The path we pass to rustc will be visible in panic messages and
backtraces: they will be user visible!
Avoid junk in these paths by passing relative paths to rustc.
For most advanced users, `libcore` or `libstd` in the path will be
a clue to the location -- inside our code, not theirs.
Store both the relative path to the source as well as the absolute.
Use the relative path where it matters, compiling the main crates,
instead of changing all of the build process to cope with relative
paths.
Example output after this patch:
```
$ ./testunwrap
thread '<main>' panicked at 'called `Option::unwrap()` on a `None` value', ../src/libcore/option.rs:362
$ RUST_BACKTRACE=1 ./testunwrap
thread '<main>' panicked at 'called `Option::unwrap()` on a `None` value', ../src/libcore/option.rs:362
stack backtrace:
1: 0x7ff59c1e9956 - sys::backtrace::write::h67a542fd2b201576des
at ../src/libstd/sys/unix/backtrace.rs:158
2: 0x7ff59c1ed5b6 - panicking::on_panic::h3d21c41cdd5c12d41Xw
at ../src/libstd/panicking.rs:58
3: 0x7ff59c1e7b6e - rt::unwind::begin_unwind_inner::h9f3a5440cebb8baeLDw
at ../src/libstd/rt/unwind/mod.rs:273
4: 0x7ff59c1e7f84 - rt::unwind::begin_unwind_fmt::h4fe8a903e0c296b0RCw
at ../src/libstd/rt/unwind/mod.rs:212
5: 0x7ff59c1eced7 - rust_begin_unwind
6: 0x7ff59c22c11a - panicking::panic_fmt::h00b0cd49c98a9220i5B
at ../src/libcore/panicking.rs:64
7: 0x7ff59c22b9e0 - panicking::panic::hf549420c0ee03339P3B
at ../src/libcore/panicking.rs:45
8: 0x7ff59c1e621d - option::Option<T>::unwrap::h501963526474862829
9: 0x7ff59c1e61b1 - main::hb5c91ce92347d1e6eaa
10: 0x7ff59c1f1c18 - rust_try_inner
11: 0x7ff59c1f1c05 - rust_try
12: 0x7ff59c1ef374 - rt::lang_start::h7e51e19c6677cffe5Sw
at ../src/libstd/rt/unwind/mod.rs:147
at ../src/libstd/rt/unwind/mod.rs:130
at ../src/libstd/rt/mod.rs:128
13: 0x7ff59c1e628e - main
14: 0x7ff59b3f6b44 - __libc_start_main
15: 0x7ff59c1e6078 - <unknown>
16: 0x0 - <unknown>
```
This is a revert of PR #26008 which caused the unintended breakage reported in #26096. We may want to add these implementations in the long run, but for now this revert allows us to take some more time to evaluate the impact of such a change (e.g. run it through crater).
Closes#26096
This commit stabilizes the following APIs, slating them all to be cherry-picked
into the 1.1 release.
* fs::FileType (and transitively the derived trait implementations)
* fs::Metadata::file_type
* fs::FileType::is_dir
* fs::FileType::is_file
* fs::FileType::is_symlink
* fs::DirEntry::metadata
* fs::DirEntry::file_type
* fs::DirEntry::file_name
* fs::set_permissions
* fs::symlink_metadata
* os::raw::{self, *}
* os::{android, bitrig, linux, ...}::raw::{self, *}
* os::{android, bitrig, linux, ...}::fs::MetadataExt
* os::{android, bitrig, linux, ...}::fs::MetadataExt::as_raw_stat
* os::unix::fs::PermissionsExt
* os::unix::fs::PermissionsExt::mode
* os::unix::fs::PermissionsExt::set_mode
* os::unix::fs::PermissionsExt::from_mode
* os::unix::fs::OpenOptionsExt
* os::unix::fs::OpenOptionsExt::mode
* os::unix::fs::DirEntryExt
* os::unix::fs::DirEntryExt::ino
* os::windows::fs::MetadataExt
* os::windows::fs::MetadataExt::file_attributes
* os::windows::fs::MetadataExt::creation_time
* os::windows::fs::MetadataExt::last_access_time
* os::windows::fs::MetadataExt::last_write_time
* os::windows::fs::MetadataExt::file_size
The `os::unix::fs::Metadata` structure was also removed entirely, moving all of
its associated methods into the `os::unix::fs::MetadataExt` trait instead. The
methods are all marked as `#[stable]` still.
