Pretty print `Fn` traits in `rustc_on_unimplemented`
I don't think that users really ever should need to think about `Fn*` traits' tupled args for a simple trait error.
r? diagnostics
Add all RPITITs when augmenting param-env with GAT bounds in `check_type_bounds`
When checking that associated type definitions actually satisfy their associated type bounds in `check_type_bounds`, we construct a "`normalize_param_env`" which adds a projection predicate that allows us to assume that we can project the GAT to the definition we're checking. For example, in:
```rust
type Foo {
type Bar: Display = i32;
}
```
We would add `<Self as Foo>::Bar = i32` as a projection predicate when checking that `i32: Display` holds.
That `normalize_param_env` was, for some reason, only being used to normalize the predicate before it was registered. This is sketchy, because a nested obligation may require the GAT bound to hold, and also the projection cache is broken and doesn't differentiate projection cache keys that differ by param-envs 😿.
This `normalize_param_env` is also not sufficient when we have nested RPITITs and default trait methods, since we need to be able to assume we can normalize both the RPITIT and all of its child RPITITs to sufficiently prove all of its bounds. This is the cause of #117104, which only starts to fail for RPITITs that are nested 3 and above due to the projection-cache bug above.[^1]
## First fix
Use the `normalize_param_env` everywhere in `check_type_bounds`. This is reflected in a test I've constructed that fixes a GAT-only failure.
## Second fix
For RPITITs, install projection predicates for each RPITIT in the same function in `check_type_bounds`. This fixes#117104.
not sure who to request, so...
r? `@lcnr` hehe feel free to reassign :3
[^1]: The projection cache bug specifically occurs because we try normalizing the `assumed_wf_types` with the non-normalization param-env. This causes us to insert a projection cache entry that keeps the outermost RPITIT rigid, and it trivially satisifes all its own bounds. Super sketchy![^2]
[^2]: I haven't actually gone and fixed the projection cache bug because it's only marginally related, but I could, and it should no longer be triggered here.
Fix order of implementations in the "implementations on foreign types" section
Fixes#117391.
We forgot to run the `sort_by_cached_key` on this section. This fixes it.
r? `@notriddle`
Remove support for alias `-Z symbol-mangling-version`
(This is very similar to the removal of `-Z instrument-coverage` in #117111.)
`-C symbol-mangling-version` was stabilized back in rustc 1.59.0 (2022-02-24) via #90128, with the old unstable flag kept around (with a warning) as an alias to ease migration.
Clarify `Unsize` documentation
The documentation erroneously says that:
```rust
/// - Types implementing a trait `Trait` also implement `Unsize<dyn Trait>`.
/// - Structs `Foo<..., T, ...>` implement `Unsize<Foo<..., U, ...>>` if all of these conditions
/// are met:
/// - `T: Unsize<U>`.
/// - Only the last field of `Foo` has a type involving `T`.
/// - `Bar<T>: Unsize<Bar<U>>`, where `Bar<T>` stands for the actual type of that last field.
```
Specifically, `T: Unsize<U>` is not required to hold -- only the final field must implement `FinalField<T>: Unsize<FinalField<U>>`. This can be demonstrated by the test I added.
---
Second commit fleshes out the documentation a lot more.
use global cache when computing proof trees
we're writing the solver while relying on the existence of the global cache to avoid exponential blowup. By disabling the global cache when building proof trees, it is easy to get hangs, e.g. when computing intercrate ambiguity causes.
Removes the unstable `-Zdump_solver_proof_tree_use_cache` option, as we now always return a full proof tree.
r? `@compiler-errors`
Don't check for alias bounds in liveness when aliases have escaping bound vars
I actually have no idea how we *should* be treating aliases with escaping bound vars here... but the simplest behavior is just doing what we used to do before.
r? aliemjay
Fixes#117455