The core library in theory has 0 dependencies, but in practice it has some in
order for it to be efficient. These dependencies are in the form of the basic
memory operations provided by libc traditionally, such as memset, memcmp, etc.
These functions are trivial to implement and themselves have 0 dependencies.
This commit adds a new crate, librlibc, which will serve the purpose of
providing these dependencies. The crate is never linked to by default, but is
available to be linked to by downstream consumers. Normally these functions are
provided by the system libc, but in other freestanding contexts a libc may not
be available. In these cases, librlibc will suffice for enabling execution with
libcore.
cc #10116
LLVM internally uses `uint64_t` for array size, but the corresponding
C API (`LLVMArrayType`) uses `unsigned int` so ths value is truncated.
Therefore rustc generates wrong type for fixed-sized large vector e.g.
`[0 x i8]` for `[0u8, ..(1 << 32)]`.
This patch adds `LLVMRustArrayType` function for `uint64_t` support.
The compiler has previously been producing binaries on the order of 1.8MB for
hello world programs "fn main() {}". This is largely a result of the compilation
model used by compiling entire libraries into a single object file and because
static linking is favored by default.
When linking, linkers will pull in the entire contents of an object file if any
symbol from the object file is used. This means that if any symbol from a rust
library is used, the entire library is pulled in unconditionally, regardless of
whether the library is used or not.
Traditional C/C++ projects do not normally encounter these large executable
problems because their archives (rust's rlibs) are composed of many objects.
Because of this, linkers can eliminate entire objects from being in the final
executable. With rustc, however, the linker does not have the opportunity to
leave out entire object files.
In order to get similar benefits from dead code stripping at link time, this
commit enables the -ffunction-sections and -fdata-sections flags in LLVM, as
well as passing --gc-sections to the linker *by default*. This means that each
function and each global will be placed into its own section, allowing the
linker to GC all unused functions and data symbols.
By enabling these flags, rust is able to generate much smaller binaries default.
On linux, a hello world binary went from 1.8MB to 597K (a 67% reduction in
size). The output size of dynamic libraries remained constant, but the output
size of rlibs increased, as seen below:
libarena - 2.27% bigger ( 292872 => 299508)
libcollections - 0.64% bigger ( 6765884 => 6809076)
libflate - 0.83% bigger ( 186516 => 188060)
libfourcc - 14.71% bigger ( 307290 => 352498)
libgetopts - 4.42% bigger ( 761468 => 795102)
libglob - 2.73% bigger ( 899932 => 924542)
libgreen - 9.63% bigger ( 1281718 => 1405124)
libhexfloat - 13.88% bigger ( 333738 => 380060)
liblibc - 10.79% bigger ( 551280 => 610736)
liblog - 10.93% bigger ( 218208 => 242060)
libnative - 8.26% bigger ( 1362096 => 1474658)
libnum - 2.34% bigger ( 2583400 => 2643916)
librand - 1.72% bigger ( 1608684 => 1636394)
libregex - 6.50% bigger ( 1747768 => 1861398)
librustc - 4.21% bigger (151820192 => 158218924)
librustdoc - 8.96% bigger ( 13142604 => 14320544)
librustuv - 4.13% bigger ( 4366896 => 4547304)
libsemver - 2.66% bigger ( 396166 => 406686)
libserialize - 1.91% bigger ( 6878396 => 7009822)
libstd - 3.59% bigger ( 39485286 => 40902218)
libsync - 3.95% bigger ( 1386390 => 1441204)
libsyntax - 4.96% bigger ( 35757202 => 37530798)
libterm - 13.99% bigger ( 924580 => 1053902)
libtest - 6.04% bigger ( 2455720 => 2604092)
libtime - 2.84% bigger ( 1075708 => 1106242)
liburl - 6.53% bigger ( 590458 => 629004)
libuuid - 4.63% bigger ( 326350 => 341466)
libworkcache - 8.45% bigger ( 1230702 => 1334750)
This increase in size is a result of encoding many more section names into each
object file (rlib). These increases are moderate enough that this change seems
worthwhile to me, due to the drastic improvements seen in the final artifacts.
