This commit moves Mutable, Map, MutableMap, Set, and MutableSet from
`core::collections` to the `collections` crate at the top-level. Additionally,
this removes the `deque` module and moves the `Deque` trait to only being
available at the top-level of the collections crate.
All functionality continues to be reexported through `std::collections`.
[breaking-change]
As with the previous commit with `librand`, this commit shuffles around some
`collections` code. The new state of the world is similar to that of librand:
* The libcollections crate now only depends on libcore and liballoc.
* The standard library has a new module, `std::collections`. All functionality
of libcollections is reexported through this module.
I would like to stress that this change is purely cosmetic. There are very few
alterations to these primitives.
There are a number of notable points about the new organization:
* std::{str, slice, string, vec} all moved to libcollections. There is no reason
that these primitives shouldn't be necessarily usable in a freestanding
context that has allocation. These are all reexported in their usual places in
the standard library.
* The `hashmap`, and transitively the `lru_cache`, modules no longer reside in
`libcollections`, but rather in libstd. The reason for this is because the
`HashMap::new` contructor requires access to the OSRng for initially seeding
the hash map. Beyond this requirement, there is no reason that the hashmap
could not move to libcollections.
I do, however, have a plan to move the hash map to the collections module. The
`HashMap::new` function could be altered to require that the `H` hasher
parameter ascribe to the `Default` trait, allowing the entire `hashmap` module
to live in libcollections. The key idea would be that the default hasher would
be different in libstd. Something along the lines of:
// src/libstd/collections/mod.rs
pub type HashMap<K, V, H = RandomizedSipHasher> =
core_collections::HashMap<K, V, H>;
This is not possible today because you cannot invoke static methods through
type aliases. If we modified the compiler, however, to allow invocation of
static methods through type aliases, then this type definition would
essentially be switching the default hasher from `SipHasher` in libcollections
to a libstd-defined `RandomizedSipHasher` type. This type's `Default`
implementation would randomly seed the `SipHasher` instance, and otherwise
perform the same as `SipHasher`.
This future state doesn't seem incredibly far off, but until that time comes,
the hashmap module will live in libstd to not compromise on functionality.
* In preparation for the hashmap moving to libcollections, the `hash` module has
moved from libstd to libcollections. A previously snapshotted commit enables a
distinct `Writer` trait to live in the `hash` module which `Hash`
implementations are now parameterized over.
Due to using a custom trait, the `SipHasher` implementation has lost its
specialized methods for writing integers. These can be re-added
backwards-compatibly in the future via default methods if necessary, but the
FNV hashing should satisfy much of the need for speedier hashing.
A list of breaking changes:
* HashMap::{get, get_mut} no longer fails with the key formatted into the error
message with `{:?}`, instead, a generic message is printed. With backtraces,
it should still be not-too-hard to track down errors.
* The HashMap, HashSet, and LruCache types are now available through
std::collections instead of the collections crate.
* Manual implementations of hash should be parameterized over `hash::Writer`
instead of just `Writer`.
[breaking-change]
This commit shuffles around some of the `rand` code, along with some
reorganization. The new state of the world is as follows:
* The librand crate now only depends on libcore. This interface is experimental.
* The standard library has a new module, `std::rand`. This interface will
eventually become stable.
Unfortunately, this entailed more of a breaking change than just shuffling some
names around. The following breaking changes were made to the rand library:
* Rng::gen_vec() was removed. This has been replaced with Rng::gen_iter() which
will return an infinite stream of random values. Previous behavior can be
regained with `rng.gen_iter().take(n).collect()`
* Rng::gen_ascii_str() was removed. This has been replaced with
Rng::gen_ascii_chars() which will return an infinite stream of random ascii
characters. Similarly to gen_iter(), previous behavior can be emulated with
`rng.gen_ascii_chars().take(n).collect()`
* {IsaacRng, Isaac64Rng, XorShiftRng}::new() have all been removed. These all
relied on being able to use an OSRng for seeding, but this is no longer
available in librand (where these types are defined). To retain the same
functionality, these types now implement the `Rand` trait so they can be
generated with a random seed from another random number generator. This allows
the stdlib to use an OSRng to create seeded instances of these RNGs.
* Rand implementations for `Box<T>` and `@T` were removed. These seemed to be
pretty rare in the codebase, and it allows for librand to not depend on
liballoc. Additionally, other pointer types like Rc<T> and Arc<T> were not
supported. If this is undesirable, librand can depend on liballoc and regain
these implementations.
* The WeightedChoice structure is no longer built with a `Vec<Weighted<T>>`,
but rather a `&mut [Weighted<T>]`. This means that the WeightedChoice
structure now has a lifetime associated with it.
* The `sample` method on `Rng` has been moved to a top-level function in the
`rand` module due to its dependence on `Vec`.
cc #13851
[breaking-change]
move errno -> IoError converter into std, bubble up OSRng errors
Also adds a general errno -> `~str` converter to `std::os`, and makes the failure messages for the things using `OSRng` (e.g. (transitively) the task-local RNG, meaning hashmap initialisation failures aren't such a black box).
The various ...Rng::new() methods can hit IO errors from the OSRng they use,
and it seems sensible to expose them at a higher level. Unfortunately, writing
e.g. `StdRng::new().unwrap()` gives a much poorer error message than if it
failed internally, but this is a problem with all `IoResult`s.