As some minor cleanup, some deprecated and unstable fs apis were also removed:
* File::path
* Metadata::accessed
* Metadata::modified
Features that were explicitly left unstable include:
* fs::WalkDir - the semantics of this were not considered in the recent fs
expansion RFC.
* fs::DirBuilder - it's still not 100% clear if the naming is right here and if
the set of functionality exposed is appropriate.
* fs::canonicalize - the implementation on Windows here is specifically in
question as it always returns a verbatim path. Additionally the Unix
implementation is susceptible to buffer overflows on long paths unfortunately.
* fs::PathExt - as this is just a convenience trait, it is not stabilized at
this time.
* fs::set_file_times - this funciton is still waiting on a time abstraction.
Most of these are old, but some specific messages for specific tests:
* trait-contravariant-self.rs: failed due to a soundess hole:
05e3248a79
* process-detatch: 15966c3c1f
says "this test is being ignored until signals are implemented" That's
not happening for a long time, and when it is, we'll write tests for
it.
* deep-vector{,2}.rs: "too big for our poor macro infrastructure", and has
been ignored over a year.
* borrowck-nested-calls.rs's FIXME #6268 was closed in favor of
rust-lang/rfcs#811
* issue-15167.rs works properly now
* issue-9737.rs works properly now
* match-var-hygiene.rs works properly now
Addresses a chunk of #3965
This test has an interesting history, because of fail -> panic. It was
originally called extern-fail.rs:
https://github.com/rust-lang/rust/commits/master/src/test/run-fail/extern-fail.rs
It lived for a while, but was disabled in August 2013:
ce95b01014
As you can see, that failure was not specific to this test, however,
this code does stuff with the runtime, which was removed. Given that
it hasn't even been able to compile in a long time, we should just
remove it.
Explain the --bin flag in terms of the difference
between shipping binary and library code
I'm not sure if my explanation is even quite correct, but as a newbie coming from Ruby, this is my best guess. (In Rubyland, libraries always ship with the source code because there's no other form you can ship. :) )
Suggesting this because I was confused by what is now visible from the Travis CI / buildbot split.
Found the hint in bors comments on d911936d
Couldn't find anything on https://internals.rust-lang.org/
Right now the distribution tarball for MSVC only includes the *.dll files for
the supporting libraries, but not the corresponding *.lib files which allow
actually linking to the dll. This means that the current MSVC nightlies cannot
produce dynamically linked binaries as the *.lib files are not available to link
against.
This commit modifies the `LIB_GLOB` used to copy the files around to include the
`lib` variant of the `dll`.
`driver::build_output_filenames` calls `file_stem` on a PathBuf obtained from the output file compiler flag. It's possible to pass the empty string to this compiler flag. When file_stem is called on an empty Path, it returns None, which is unwrapped and the compiler panics.
This change modifies the `unwrap` to an `unwrap_or` so that the empty string is passed through the compilation pipeline until it reaches `trans:🔙:write_output_file`, which will emit an appropriate error.
Instead of panicking, the error that is emitted now is:
```
$ rustc -o "" thing.rs
error: could not write output to : No such file or directory
```
The `:` is a little strange, but it /is/ reporting the filename (the empty string) correctly, I suppose. Both gcc and clang hand the output file to ld, which emits a similar error message when faced with the empty string as an output file:
```
$ clang -o "" thing.c
ld: can't open output file for writing: , errno=2 for architecture x86_64
```
This PR also adds a test for this, in `run-make`. This fixes issue #26092.
Right now the distribution tarball for MSVC only includes the *.dll files for
the supporting libraries, but not the corresponding *.lib files which allow
actually linking to the dll. This means that the current MSVC nightlies cannot
produce dynamically linked binaries as the *.lib files are not available to link
against.
This commit modifies the `LIB_GLOB` used to copy the files around to include the
`lib` variant of the `dll`.