The span on a inner doc-comment would point to the next token, e.g. the span for the `a` line points to the `b` line, and the span of `b` points to the `fn`.
```rust
//! a
//! b
fn bar() {}
```
1. Wherever the `buf` field of a `Formatter` was used, the `Formatter` is used
instead.
2. The usage of `write_fmt` is minimized as much as possible, the `write!` macro
is preferred wherever possible.
3. Usage of `fmt::write` is minimized, favoring the `write!` macro instead.
This new method, write_fmt(), is the one way to write a formatted list of
arguments into a Writer stream. This has a special adaptor to preserve errors
which occur on the writer.
All macros will be updated to use this method explicitly.
The existing APIs for spawning processes took strings for the command
and arguments, but the underlying system may not impose utf8 encoding,
so this is overly limiting.
The assumption we actually want to make is just that the command and
arguments are viewable as [u8] slices with no interior NULLs, i.e., as
CStrings. The ToCStr trait is a handy bound for types that meet this
requirement (such as &str and Path).
However, since the commands and arguments are often a mixture of
strings and paths, it would be inconvenient to take a slice with a
single T: ToCStr bound. So this patch revamps the process creation API
to instead use a builder-style interface, called `Command`, allowing
arguments to be added one at a time with differing ToCStr
implementations for each.
The initial cut of the builder API has some drawbacks that can be
addressed once issue #13851 (libstd as a facade) is closed. These are
detailed as FIXMEs.
Closes#11650.
[breaking-change]
I feel that this is a very vital, missing piece of functionality. This adds on to #13072.
Only bits used in the definition of the bitflag are considered for the universe set. This is a bit safer than simply inverting all of the bits in the wrapped value.
```rust
bitflags!(flags Flags: u32 {
FlagA = 0x00000001,
FlagB = 0x00000010,
FlagC = 0x00000100,
FlagABC = FlagA.bits
| FlagB.bits
| FlagC.bits
})
...
// `Not` implements set complement
assert!(!(FlagB | FlagC) == FlagA);
// `all` and `is_all` are the inverses of `empty` and `is_empty`
assert!(Flags::all() - FlagA == !FlagA);
assert!(FlagABC.is_all());
```
Reader.read_at_least() ensures that at least a given number of bytes
have been read. The most common use-case for this is ensuring at least 1
byte has been read. If the reader returns 0 enough times in a row, a new
error kind NoProgress will be returned instead of looping infinitely.
This change is necessary in order to properly support Readers that
repeatedly return 0, either because they're broken, or because they're
attempting to do a non-blocking read on some resource that never becomes
available.
Also add .push() and .push_at_least() methods. push() is like read() but
the results are appended to the passed Vec.
Remove Reader.fill() and Reader.push_exact() as they end up being thin
wrappers around read_at_least() and push_at_least().
[breaking-change]
Been meaning to try my hand at something like this for a while, and noticed something similar mentioned as part of #13537. The suggestion on the original ticket is to use `TcpStream::open(&str)` to pass in a host + port string, but seems a little cleaner to pass in host and port separately -- so a signature like `TcpStream::open(&str, u16)`.
Also means we can use std::io::net::addrinfo directly instead of using e.g. liburl to parse the host+port pair from a string.
One outstanding issue in this PR that I'm not entirely sure how to address: in open_timeout, the timeout_ms will apply for every A record we find associated with a hostname -- probably not the intended behavior, but I didn't want to waste my time on elaborate alternatives until the general idea was a-OKed. :)
Anyway, perhaps there are other reasons for us to prefer the original proposed syntax, but thought I'd get some thoughts on this. Maybe there are some solid reasons to prefer using liburl to do this stuff.
Prior to this commit, TcpStream::connect and TcpListener::bind took a
single SocketAddr argument. This worked well enough, but the API felt a
little too "low level" for most simple use cases.
A great example is connecting to rust-lang.org on port 80. Rust users would
need to:
1. resolve the IP address of rust-lang.org using
io::net::addrinfo::get_host_addresses.
2. check for errors
3. if all went well, use the returned IP address and the port number
to construct a SocketAddr
4. pass this SocketAddr to TcpStream::connect.