The overall increase of the stage2 target folder (not the size of an install)
went from 337MB to 348MB (3% increase).
Additionally, linking is generally slower when executed with all these new
sections plus the --gc-sections flag. The stage0 compiler takes 1.4s to link the
`rustc` binary, where the stage1 compiler takes 1.9s to link the binary. Three
megabytes are shaved off the binary. I found this increase in link time to be
acceptable relative to the benefits of code size gained.
This commit only enables --gc-sections for *executables*, not dynamic libraries.
LLVM does all the heavy lifting when producing an object file for a dynamic
library, so there is little else for the linker to do (remember that we only
have one object file).
I conducted similar experiments by putting a *module's* functions and data
symbols into its own section (granularity moved to a module level instead of a
function/static level). The size benefits of a hello world were seen to be on
the order of 400K rather than 1.2MB. It seemed that enough benefit was gained
using ffunction-sections that this route was less desirable, despite the lesser
increases in binary rlib size.
Many of the instances of setting a global error variable ended up leaving a
dangling pointer into free'd memory. This changes the method of error
transmission to strdup any error and "relinquish ownership" to rustc when it
gets an error. The corresponding Rust code will then free the error as
necessary.
Closes#12865
In upgrading LLVM, only rust functions had the "split-stack" attribute added.
This commit changes the addition of LLVM's "split-stack" attribute to *always*
occur and then we remove it sometimes if the "no_split_stack" rust attribute is
present.
Closes#13625
This comes with a number of fixes to be compatible with upstream LLVM:
* Previously all monomorphizations of "mem::size_of()" would receive the same
symbol. In the past LLVM would silently rename duplicated symbols, but it
appears to now be dropping the duplicate symbols and functions now. The symbol
names of monomorphized functions are now no longer solely based on the type of
the function, but rather the type and the unique hash for the
monomorphization.
* Split stacks are no longer a global feature controlled by a flag in LLVM.
Instead, they are opt-in on a per-function basis through a function attribute.
The rust #[no_split_stack] attribute will disable this, otherwise all
functions have #[split_stack] attached to them.
* The compare and swap instruction now takes two atomic orderings, one for the
successful case and one for the failure case. LLVM internally has an
implementation of calculating the appropriate failure ordering given a
particular success ordering (previously only a success ordering was
specified), and I copied that into the intrinsic translation so the failure
ordering isn't supplied on a source level for now.
* Minor tweaks to LLVM's API in terms of debuginfo, naming, c++11 conventions,
etc.
The recent pull request to remove libc from libstd has hit a wall in compiling
on windows, and I've been trying to investigate on the try bots as to why (it
compiles locally just fine). To the best of my knowledge, the LLVM section
iterator is behaving badly when iterating over the sections of the libc DLL.
Upon investigating the LLVMGetSectionName function in LLVM, I discovered that
this function doesn't always return a null-terminated string. It returns the
data pointer of a StringRef instance (LLVM's equivalent of &str essentially),
but it has no method of returning the length of the name of the section.
This commit modifies the section iteration when loading libraries to invoke a
custom LLVMRustGetSectionName which will correctly return both the length and
the data pointer.
I have not yet verified that this will fix landing liblibc, as it will require a
snapshot before doing a full test. Regardless, this is a worrisome situation
regarding the LLVM API, and should likely be fixed anyway.
The llvm.copysign and llvm.round intrinsics weren't added until LLVM 3.4, so if
we're on LLVM 3.3 we lower these to calls in libm instead of LLVM intrinsics.
This should fix our travis failures.
The travis builds have been breaking recently because LLVM 3.5 upstream is
changing. This looks like it's likely to continue, so it would be more useful
for us if we could lock ourselves to a system LLVM version that is not changing.
