[rustc_dummy]`
attribute - it's an internal attribute used for tests, so it doesn't
mark sense to treat it as 'unused'.
With this commit, a large source of global untracked state is removed.
Warn about unreachable code following an expression with an uninhabited type
This pull request fixes#85071. The issue is that liveness analysis currently is "smarter" than reachability analysis when it comes to detecting uninhabited types: Unreachable code is detected during type checking, where full type information is not yet available. Therefore, the check for type inhabitedness is quite crude:
fc81ad22c4/compiler/rustc_typeck/src/check/expr.rs (L202-L205)
i.e. it only checks for `!`, but not other, non-trivially uninhabited types, such as empty enums, structs containing an uninhabited type, etc. By contrast, liveness analysis, which runs after type checking, can benefit from the more sophisticated `tcx.is_ty_uninhabited_from()`:
fc81ad22c4/compiler/rustc_passes/src/liveness.rs (L981)fc81ad22c4/compiler/rustc_passes/src/liveness.rs (L996)
This can lead to confusing warnings when a variable is reported as unused, but the use of the variable is not reported as unreachable. For instance:
```rust
enum Foo {}
fn f() -> Foo {todo!()}
fn main() {
let x = f();
let _ = x;
}
```
currently leads to
```
warning: unused variable: `x`
--> t1.rs:5:9
|
5 | let x = f();
| ^ help: if this is intentional, prefix it with an underscore: `_x`
|
= note: `#[warn(unused_variables)]` on by default
warning: 1 warning emitted
```
which is confusing, because `x` _appears_ to be used in line 6. With my changes, I get:
```
warning: unreachable expression
--> t1.rs:6:13
|
5 | let x = f();
| --- any code following this expression is unreachable
6 | let _ = x;
| ^ unreachable expression
|
= note: `#[warn(unreachable_code)]` on by default
note: this expression has type `Foo`, which is uninhabited
--> t1.rs:5:13
|
5 | let x = f();
| ^^^
warning: unused variable: `x`
--> t1.rs:5:9
|
5 | let x = f();
| ^ help: if this is intentional, prefix it with an underscore: `_x`
|
= note: `#[warn(unused_variables)]` on by default
warning: 2 warnings emitted
```
My implementation is slightly inelegant because unreachable code warnings can now be issued in two different places (during type checking and during liveness analysis), but I think it is the solution with the least amount of unnecessary code duplication, given that the new warning integrates nicely with liveness analysis, where unreachable code is already implicitly detected for the purpose of finding unused variables.
Instead of updating global state to mark attributes as used,
we now explicitly emit a warning when an attribute is used in
an unsupported position. As a side effect, we are to emit more
detailed warning messages (instead of just a generic "unused" message).
`Session.check_name` is removed, since its only purpose was to mark
the attribute as used. All of the callers are modified to use
`Attribute.has_name`
Additionally, `AttributeType::AssumedUsed` is removed - an 'assumed
used' attribute is implemented by simply not performing any checks
in `CheckAttrVisitor` for a particular attribute.
We no longer emit unused attribute warnings for the `#[rustc_dummy]`
attribute - it's an internal attribute used for tests, so it doesn't
mark sense to treat it as 'unused'.
With this commit, a large source of global untracked state is removed.
Add future-incompat lint for `doc(primitive)`
## What is `doc(primitive)`?
`doc(primitive)` is an attribute recognized by rustdoc which adds documentation for the built-in primitive types, such as `usize` and `()`. It has been stable since Rust 1.0.
## Why change anything?
`doc(primitive)` is useless for anyone outside the standard library. Since rustdoc provides no way to combine the documentation on two different primitive items, you can only replace the docs, and since the standard library already provides extensive documentation there is no reason to do so.
While fixing rustdoc's handling of primitive items (https://github.com/rust-lang/rust/pull/87073) I discovered that even rustdoc's existing handling of primitive items was broken if you had more than two crates using it (it would pick randomly between them). That meant both:
- Keeping rustdoc's existing treatment was nigh-impossible, because it was random.
- doc(primitive) was even more useless than it would otherwise be.
