llvm::LLVMConstIntGetZExtValue doesn't accept values with more than 64 bits.
This fixes an LLVM assertion error when compiling libcore with stage1:
src/llvm/include/llvm/ADT/APInt.h:1336:
uint64_t llvm::APInt::getZExtValue() const:
Assertion `getActiveBits() <= 64 && "Too many bits for uint64_t"' failed.
Fixes rebase fallout, makes code correct in presence of 128-bit constants.
This commit includes manual merge conflict resolution changes from a rebase by @est31.
This commit introduces 128-bit integers. Stage 2 builds and produces a working compiler which
understands and supports 128-bit integers throughout.
The general strategy used is to have rustc_i128 module which provides aliases for iu128, equal to
iu64 in stage9 and iu128 later. Since nowhere in rustc we rely on large numbers being supported,
this strategy is good enough to get past the first bootstrap stages to end up with a fully working
128-bit capable compiler.
In order for this strategy to work, number of locations had to be changed to use associated
max_value/min_value instead of MAX/MIN constants as well as the min_value (or was it max_value?)
had to be changed to use xor instead of shift so both 64-bit and 128-bit based consteval works
(former not necessarily producing the right results in stage1).
This commit includes manual merge conflict resolution changes from a rebase by @est31.
Add ArrayVec and AccumulateVec to reduce heap allocations during interning of slices
Updates `mk_tup`, `mk_type_list`, and `mk_substs` to allow interning directly from iterators. The previous PR, #37220, changed some of the calls to pass a borrowed slice from `Vec` instead of directly passing the iterator, and these changes further optimize that to avoid the allocation entirely.
This change yields 50% less malloc calls in [some cases](https://pastebin.mozilla.org/8921686). It also yields decent, though not amazing, performance improvements:
```
futures-rs-test 4.091s vs 4.021s --> 1.017x faster (variance: 1.004x, 1.004x)
helloworld 0.219s vs 0.220s --> 0.993x faster (variance: 1.010x, 1.018x)
html5ever-2016- 3.805s vs 3.736s --> 1.018x faster (variance: 1.003x, 1.009x)
hyper.0.5.0 4.609s vs 4.571s --> 1.008x faster (variance: 1.015x, 1.017x)
inflate-0.1.0 3.864s vs 3.883s --> 0.995x faster (variance: 1.232x, 1.005x)
issue-32062-equ 0.309s vs 0.299s --> 1.033x faster (variance: 1.014x, 1.003x)
issue-32278-big 1.614s vs 1.594s --> 1.013x faster (variance: 1.007x, 1.004x)
jld-day15-parse 1.390s vs 1.326s --> 1.049x faster (variance: 1.006x, 1.009x)
piston-image-0. 10.930s vs 10.675s --> 1.024x faster (variance: 1.006x, 1.010x)
reddit-stress 2.302s vs 2.261s --> 1.019x faster (variance: 1.010x, 1.026x)
regex.0.1.30 2.250s vs 2.240s --> 1.005x faster (variance: 1.087x, 1.011x)
rust-encoding-0 1.895s vs 1.887s --> 1.005x faster (variance: 1.005x, 1.018x)
syntex-0.42.2 29.045s vs 28.663s --> 1.013x faster (variance: 1.004x, 1.006x)
syntex-0.42.2-i 13.925s vs 13.868s --> 1.004x faster (variance: 1.022x, 1.007x)
```
We implement a small-size optimized vector, intended to be used primarily for collection of presumed to be short iterators. This vector cannot be "upsized/reallocated" into a heap-allocated vector, since that would require (slow) branching logic, but during the initial collection from an iterator heap-allocation is possible.
We make the new `AccumulateVec` and `ArrayVec` generic over implementors of the `Array` trait, of which there is currently one, `[T; 8]`. In the future, this is likely to expand to other values of N.
Huge thanks to @nnethercote for collecting the performance and other statistics mentioned above.
Every codegen unit gets its own local counter for generating new symbol
names. This makes bitcode and object files reproducible at the binary
level even when incremental compilation is used.