I'm modifying the type signature of TcpStream::connect and
TcpListener::bind so that the API is a little easier to use.
TcpStream::connect now accepts two arguments: a string describing the
host/IP of the host we wish to connect to, and a u16 representing the
remote port number.
Similarly, TcpListener::bind has been modified to take two arguments:
a string describing the local interface address (e.g. "0.0.0.0" or
"127.0.0.1") and a u16 port number.
Here's how to port your Rust code to use the new TcpStream::connect API:
// old ::connect API
let addr = SocketAddr{ip: Ipv4Addr{127, 0, 0, 1}, port: 8080};
let stream = TcpStream::connect(addr).unwrap()
// new ::connect API (minimal change)
let addr = SocketAddr{ip: Ipv4Addr{127, 0, 0, 1}, port: 8080};
let stream = TcpStream::connect(addr.ip.to_str(), addr.port()).unwrap()
// new ::connect API (more compact)
let stream = TcpStream::connect("127.0.0.1", 8080).unwrap()
// new ::connect API (hostname)
let stream = TcpStream::connect("rust-lang.org", 80)
Similarly, for TcpListener::bind:
// old ::bind API
let addr = SocketAddr{ip: Ipv4Addr{0, 0, 0, 0}, port: 8080};
let mut acceptor = TcpListener::bind(addr).listen();
// new ::bind API (minimal change)
let addr = SocketAddr{ip: Ipv4Addr{0, 0, 0, 0}, port: 8080};
let mut acceptor = TcpListener::bind(addr.ip.to_str(), addr.port()).listen()
// new ::bind API (more compact)
let mut acceptor = TcpListener::bind("0.0.0.0", 8080).listen()
[breaking-change]
Closes#14163 (Fix typos in rustc manpage)
Closes#14161 (Add the patch number to version strings. Closes#13289)
Closes#14156 (rustdoc: Fix hiding implementations of traits)
Closes#14152 (add shebang to scripts that have execute bit set)
Closes#14150 (libcore: remove fails from slice.rs and remove duplicated length checking)
Closes#14147 (Make ProcessOutput Eq, TotalEq, Clone)
Closes#14142 (doc: updates rust manual (loop to continue))
Closes#14141 (doc: Update the linkage documentation)
Closes#14139 (Remove an unnecessary .move_iter().collect())
Closes#14136 (Two minor fixes in parser.rs)
Closes#14130 (Fixed typo in comments of driver.rs)
Closes#14128 (Add `stat` method to `std::io::fs::File` to stat without a Path.)
Closes#14114 (rustdoc: List macros in the sidebar)
Closes#14113 (shootout-nbody improvement)
Closes#14112 (Improved example code in Option)
Closes#14104 (Remove reference to MutexArc)
Closes#14087 (emacs: highlight `macro_name!` in macro invocations using [] delimiters)
The `FileStat` struct contained a `path` field, which was filled by the
`stat` and `lstat` function. Since this field isn't in fact returned by
the operating system (it was copied from the paths passed to the
functions) it was removed, as in the `fstat` case we aren't working with
a `Path`, but directly with a fd.
If your code used the `path` field of `FileStat` you will now have to
manually store the path passed to `stat` along with the returned struct.
[breaking-change]
This commit revisits the `cast` module in libcore and libstd, and scrutinizes
all functions inside of it. The result was to remove the `cast` module entirely,
folding all functionality into the `mem` module. Specifically, this is the fate
of each function in the `cast` module.
* transmute - This function was moved to `mem`, but it is now marked as
#[unstable]. This is due to planned changes to the `transmute`
function and how it can be invoked (see the #[unstable] comment).
For more information, see RFC 5 and #12898
* transmute_copy - This function was moved to `mem`, with clarification that is
is not an error to invoke it with T/U that are different
sizes, but rather that it is strongly discouraged. This
function is now #[stable]
* forget - This function was moved to `mem` and marked #[stable]
* bump_box_refcount - This function was removed due to the deprecation of
managed boxes as well as its questionable utility.
* transmute_mut - This function was previously deprecated, and removed as part
of this commit.
