It's only used in one place, and there we clone and then make a bunch of
modifications. It's clearer if we duplicate more explicitly, and there's
a symmetry now between `sequence()` and `empty_sequence()`.
`parse_tt` needs a way to get from within submatchers make to the
enclosing submatchers. Currently it has two distinct mechanisms for
this:
- `Delimited` submatchers use `MatcherPos::stack` to record stuff about
the parent (and further back ancestors).
- `Sequence` submatchers use `MatcherPosSequence::parent` to point to
the parent matcher position.
Having two mechanisms is really confusing, and it took me a long time to
understand all this.
This commit eliminates `MatcherPos::stack`, and changes `Delimited`
submatchers to use the same mechanism as sequence submatchers. That
mechanism is also changed a bit: instead of storing the entire parent
`MatcherPos`, we now only store the necessary parts from the parent
`MatcherPos`.
Overall this is a small performance win, with the positives outweighing
the negatives, but it's mostly for clarity.
Spellchecking compiler comments
This PR cleans up the rest of the spelling mistakes in the compiler comments. This PR does not change any literal or code spelling issues.
Don't ICE when opaque types get their hidden type constrained again.
Contrary to popular belief, `codegen_fulfill_obligation` does not get used solely in codegen, so we cannot rely on `param_env` being set to RevealAll and thus revealing the hidden types instead of constraining them.
Fixes#89312 (for real this time)
Restore `impl Future<Output = Type>` to async blocks
I was sad when I undid some of the code I wrote in #91096 in the PR #95225, so I fixed it here to not print `[async output]`.
This PR "manually" normalizes the associated type `<[generator] as Generator>::Return` type which appears very frequently in `impl Future` types that result from async block desugaring.
Currently, we detect an exit from a `Delimited` submatcher when `idx`
exceeds the bounds of the current submatcher *and* there is a `stack`
entry.
This commit changes it to something simpler: just look for a
`CloseDelim` token.
Rollup of 6 pull requests
Successful merges:
- #93901 (Stabilize native library modifier syntax and the `whole-archive` modifier specifically)
- #94806 (Fix `cargo run tidy`)
- #94869 (Add the generic_associated_types_extended feature)
- #95011 (async: Give predictable name to binding generated from .await expressions.)
- #95251 (Reduce max hash in raw strings from u16 to u8)
- #95298 (Fix double drop of allocator in IntoIter impl of Vec)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Fix double drop of allocator in IntoIter impl of Vec
Fixes#95269
The `drop` impl of `IntoIter` reconstructs a `RawVec` from `buf`, `cap` and `alloc`, when that `RawVec` is dropped it also drops the allocator. To avoid dropping the allocator twice we wrap it in `ManuallyDrop` in the `InttoIter` struct.
Note this is my first contribution to the standard library, so I might be missing some details or a better way to solve this.
async: Give predictable name to binding generated from .await expressions.
This name makes it to debuginfo and allows debuggers to identify such bindings and their captured versions in suspended async fns.
This will be useful for async stack traces, as discussed in https://internals.rust-lang.org/t/async-debugging-logical-stack-traces-setting-goals-collecting-examples/15547.
I don't know if this needs some discussion by ````@rust-lang/compiler,```` e.g. about the name of the binding (`__awaitee`) or about the fact that this PR introduces a (soft) guarantee about a compiler generated name. Although, regarding the later, I think the same reasoning applies here as it does for debuginfo in general.
r? ````@tmandry````
Add the generic_associated_types_extended feature
Right now, this only ignore obligations that reference new placeholders in `poly_project_and_unify_type`. In the future, this might do other things, like allowing object-safe GATs.
**This feature is *incomplete* and quite likely unsound. This is mostly just for testing out potential future APIs using a "relaxed" set of rules until we figure out *proper* rules.**
Also drive by cleanup of adding a `ProjectAndUnifyResult` enum instead of using a `Result<Result<Option>>`.
r? `@nikomatsakis`
Fix `cargo run tidy`
When I implemented rust-only bootstrapping in https://github.com/rust-lang/rust/pull/92260,
I neglected to test stage0 tools - it turns out they were broken because
they couldn't find the sysroot of the initial bootstrap compiler.
This fixes stage0 tools by using `rustc --print sysroot` instead of assuming rustc is already in a
sysroot and hard-coding the relative directory.
Fixes https://github.com/rust-lang/rust/issues/94797 (properly, without having to change rustup).
Remember mutability in `DefKind::Static`.
This allows to compute the `BodyOwnerKind` from `DefKind` only, and
removes a direct dependency of some MIR queries onto HIR.
As a side effect, it also simplifies metadata, since we don't need 4
flavours of `EntryKind::*Static` any more.
Yet more `parse_tt` improvements
Including lots of comment improvements, and an overhaul of how `matches` work that gives big speedups.
r? `@petrochenkov`
Contrary to popular belief, `codegen_fulfill_obligation` does not get used solely in codegen, so we cannot rely on `param_env` being set to RevealAll and thus revealing the hidden types instead of constraining them.
allow arbitrary inherent impls for builtin types in core
Part of https://github.com/rust-lang/compiler-team/issues/487. Slightly adjusted after some talks with `@m-ou-se` about the requirements of `t-libs-api`.
This adds a crate attribute `#![rustc_coherence_is_core]` which allows arbitrary impls for builtin types in core.
For other library crates impls for builtin types should be avoided if possible. We do have to allow the existing stable impls however. To prevent us from accidentally adding more of these in the future, there is a second attribute `#[rustc_allow_incoherent_impl]` which has to be added to **all impl items**. This only supports impls for builtin types but can easily be extended to additional types in a future PR.
This implementation does not check for overlaps in these impls. Perfectly checking that requires us to check the coherence of these incoherent impls in every crate, as two distinct dependencies may add overlapping methods. It should be easy enough to detect if it goes wrong and the attribute is only intended for use inside of std.
The first two commits are mostly unrelated cleanups.
Strict Provenance MVP
This patch series examines the question: how bad would it be if we adopted
an extremely strict pointer provenance model that completely banished all
int<->ptr casts.
The key insight to making this approach even *vaguely* pallatable is the
ptr.with_addr(addr) -> ptr
function, which takes a pointer and an address and creates a new pointer
with that address and the provenance of the input pointer. In this way
the "chain of custody" is completely and dynamically restored, making the
model suitable even for dynamic checkers like CHERI and Miri.
This is not a formal model, but lots of the docs discussing the model
have been updated to try to the *concept* of this design in the hopes
that it can be iterated on.
See #95228