The only use-case for this outside the standard library is for no-std libraries which want to link to primitives (https://github.com/rust-lang/rust/issues/73423) which is being fixed in https://github.com/rust-lang/rust/pull/87073.
https://github.com/rust-lang/rust/pull/87073 makes various breaking changes to `doc(primitive)` (breaking in the sense that they change the semantics, not in that they cause code to fail to compile). It's not possible to avoid these and still fix rustdoc's issues.
## What can we do about it?
As shown by the crater run (https://github.com/rust-lang/rust/pull/87050#issuecomment-886166706), no one is actually using doc(primitive), there wasn't a single true regression in the whole run. We can either:
1. Feature gate it completely, breaking anyone who crater missed. They can easily fix the breakage just by removing the attribute.
2. add it to the `INVALID_DOC_ATTRIBUTES` future-incompat lint, and at the same time make it a no-op unless you add a feature gate. That would mean rustdoc has to look at the features of dependent crates, because it needs to know where primitives are defined in order to link to them.
3. add it to `INVALID_DOC_ATTRIBUTES`, but still use it to determine where primitives come from
4. do nothing; the behavior will silently change in https://github.com/rust-lang/rust/pull/87073.
My preference is for 2, but I would also be happy with 1 or 3. I don't think we should silently change the behavior.
This PR currently implements 3.
Move naked function ABI check to its own lint
This check was previously categorized under the lint named
`UNSUPPORTED_NAKED_FUNCTIONS`. That lint is future incompatible and will
be turned into an error in a future release. However, as defined in the
Constrained Naked Functions RFC, this check should only be a warning.
This is because it is possible for a naked function to be implemented in
such a way that it does not break even the undefined ABI. For example, a
`jmp` to a `const`.
Therefore, this patch defines a new lint named
`UNDEFINED_NAKED_FUNCTION_ABI` which contains just this single check.
Unlike `UNSUPPORTED_NAKED_FUNCTIONS`, `UNDEFINED_NAKED_FUNCTION_ABI`
will not be converted to an error in the future.
rust-lang/rfcs#2774rust-lang/rfcs#2972
In most calling conventions, accessing function parameters may require
stack access. However, naked functions have no assembly prelude to set
up stack access. This is why naked functions may only contain a single
`asm!()` block. All parameter access is done inside the `asm!()` block,
so we cannot validate the liveness of the input parameters. Therefore,
we should disable the lint for naked functions.
rust-lang/rfcs#2774rust-lang/rfcs#2972
This check was previously categorized under the lint named
`UNSUPPORTED_NAKED_FUNCTIONS`. That lint is future incompatible and will
be turned into an error in a future release. However, as defined in the
Constrained Naked Functions RFC, this check should only be a warning.
This is because it is possible for a naked function to be implemented in
such a way that it does not break even the undefined ABI. For example, a
`jmp` to a `const`.
Therefore, this patch defines a new lint named
`UNDEFINED_NAKED_FUNCTION_ABI` which contains just this single check.
Unlike `UNSUPPORTED_NAKED_FUNCTIONS`, `UNDEFINED_NAKED_FUNCTION_ABI`
will not be converted to an error in the future.
rust-lang/rfcs#2774rust-lang/rfcs#2972
rustc: Replace `HirId`s with `LocalDefId`s in `AccessLevels` tables
and passes using those tables - primarily privacy checking, stability checking and dead code checking.
All these passes work with definitions rather than with arbitrary HIR nodes.
r? `@cjgillot`
cc `@lambinoo` (#87487)
rfc3052 followup: Remove authors field from Cargo manifests
Since RFC 3052 soft deprecated the authors field, hiding it from
crates.io, docs.rs, and making Cargo not add it by default, and it is
not generally up to date/useful information for contributors, we may as well
remove it from crates in this repo.
Since RFC 3052 soft deprecated the authors field anyway, hiding it from
crates.io, docs.rs, and making Cargo not add it by default, and it is
not generally up to date/useful information, we should remove it from
crates in this repo.
Checking that function is const if marked with rustc_const_unstable
Fixes#69630
This one is still missing tests to check the behavior but I checked by hand and it seemed to work.
I would not mind some direction for writing those unit tests!