* transmute_mut_unsafe - This function doesn't serve much of a purpose when it
can be achieved with an `as` in safe code, so it was
removed.
* transmute_lifetime - This function was removed because it is likely a strong
indication that code is incorrect in the first place.
* transmute_mut_lifetime - This function was removed for the same reasons as
`transmute_lifetime`
* copy_lifetime - This function was moved to `mem`, but it is marked
`#[unstable]` now due to the likelihood of being removed in
the future if it is found to not be very useful.
* copy_mut_lifetime - This function was also moved to `mem`, but had the same
treatment as `copy_lifetime`.
* copy_lifetime_vec - This function was removed because it is not used today,
and its existence is not necessary with DST
(copy_lifetime will suffice).
In summary, the cast module was stripped down to these functions, and then the
functions were moved to the `mem` module.
transmute - #[unstable]
transmute_copy - #[stable]
forget - #[stable]
copy_lifetime - #[unstable]
copy_mut_lifetime - #[unstable]
[breaking-change]
This is the last remaining networkig object to implement timeouts for. This
takes advantage of the CancelIo function and the already existing asynchronous
I/O functionality of pipes.
These timeouts all follow the same pattern as established by the timeouts on
acceptors. There are three methods: set_timeout, set_read_timeout, and
set_write_timeout. Each of these sets a point in the future after which
operations will time out.
Timeouts with cloned objects are a little trickier. Each object is viewed as
having its own timeout, unaffected by other objects' timeouts. Additionally,
timeouts do not propagate when a stream is cloned or when a cloned stream has
its timeouts modified.
This commit is just the public interface which will be exposed for timeouts, the
implementation will come in later commits.
This moves as much allocation as possible from teh std::str module into
core::str. This includes essentially all non-allocating functionality, mostly
iterators and slicing and such.
This primarily splits the Str trait into only having the as_slice() method,
adding a new StrAllocating trait to std::str which contains the relevant new
allocation methods. This is a breaking change if any of the methods of "trait
Str" were overriden. The old functionality can be restored by implementing both
the Str and StrAllocating traits.
[breaking-change]
for `~str`/`~[]`.
Note that `~self` still remains, since I forgot to add support for
`Box<self>` before the snapshot.
How to update your code:
* Instead of `~EXPR`, you should write `box EXPR`.
* Instead of `~TYPE`, you should write `Box<Type>`.
* Instead of `~PATTERN`, you should write `box PATTERN`.
[breaking-change]
This patch changes `std::io::FilePermissions` from an exposed `u32`
representation to a typesafe representation (that only allows valid
flag combinations) using the `std::bitflags`, thus ensuring a greater
degree of safety on the Rust side.
Despite the change to the type, most code should continue to work
as-is, sincde the new type provides bit operations in the style of C
flags. To get at the underlying integer representation, use the `bits`
method; to (unsafely) convert to `FilePermissions`, use
`FilePermissions::from_bits`.
Closes#6085.
[breaking-change]
This adds a `TcpStream::connect_timeout` function in order to assist opening
connections with a timeout (cc #13523). There isn't really much design space for
this specific operation (unlike timing out normal blocking reads/writes), so I
am fairly confident that this is the correct interface for this function.
The function is marked #[experimental] because it takes a u64 timeout argument,
and the u64 type is likely to change in the future.
This removes all resizability support for ~[T] vectors in preparation of DST.
The only growable vector remaining is Vec<T>. In summary, the following methods
from ~[T] and various functions were removed. Each method/function has an
equivalent on the Vec type in std::vec unless otherwise stated.