This commit has the support to bring our C++ glue to LLVM back in line with what
was possible back in LLVM 3.{3,4}. I don't think we're going to be able to
reasonably protect against regressions in the future, but this kind of code is a
good sign that we can continue to use the system LLVM for simple-ish things.
Codegen for ARM won't work and it won't have some of the perf improvements we
have, but using the system LLVM should work well enough for development.
Upstream LLVM has changed slightly such that our PassWrapper.cpp no longer
comiles (travis errors). This updates the bundled LLVM to the latest nightly
which will hopefully fix the travis errors we're seeing.
This can almost be fully disabled, as it no longer breaks retrieving a
backtrace on OS X as verified by @alexcrichton. However, it still
breaks retrieving the values of parameters. This should be fixable in
the future via a proper location list...
Closes#7477
Set "Dwarf Version" to 2 on OS X to avoid toolchain incompatibility, and
set "Debug Info Version" to prevent debug info from being stripped from
bitcode.
Fixes#11352.
Major changes:
- Define temporary scopes in a syntax-based way that basically defaults
to the innermost statement or conditional block, except for in
a `let` initializer, where we default to the innermost block. Rules
are documented in the code, but not in the manual (yet).
See new test run-pass/cleanup-value-scopes.rs for examples.
- Refactors Datum to better define cleanup roles.
- Refactor cleanup scopes to not be tied to basic blocks, permitting
us to have a very large number of scopes (one per AST node).
- Introduce nascent documentation in trans/doc.rs covering datums and
cleanup in a more comprehensive way.
This pull request fixes#11083. The problem was that recursive type definitions were not properly handled for enum types, leading to problems with LLVM's metadata "uniquing". This bug has already been fixed for struct types some time ago (#9658) but I seem to have forgotten about enums back then. I added the offending code from issue #11083 as a test case.
We were previously reading metadata via `ar p`, but as learned from rustdoc
awhile back, spawning a process to do something is pretty slow. Turns out LLVM
has an Archive class to read archives, but it cannot write archives.
This commits adds bindings to the read-only version of the LLVM archive class
(with a new type that only has a read() method), and then it uses this class
when reading the metadata out of rlibs. When you put this in tandem of not
compressing the metadata, reading the metadata is 4x faster than it used to be
The timings I got for reading metadata from the respective libraries was:
libstd-04ff901e-0.9-pre.dylib => 100ms
libstd-04ff901e-0.9-pre.rlib => 23ms
librustuv-7945354c-0.9-pre.dylib => 4ms
librustuv-7945354c-0.9-pre.rlib => 1ms
librustc-5b94a16f-0.9-pre.dylib => 87ms
librustc-5b94a16f-0.9-pre.rlib => 35ms
libextra-a6ebb16f-0.9-pre.dylib => 63ms
libextra-a6ebb16f-0.9-pre.rlib => 15ms
libsyntax-2e4c0458-0.9-pre.dylib => 86ms
libsyntax-2e4c0458-0.9-pre.rlib => 22ms
In order to always take advantage of these faster metadata read-times, I sort
the files in filesearch based on whether they have an rlib extension or not
(prefer all rlib files first).
Overall, this halved the compile time for a `fn main() {}` crate from 0.185s to
0.095s on my system (when preferring dynamic linking). Reading metadata is still
the slowest pass of the compiler at 0.035s, but it's getting pretty close to
linking at 0.021s! The next best optimization is to just not copy the metadata
from LLVM because that's the most expensive part of reading metadata right now.
llvm supports both win32 native threads and pthread,
but configure tries to find pthread first.
This manually disables pthread to use native api.
This removes libpthreads-2.dll dependency on librustc.
When performing LTO, the rust compiler has an opportunity to completely strip
all landing pads in all dependent libraries. I've modified the LTO pass to
recognize the -Z no-landing-pads option when also running an LTO pass to flag
everything in LLVM as nothrow. I've verified that this prevents any and all
invoke instructions from being emitted.