Use diagnostic items instead of lang items for rfc2229 migrations
This PR removes the `Send`, `UnwindSafe` and `RefUnwindSafe` lang items introduced in https://github.com/rust-lang/rust/pull/84730, and uses diagnostic items instead to check for `Send`, `UnwindSafe` and `RefUnwindSafe` traits for RFC2229 migrations.
r? ```@nikomatsakis```
remove trailing newline
fix: test with attribute but missing const
Update compiler/rustc_passes/src/stability.rs
Co-authored-by: Léo Lanteri Thauvin <leseulartichaut@gmail.com>
Add test for extern functions
fix: using span_help instead of span_suggestion
add test for some ABIs + fmt fix
Update compiler/rustc_passes/src/stability.rs
Co-authored-by: Léo Lanteri Thauvin <leseulartichaut@gmail.com>
Refractor and add test for `impl const`
Add test to make sure no output + cleanup condition
-----------------------------
remove stdcall test, failing CI test
C abi is already tested in this, so it is not that useful to test another one.
The tested code is blind to which specific ABI for now, as long as it's not an intrinsic one
deny using default function in impl const Trait
Fixes#79450.
I don't know if my implementation is correct:
- The check is in `rustc_passes::check_const`, should I put it somewhere else instead?
- Is my approach (to checking the impl) optimal? It works for the current tests, but it might have some issues or there might be a better way of doing this.
Fix ICE when `main` is declared in an `extern` block
Changes in #84401 to implement `imported_main` changed how the crate entry point is found, and a declared `main` in an `extern` block was detected erroneously. This was causing the ICE described in #86110.
This PR adds a check for this case and emits an error instead. Previously a `main` declaration in an `extern` block was not detected as an entry point at all, so emitting an error shouldn't break anything that worked previously. In 1.52.1 stable this is demonstrated, with a `` `main` function not found`` error.
Fixes#86110
Remove unused dependencies from compiler crates
Various compiler crates have dependencies that they don't appear to use. I used some scripting to detect such dependencies, filtered them based on some manual review, and removed those that do indeed appear to be entirely unused.
Remove unused feature gates
The first commit removes a usage of a feature gate, but I don't expect it to be controversial as the feature gate was only used to workaround a limitation of rust in the past. (closures never being `Clone`)
The second commit uses `#[allow_internal_unstable]` to avoid leaking the `trusted_step` feature gate usage from inside the index newtype macro. It didn't work for the `min_specialization` feature gate though.
The third commit removes (almost) all feature gates from the compiler that weren't used anyway.
Report an error if a lang item has the wrong number of generic arguments
This pull request fixes#83893. The issue is that the lang item code currently checks whether the lang item has the correct item kind (e.g. a `#[lang="add"]` has to be a trait), but not whether the item has the correct number of generic arguments.
This can lead to an "index out of bounds" ICE when the compiler tries to create more substitutions than there are suitable types available (if the lang item was declared with too many generic arguments).
For instance, here is a reduced ("reduced" in the sense that it does not trigger additional errors) version of the example given in #83893:
```rust
#![feature(lang_items,no_core)]
#![no_core]
#![crate_type="lib"]
#[lang = "sized"]
trait MySized {}
#[lang = "add"]
trait MyAdd<'a, T> {}
fn ice() {
let r = 5;
let a = 6;
r + a
}
```
On current nightly, this immediately causes an ICE without any warnings or errors emitted. With the changes in this PR, however, I get no ICE and two errors:
```
error[E0718]: `add` language item must be applied to a trait with 1 generic argument
--> pr-ex.rs:8:1
|
8 | #[lang = "add"]
| ^^^^^^^^^^^^^^^
9 | trait MyAdd<'a, T> {}
| ------- this trait has 2 generic arguments, not 1
error[E0369]: cannot add `{integer}` to `{integer}`
--> pr-ex.rs:14:7
|
14 | r + a
| - ^ - {integer}
| |
| {integer}
error: aborting due to 2 previous errors
Some errors have detailed explanations: E0369, E0718.
For more information about an error, try `rustc --explain E0369`.
```
Remove CrateNum parameter for queries that only work on local crate
The pervasive `CrateNum` parameter is a remnant of the multi-crate rustc idea.
Using `()` as query key in those cases avoids having to worry about the validity of the query key.