* slice::OwnedCloneableVector
* slice::OwnedEqVector
* slice::append
* slice::append_one
* slice::build (no replacement)
* slice::bytes::push_bytes
* slice::from_elem
* slice::from_fn
* slice::with_capacity
* ~[T].capacity()
* ~[T].clear()
* ~[T].dedup()
* ~[T].extend()
* ~[T].grow()
* ~[T].grow_fn()
* ~[T].grow_set()
* ~[T].insert()
* ~[T].pop()
* ~[T].push()
* ~[T].push_all()
* ~[T].push_all_move()
* ~[T].remove()
* ~[T].reserve()
* ~[T].reserve_additional()
* ~[T].reserve_exect()
* ~[T].retain()
* ~[T].set_len()
* ~[T].shift()
* ~[T].shrink_to_fit()
* ~[T].swap_remove()
* ~[T].truncate()
* ~[T].unshift()
* ~str.clear()
* ~str.set_len()
* ~str.truncate()
Note that no other API changes were made. Existing apis that took or returned
~[T] continue to do so.
[breaking-change]
Someone reading the docs won't know what the types of various things
are, so this adds them in a few meaningful places to help with
comprehension.
cc #13423.
move errno -> IoError converter into std, bubble up OSRng errors
Also adds a general errno -> `~str` converter to `std::os`, and makes the failure messages for the things using `OSRng` (e.g. (transitively) the task-local RNG, meaning hashmap initialisation failures aren't such a black box).
I've found a common use case being to fill a slice (not an owned vector)
completely with bytes. It's posible for short reads to happen, and if you're
trying to get an exact number of bytes then this helper will be useful.
These methods can be mistaken for general "read some bytes" utilities when
they're actually only meant for reading an exact number of bytes. By renaming
them it's much clearer about what they're doing without having to read the
documentation.
Closes#12892
This commit moves all logging out of the standard library into an external
crate. This crate is the new crate which is responsible for all logging macros
and logging implementation. A few reasons for this change are:
* The crate map has always been a bit of a code smell among rust programs. It
has difficulty being loaded on almost all platforms, and it's used almost
exclusively for logging and only logging. Removing the crate map is one of the
end goals of this movement.
* The compiler has a fair bit of special support for logging. It has the
__log_level() expression as well as generating a global word per module
specifying the log level. This is unfairly favoring the built-in logging
system, and is much better done purely in libraries instead of the compiler
itself.
* Initialization of logging is much easier to do if there is no reliance on a
magical crate map being available to set module log levels.
* If the logging library can be written outside of the standard library, there's
no reason that it shouldn't be. It's likely that we're not going to build the
highest quality logging library of all time, so third-party libraries should
be able to provide just as high-quality logging systems as the default one
provided in the rust distribution.
With a migration such as this, the change does not come for free. There are some
subtle changes in the behavior of liblog vs the previous logging macros:
* The core change of this migration is that there is no longer a physical
log-level per module. This concept is still emulated (it is quite useful), but
there is now only a global log level, not a local one. This global log level
is a reflection of the maximum of all log levels specified. The previously
generated logging code looked like:
if specified_level <= __module_log_level() {
println!(...)
}
The newly generated code looks like:
if specified_level <= ::log::LOG_LEVEL {
if ::log::module_enabled(module_path!()) {
println!(...)
}
}
Notably, the first layer of checking is still intended to be "super fast" in
that it's just a load of a global word and a compare. The second layer of
checking is executed to determine if the current module does indeed have
logging turned on.
This means that if any module has a debug log level turned on, all modules
with debug log levels get a little bit slower (they all do more expensive
dynamic checks to determine if they're turned on or not).
Semantically, this migration brings no change in this respect, but
runtime-wise, this will have a perf impact on some code.
* A `RUST_LOG=::help` directive will no longer print out a list of all modules
that can be logged. This is because the crate map will no longer specify the
log levels of all modules, so the list of modules is not known. Additionally,
warnings can no longer be provided if a malformed logging directive was
supplied.
The new "hello world" for logging looks like:
#[phase(syntax, link)]
extern crate log;
fn main() {
debug!("Hello, world!");
}
This commit shreds all remnants of libextra from the compiler and standard
distribution. Two modules, c_vec/tempfile, were moved into libstd after some
cleanup, and the other modules were moved to separate crates as seen fit.
Closes#8784Closes#12413Closes#12576
Most IO related functions return an IoResult so that the caller can handle failure in whatever way is appropriate. However, the `lines`, `bytes`, and `chars` iterators all supress errors. This means that code that needs to handle errors can't use any of these iterators. All three of these iterators were updated to produce IoResults.