I believe that this is one of our best options for moving forward with
accomodating use-cases where unwinding doesn't really make sense. This will
allow libraries to be built with landing pads by default but allow usage of them
in contexts where landing pads aren't necessary.
cc #10780
This commit implements LTO for rust leveraging LLVM's passes. What this means
is:
* When compiling an rlib, in addition to insdering foo.o into the archive, also
insert foo.bc (the LLVM bytecode) of the optimized module.
* When the compiler detects the -Z lto option, it will attempt to perform LTO on
a staticlib or binary output. The compiler will emit an error if a dylib or
rlib output is being generated.
* The actual act of performing LTO is as follows:
1. Force all upstream libraries to have an rlib version available.
2. Load the bytecode of each upstream library from the rlib.
3. Link all this bytecode into the current LLVM module (just using llvm
apis)
4. Run an internalization pass which internalizes all symbols except those
found reachable for the local crate of compilation.
5. Run the LLVM LTO pass manager over this entire module
6a. If assembling an archive, then add all upstream rlibs into the output
archive. This ignores all of the object/bitcode/metadata files rust
generated and placed inside the rlibs.
6b. If linking a binary, create copies of all upstream rlibs, remove the
rust-generated object-file, and then link everything as usual.
As I have explained in #10741, this process is excruciatingly slow, so this is
*not* turned on by default, and it is also why I have decided to hide it behind
a -Z flag for now. The good news is that the binary sizes are about as small as
they can be as a result of LTO, so it's definitely working.
Closes#10741Closes#10740
The main one removed is rust_upcall_reset_stack_limit (continuation of #10156),
and this also removes the upcall_trace function. The was hidden behind a
`-Z trace` flag, but if you attempt to use this now you'll get a linker error
because there is no implementation of the 'upcall_trace' function. Due to this
no longer working, I decided to remove it entirely from the compiler (I'm also a
little unsure on what it did in the first place).
LLVM's JIT has been updated numerous times, and we haven't been tracking it at
all. The existing LLVM glue code no longer compiles, and the JIT isn't used for
anything currently.
This also rebases out the FixedStackSegment support which we have added to LLVM.
None of this is still in use by the compiler, and there's no need to keep this
functionality around inside of LLVM.
This is needed to unblock #10708 (where we're tripping an LLVM assertion).
This commit implements the support necessary for generating both intermediate
and result static rust libraries. This is an implementation of my thoughts in
https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html.
When compiling a library, we still retain the "lib" option, although now there
are "rlib", "staticlib", and "dylib" as options for crate_type (and these are
stackable). The idea of "lib" is to generate the "compiler default" instead of
having too choose (although all are interchangeable). For now I have left the
"complier default" to be a dynamic library for size reasons.
Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an
rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a
dynamic object. I chose this for size reasons, but also because you're probably
not going to be embedding the rustc compiler anywhere any time soon.
Other than the options outlined above, there are a few defaults/preferences that
are now opinionated in the compiler:
* If both a .dylib and .rlib are found for a rust library, the compiler will
prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option
* If generating a "lib", the compiler will generate a dynamic library. This is
overridable by explicitly saying what flavor you'd like (rlib, staticlib,
dylib).
* If no options are passed to the command line, and no crate_type is found in
the destination crate, then an executable is generated
With this change, you can successfully build a rust program with 0 dynamic
dependencies on rust libraries. There is still a dynamic dependency on
librustrt, but I plan on removing that in a subsequent commit.
This change includes no tests just yet. Our current testing
infrastructure/harnesses aren't very amenable to doing flavorful things with
linking, so I'm planning on adding a new mode of testing which I believe belongs
as a separate commit.
Closes#552
Example:
void ({ i64, %tydesc*, i8*, i8*, i8 }*, i64*, %"struct.std::fmt::Formatter[#1]"*)*
Before, we would print 20 levels deep due to recursion in the type
definition.