Remove support for floating-point constants in asm!
Floating-point constants aren't very useful anyways and this simplifies
the code since the type check can now be done in typeck.
cc `@rust-lang/wg-inline-asm`
r? `@nagisa`
Reachable statics have reachable initializers
Static initializer can read other statics. Initializers are evaluated at
compile time, and so their content could become inlined into another
crate. Ensure that initializers of reachable statics are also reachable.
Previously, when an item incorrectly considered to be unreachable was
reached from another crate an attempt would be made to codegen it. The
attempt could fail with an ICE (in the case MIR wasn't available to do
so) in some circumstances the attempt could also succeed resulting in
a local codegen of non-local items, including static ones.
Fixes#84455.
Fix `--remap-path-prefix` not correctly remapping `rust-src` component paths and unify handling of path mapping with virtualized paths
This PR fixes#73167 ("Binaries end up containing path to the rust-src component despite `--remap-path-prefix`") by preventing real local filesystem paths from reaching compilation output if the path is supposed to be remapped.
`RealFileName::Named` introduced in #72767 is now renamed as `LocalPath`, because this variant wraps a (most likely) valid local filesystem path.
`RealFileName::Devirtualized` is renamed as `Remapped` to be used for remapped path from a real path via `--remap-path-prefix` argument, as well as real path inferred from a virtualized (during compiler bootstrapping) `/rustc/...` path. The `local_path` field is now an `Option<PathBuf>`, as it will be set to `None` before serialisation, so it never reaches any build output. Attempting to serialise a non-`None` `local_path` will cause an assertion faliure.
When a path is remapped, a `RealFileName::Remapped` variant is created. The original path is preserved in `local_path` field and the remapped path is saved in `virtual_name` field. Previously, the `local_path` is directly modified which goes against its purpose of "suitable for reading from the file system on the local host".
`rustc_span::SourceFile`'s fields `unmapped_path` (introduced by #44940) and `name_was_remapped` (introduced by #41508 when `--remap-path-prefix` feature originally added) are removed, as these two pieces of information can be inferred from the `name` field: if it's anything other than a `FileName::Real(_)`, or if it is a `FileName::Real(RealFileName::LocalPath(_))`, then clearly `name_was_remapped` would've been false and `unmapped_path` would've been `None`. If it is a `FileName::Real(RealFileName::Remapped{local_path, virtual_name})`, then `name_was_remapped` would've been true and `unmapped_path` would've been `Some(local_path)`.
cc `@eddyb` who implemented `/rustc/...` path devirtualisation
Fix typo in report_unsed_assign
The function was called `report_unsed_assign`, which I assume is a typo, considering the rest of the file.
This replaces `report_unsed_assign` with `report_unused_assign`.
Static initializer can read other statics. Initializers are evaluated at
compile time, and so their content could become inlined into another
crate. Ensure that initializers of reachable statics are also reachable.
Previously, when an item incorrectly considered to be unreachable was
reached from another crate an attempt would be made to codegen it. The
attempt could fail with an ICE (in the case MIR wasn't available to do
so) in some circumstances the attempt could also succeed resulting in
a local codegen of non-local items, including static ones.
further split up const_fn feature flag
This continues the work on splitting up `const_fn` into separate feature flags:
* `const_fn_trait_bound` for `const fn` with trait bounds
* `const_fn_unsize` for unsizing coercions in `const fn` (looks like only `dyn` unsizing is still guarded here)
I don't know if there are even any things left that `const_fn` guards... at least libcore and liballoc do not need it any more.
`@oli-obk` are you currently able to do reviews?
Match against attribute name when validating attributes
Extract attribute name once and match it against symbols that are being
validated, instead of using `Session::check_name` for each symbol
individually.
Assume that all validated attributes are used, instead of marking them
as such, since the attribute check should be exhaustive.
Extract attribute name once and match it against symbols that are being
validated, instead of using `Session::check_name` for each symbol
individually.
Assume that all validated attributes are used, instead of marking them
as such, since the attribute check should be exhaustive.
Use AnonConst for asm! constants
This replaces the old system which used explicit promotion. See #83169 for more background.
The syntax for `const` operands is still the same as before: `const <expr>`.