Fixes#12368
Most IO related functions return an IoResult so that the caller can handle failure
in whatever way is appropriate. However, the `lines`, `bytes`, and `chars` iterators all
supress errors. This means that code that needs to handle errors can't use any of these
iterators. All three of these iterators were updated to produce IoResults.
Fixes#12368
Formatting via reflection has been a little questionable for some time now, and
it's a little unfortunate that one of the standard macros will silently use
reflection when you weren't expecting it. This adds small bits of code bloat to
libraries, as well as not always being necessary. In light of this information,
this commit switches assert_eq!() to using {} in the error message instead of
{:?}.
In updating existing code, there were a few error cases that I encountered:
* It's impossible to define Show for [T, ..N]. I think DST will alleviate this
because we can define Show for [T].
* A few types here and there just needed a #[deriving(Show)]
* Type parameters needed a Show bound, I often moved this to `assert!(a == b)`
* `Path` doesn't implement `Show`, so assert_eq!() cannot be used on two paths.
I don't think this is much of a regression though because {:?} on paths looks
awful (it's a byte array).
Concretely speaking, this shaved 10K off a 656K binary. Not a lot, but sometime
significant for smaller binaries.
This lowers the #[allow(missing_doc)] directive into some of the lower modules
which are less mature. Most I/O modules now require comprehensive documentation.
This commit removes deriving(ToStr) in favor of deriving(Show), migrating all impls of ToStr to fmt::Show.
Most of the details can be found in the first commit message.
Closes#12477
The std::run module is a relic from a standard library long since past, and
there's not much use to having two modules to execute processes with where one
is slightly more convenient. This commit merges the two modules, moving lots of
functionality from std::run into std::io::process and then deleting
std::run.
New things you can find in std::io::process are:
* Process::new() now only takes prog/args
* Process::configure() takes a ProcessConfig
* Process::status() is the same as run::process_status
* Process::output() is the same as run::process_output
* I/O for spawned tasks is now defaulted to captured in pipes instead of ignored
* Process::kill() was added (plus an associated green/native implementation)
* Process::wait_with_output() is the same as the old finish_with_output()
* destroy() is now signal_exit()
* force_destroy() is now signal_kill()
Closes#2625Closes#10016
The std::run module is a relic from a standard library long since past, and
there's not much use to having two modules to execute processes with where one
is slightly more convenient. This commit merges the two modules, moving lots of
functionality from std::run into std::io::process and then deleting
std::run.
New things you can find in std::io::process are:
* Process::new() now only takes prog/args
* Process::configure() takes a ProcessConfig
* Process::status() is the same as run::process_status
* Process::output() is the same as run::process_output
* I/O for spawned tasks is now defaulted to captured in pipes instead of ignored
* Process::kill() was added (plus an associated green/native implementation)
* Process::wait_with_output() is the same as the old finish_with_output()
* destroy() is now signal_exit()
* force_destroy() is now signal_kill()
Closes#2625Closes#10016
This commit changes the ToStr trait to:
impl<T: fmt::Show> ToStr for T {
fn to_str(&self) -> ~str { format!("{}", *self) }
}
The ToStr trait has been on the chopping block for quite awhile now, and this is
the final nail in its coffin. The trait and the corresponding method are not
being removed as part of this commit, but rather any implementations of the
`ToStr` trait are being forbidden because of the generic impl. The new way to
get the `to_str()` method to work is to implement `fmt::Show`.
Formatting into a `&mut Writer` (as `format!` does) is much more efficient than
`ToStr` when building up large strings. The `ToStr` trait forces many
intermediate allocations to be made while the `fmt::Show` trait allows
incremental buildup in the same heap allocated buffer. Additionally, the
`fmt::Show` trait is much more extensible in terms of interoperation with other
`Writer` instances and in more situations. By design the `ToStr` trait requires
at least one allocation whereas the `fmt::Show` trait does not require any
allocations.
Closes#8242Closes#9806
One of the most common ways to use the stdin stream is to read it line by line
for a small program. In order to facilitate this common usage pattern, this
commit changes the stdin() function to return a BufferedReader by default. A new
`stdin_raw()` method was added to get access to the raw unbuffered stream.