This change adds -Z soft-float option for generating
software floating point library calls.
It also implies using soft float ABI, that is the same as llc.
It is useful for targets that have no FPU.
Also fixed nasty bug caused by calling LLVMDIBuilderCreateStructType() with a null pointer where an empty array was expected (which would trigger an unintelligable assertion somewhere down the line).
The only changes to the default passes is that O1 now doesn't run the inline
pass, just always-inline with lifetime intrinsics. O2 also now has a threshold
of 225 instead of 275. Otherwise the default passes being run is the same.
I've also added a few more options for configuring the pass pipeline. Namely you
can now specify arguments to LLVM directly via the `--llvm-args` command line
option which operates similarly to `--passes`. I also added the ability to turn
off pre-population of the pass manager in case you want to run *only* your own
passes.
Beforehand, it was unclear whether rust was performing the "recommended set" of
optimizations provided by LLVM for code. This commit changes the way we run
passes to closely mirror that of clang, which in theory does it correctly. The
notable changes include:
* Passes are no longer explicitly added one by one. This would be difficult to
keep up with as LLVM changes and we don't guaranteed always know the best
order in which to run passes
* Passes are now managed by LLVM's PassManagerBuilder object. This is then used
to populate the various pass managers run.
* We now run both a FunctionPassManager and a module-wide PassManager. This is
what clang does, and I presume that we *may* see a speed boost from the
module-wide passes just having to do less work. I have no measured this.
* The codegen pass manager has been extracted to its own separate pass manager
to not get mixed up with the other passes
* All pass managers now include passes for target-specific data layout and
analysis passes
Some new features include:
* You can now print all passes being run with `-Z print-llvm-passes`
* When specifying passes via `--passes`, the passes are now appended to the
default list of passes instead of overwriting them.
* The output of `--passes list` is now generated by LLVM instead of maintaining
a list of passes ourselves
* Loop vectorization is turned on by default as an optimization pass and can be
disabled with `-Z no-vectorize-loops`
We currently have no need for the frame pointers on any platform. They
may eventually be needed on platforms without an equivalent to the DWARF
call frame information to walk the stack in the garbage collector.
Closes#7477
The first commit message is pretty good, but whomever reviews this should probably also at least glance at the changes I made in LLVM. I basically reorganized our pending patch queue to be a bit more organized and clearer in what needs to go where. After this, our queue would be:
* Add the `no-split-stack` attribute
* Add the `fixedstacksegment` attribute
* Add split-stacks for arm android
* Add split-stacks for arm linux
* Add split stacks for mips
Then there's a patch which I added to get rust to build at all on LLVM-head, and I'm not quite sure why it's there, but nothing seems to be crashing for now! (famous last words).
Otherwise, I just updated code to reflect the changes I made in LLVM with the only major change being the advent of the new `no_split_stack` attribute. This is work towards #1226, but someone more familiar with the code should probably actually assign the attribute to the appropriate functions.
Also as a bonus, I've verified that this closes#5774
* This has one workaround patch (everything's testing just fine...)
* I reworked the fixedstacksegment attribute to be specified with a string
rather than using a keyword and an integer and modifying the parser
* I added a "no-split-stack" attribute along the same lines as the
"fixedstacksegment" attribute for #1226
Adds `--target-cpu` flag which lets you choose a more specific target cpu instead of just passing the default, `generic`. It's more or less akin to `-mcpu`/`-mtune` in clang/gcc.
This can be applied to statics and it will indicate that LLVM will attempt to
merge the constant in .data with other statics.
I have preliminarily applied this to all of the statics generated by the new
`ifmt!` syntax extension. I compiled a file with 1000 calls to `ifmt!` and a
separate file with 1000 calls to `fmt!` to compare the sizes, and the results
were:
fmt 310k
ifmt (before) 529k
ifmt (after) 202k
This now means that ifmt! is both faster and smaller than fmt!, yay!