Fixes#83169
Because the implementation is heavily based on inline consts, we suffer from the same issues:
- We lose the ability to use expressions derived from generics. See the deleted tests in `src/test/ui/asm/const.rs`.
- We are hitting the same ICEs as inline consts, for example #78174. It is unlikely that we will be able to stabilize this before inline consts are stabilized.
Rename `#[doc(spotlight)]` to `#[doc(notable_trait)]`
Fixes#80936.
"spotlight" is not a very specific or self-explaining name.
Additionally, the dialog that it triggers is called "Notable traits".
So, "notable trait" is a better name.
* Rename `#[doc(spotlight)]` to `#[doc(notable_trait)]`
* Rename `#![feature(doc_spotlight)]` to `#![feature(doc_notable_trait)]`
* Update documentation
* Improve documentation
r? `@Manishearth`
GenericParam does not need to be a HIR owner.
The special case is not required.
Universal impl traits design to regular generic parameters, and their content is owned by the enclosing item.
Existential (and opaque) impl traits generate their own enclosing item, and are collected through it.
implement `feature(const_generics_defaults)`
Implements const generics defaults `struct Example<const N: usize=3>`, as well as a query for getting the default of a given const-parameter's def id. There are some remaining FIXME's but they were specified as not blocking for merging this PR. This also puts the defaults behind the unstable feature gate `#![feature(const_generics_defaults)]`.
~~This currently creates a field which is always false on `GenericParamDefKind` for future use when
consts are permitted to have defaults. I'm not sure if this is exactly what is best for adding default parameters, but I mimicked the style of type defaults, so hopefully this is ok.~~
r? `@lcnr`
Only enable assert_dep_graph when query-dep-graph is enabled.
This is a debugging option. The only effect should be on rustc tests.
r? ``@michaelwoerister``
Replace closures_captures and upvar_capture with closure_min_captures
Removed all uses of closures_captures and upvar_capture and refactored code to work with closure_min_captures. This also involved removing functions that were no longer needed like the bridge.
Closes https://github.com/rust-lang/project-rfc-2229/issues/18
r? `@nikomatsakis`
rustdoc: allow list syntax for #[doc(alias)] attributes
Fixes https://github.com/rust-lang/rust/issues/81205.
It now allows to have:
```rust
#[doc(alias = "x")]
// and:
#[doc(alias("y", "z"))]
```
cc ``@jplatte``
r? ``@jyn514``
make changes to liveness to use closure_min_captures
use different span
borrow check uses new structures
rename to CapturedPlace
stop using upvar_capture in regionck
remove the bridge
cleanup from rebase + remove the upvar_capture reference from mutability_errors.rs
remove line from livenes test
make our unused var checking more consistent
update tests
adding more warnings to the tests
move is_ancestor_or_same_capture to rustc_middle/ty
update names to reflect the closures
add FIXME
check that all captures are immutable borrows before returning
add surrounding if statement like the original
move var out of the loop and rename
Co-authored-by: Logan Mosier <logmosier@gmail.com>
Co-authored-by: Roxane Fruytier <roxane.fruytier@hotmail.com>
StructField -> FieldDef ("field definition")
Field -> ExprField ("expression field", not "field expression")
FieldPat -> PatField ("pattern field", not "field pattern")
Also rename visiting and other methods working on them.
"spotlight" is not a very specific or self-explaining name.
Additionally, the dialog that it triggers is called "Notable traits".
So, "notable trait" is a better name.
* Rename `#[doc(spotlight)]` to `#[doc(notable_trait)]`
* Rename `#![feature(doc_spotlight)]` to `#![feature(doc_notable_trait)]`
* Update documentation
* Improve documentation
Find more invalid doc attributes
- Lint on `#[doc(123)]`, `#[doc("hello")]`, etc.
- Lint every attribute; e.g., will now report two warnings for `#[doc(foo, bar)]`
- Add hyphen to "crate level"
- Display paths like `#[doc(foo::bar)]` correctly instead of as an empty string
This change makes it easier to follow the control flow.
I also moved the end-of-line comments attached to some symbols to before
the symbol listing. This allows rustfmt to format the code; otherwise no
formatting occurs (see rust-lang/rustfmt#4750).