I have not changed the stdout or stderr methods because they are currently
unable to flush in their destructor, but #12403 should have just fixed that.
This is in preparation to remove the implementations of ToStrRadix in integers, and to remove the associated logic from `std::num::strconv`.
The parts that still need to be liberated are:
- `std::fmt::Formatter::runplural`
- `num::{bigint, complex, rational}`
This "bubble up an error" macro was originally named if_ok! in order to get it
landed, but after the fact it was discovered that this name is not exactly
desirable.
The name `if_ok!` isn't immediately clear that is has much to do with error
handling, and it doesn't look fantastic in all contexts (if if_ok!(...) {}). In
general, the agreed opinion about `if_ok!` is that is came in as subpar.
The name `try!` is more invocative of error handling, it's shorter by 2 letters,
and it looks fitting in almost all circumstances. One concern about the word
`try!` is that it's too invocative of exceptions, but the belief is that this
will be overcome with documentation and examples.
Close#12037
One of the most common ways to use the stdin stream is to read it line by line
for a small program. In order to facilitate this common usage pattern, this
commit changes the stdin() function to return a BufferedReader by default. A new
`stdin_raw()` method was added to get access to the raw unbuffered stream.
I have not changed the stdout or stderr methods because they are currently
unable to flush in their destructor, but #12403 should have just fixed that.
This adopts the rules posted in #10432:
1. If a seek position is negative, then an error is generated
2. Seeks beyond the end-of-file are allowed. Future writes will fill the gap
with data and future reads will return errors.
3. Seeks within the bounds of a file are fine.
Closes#10432
This adopts the rules posted in #10432:
1. If a seek position is negative, then an error is generated
2. Seeks beyond the end-of-file are allowed. Future writes will fill the gap
with data and future reads will return errors.
3. Seeks within the bounds of a file are fine.
Closes#10432
* All I/O now returns IoResult<T> = Result<T, IoError>
* All formatting traits now return fmt::Result = IoResult<()>
* The if_ok!() macro was added to libstd
These are either returned from public functions, and really should
appear in the documentation, but don't since they're private, or are
implementation details that are currently public.
These are either returned from public functions, and really should
appear in the documentation, but don't since they're private, or are
implementation details that are currently public.
* Reexport io::mem and io::buffered structs directly under io, make mem/buffered
private modules
* Remove with_mem_writer
* Remove DEFAULT_CAPACITY and use DEFAULT_BUF_SIZE (in io::buffered)
cc #11119
* Reexport io::mem and io::buffered structs directly under io, make mem/buffered
private modules
* Remove with_mem_writer
* Remove DEFAULT_CAPACITY and use DEFAULT_BUF_SIZE (in io::buffered)
The `print!` and `println!` macros are now the preferred method of printing, and so there is no reason to export the `stdio` functions in the prelude. The functions have also been replaced by their macro counterparts in the tutorial and other documentation so that newcomers don't get confused about what they should be using.
This is just an unnecessary trait that no one's ever going to parameterize over
and it's more useful to just define the methods directly on the types
themselves. The implementors of this type almost always don't want
inner_mut_ref() but they're forced to define it as well.
These methods are sorely needed on readers and writers, and I believe that the
encoding story should be solved with composition. This commit adds back the
missed functions when reading/writing strings onto generic Readers/Writers.
All tests except for the homing tests are now working again with the
librustuv/libgreen refactoring. The homing-related tests are currently commented
out and now placed in the rustuv::homing module.
I plan on refactoring scheduler pool spawning in order to enable more homing
tests in a future commit.
This commit introduces a new crate called "native" which will be the crate that
implements the 1:1 runtime of rust. This currently entails having an
implementation of std::rt::Runtime inside of libnative as well as moving all of
the native I/O implementations to libnative.
The current snag is that the start lang item must currently be defined in
libnative in order to start running, but this will change in the future.
Cool fact about this crate, there are no extra features that are enabled.
Note that this commit does not include any makefile support necessary for
building libnative, that's all coming in a later commit.