* LLVM now has a C interface to LLVMBuildAtomicRMW
* The exception handling support for the JIT seems to have been dropped
* Various interfaces have been added or headers have changed
These blocks were required because previously we could only insert
instructions at the end of blocks, but we wanted to have all allocas in
one place, so they can be collapse. But now we have "direct" access the
the LLVM IR builder and can position it freely. This allows us to use
the same trick that clang uses, which means that we insert a dummy
"marker" instruction to identify the spot at which we want to insert
allocas. We can then later position the IR builder at that spot and
insert the alloca instruction, without any dedicated block.
The block for loading the closure environment can now also go away,
because the function context now provides the toplevel block, and the
translation of the loading happens first, so that's good enough.
Makes the LLVM IR a bit more readable, saving a bunch of branches in the
unoptimized code, which benefits unoptimized builds.
This un-reverts the reverts of the rusti commits made awhile back. These were reverted for an LLVM failure in rustpkg. I believe that this is not a problem with these commits, but rather that rustc is being used in parallel for rustpkg tests (in-process). This is not working yet (almost! see #7011), so I serialized all the tests to run one after another.
@brson, I'm mainly just guessing as to the cause of the LLVM failures in rustpkg tests. I'm confident that running tests in parallel is more likely to be the problem than those commits I made.
Additionally, this fixes two recently reported issues with rusti.
This refactors pass handling to use the argument names, so it can be used
in a similar manner to `opt`. This may be slightly less efficient than the
previous version, but it is much easier to maintain.
It also adds in the ability to specify a custom pipeline on the command
line, this overrides the normal passes, however. This should completely
close#2396.
Refactor the optimization passes to explicitly use the passes. This commit
just re-implements the same passes as were already being run.
It also adds an option (behind `-Z`) to run the LLVM lint pass on the
unoptimized IR.
The default versions (atomic_load and atomic_store) are sequentially consistent.
The atomic_load_acq intrinsic acquires as described in [1].
The atomic_store_rel intrinsic releases as described in [1].
[1]: http://llvm.org/docs/Atomics.html
In my WIP on rustpkg, I was calling driver code that calls
LLVMRustWriteOutputFile more than once. This was making LLVM
unhappy, since that function has code that initializes the
command-line options for LLVM, and I guess you can't do that more
than once. So, check if they've already been initialized.
adjusting a few foreign functions that were declared with by-ref
mode. This also allows us to remove by-val mode in the near future.
With copy mode, though, we have to be careful because Rust will implicitly pass
somethings by pointer but this may not be the C ABI rules. For example, rust
will pass a struct Foo as a Foo*. So I added some code into the adapters to
fix this (though the C ABI rules may put the pointer back, oh well).
This patch also includes a lint mode for the use of by-ref mode
in foreign functions as the semantics of this have changed.
DebugFlag is conditionally exported by LLVM in llvm/Support/Debug.h
in-between an #ifndef NDEBUG block; RustWrapper should not
unconditionally use it. This closes#3701.
Signed-off-by: Luca Bruno <lucab@debian.org>
rustc generates output files in LLVM bitcode format if "--emit-llvm"
option is given. When used with the "-S" option, rustc generates LLVM
intermediate language assembly files.
Fixes Issue #476
This allows us to compile against revision 138708. I need this, because
the version we currently use is causing mysterious corruption of object
files during linking on win, apparently triggered by my vec-representation
patch.
working (on hello world at least):
~/inst/gdb/bin/gdb --args ./foo
(gdb) b write
...
(gdb) r
...
Breakpoint 1, 0xf7f04270 in write () from /lib32/libc.so.6
(gdb) bt
0 0xf7f04270 in write () from /lib32/libc.so.6
1 0x0804931a in rust_native_cdecl_3 ()
2 0x080487d7 in _rust_wrapper3_ ()
3 0x0804890a in _rust_fn5_main ()
4 0x08049440 in rust_native_cdecl_7 ()