rust/src/librustc_trans/common.rs
2016-12-20 20:03:27 -07:00

1053 lines
35 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(non_camel_case_types, non_snake_case)]
//! Code that is useful in various trans modules.
use session::Session;
use llvm;
use llvm::{ValueRef, BasicBlockRef, BuilderRef, ContextRef, TypeKind};
use llvm::{True, False, Bool, OperandBundleDef, get_param};
use llvm::debuginfo::DIScope;
use monomorphize::Instance;
use rustc::hir::def::Def;
use rustc::hir::def_id::DefId;
use rustc::hir::map::DefPathData;
use rustc::infer::TransNormalize;
use rustc::mir::Mir;
use rustc::util::common::MemoizationMap;
use middle::lang_items::LangItem;
use rustc::ty::subst::Substs;
use abi::{Abi, FnType};
use base;
use builder::Builder;
use callee::Callee;
use consts;
use debuginfo;
use declare;
use machine;
use monomorphize;
use type_::Type;
use value::Value;
use rustc::ty::{self, Ty, TyCtxt};
use rustc::ty::layout::Layout;
use rustc::traits::{self, SelectionContext, Reveal};
use rustc::ty::fold::TypeFoldable;
use rustc::hir;
use libc::{c_uint, c_char};
use std::borrow::Cow;
use std::iter;
use std::ops::Deref;
use std::ffi::CString;
use std::cell::{Cell, Ref};
use syntax::ast;
use syntax::symbol::{Symbol, InternedString};
use syntax_pos::{DUMMY_SP, Span};
pub use context::{CrateContext, SharedCrateContext};
/// Is the type's representation size known at compile time?
pub fn type_is_sized<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, ty: Ty<'tcx>) -> bool {
ty.is_sized(tcx, &tcx.empty_parameter_environment(), DUMMY_SP)
}
pub fn type_is_fat_ptr<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, ty: Ty<'tcx>) -> bool {
match ty.sty {
ty::TyRawPtr(ty::TypeAndMut{ty, ..}) |
ty::TyRef(_, ty::TypeAndMut{ty, ..}) |
ty::TyBox(ty) => {
!type_is_sized(tcx, ty)
}
_ => {
false
}
}
}
pub fn type_is_immediate<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool {
use machine::llsize_of_alloc;
use type_of::sizing_type_of;
let tcx = ccx.tcx();
let simple = ty.is_scalar() ||
ty.is_unique() || ty.is_region_ptr() ||
ty.is_simd();
if simple && !type_is_fat_ptr(tcx, ty) {
return true;
}
if !type_is_sized(tcx, ty) {
return false;
}
match ty.sty {
ty::TyAdt(..) | ty::TyTuple(..) | ty::TyArray(..) | ty::TyClosure(..) => {
let llty = sizing_type_of(ccx, ty);
llsize_of_alloc(ccx, llty) <= llsize_of_alloc(ccx, ccx.int_type())
}
_ => type_is_zero_size(ccx, ty)
}
}
/// Returns Some([a, b]) if the type has a pair of fields with types a and b.
pub fn type_pair_fields<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>)
-> Option<[Ty<'tcx>; 2]> {
match ty.sty {
ty::TyAdt(adt, substs) => {
assert_eq!(adt.variants.len(), 1);
let fields = &adt.variants[0].fields;
if fields.len() != 2 {
return None;
}
Some([monomorphize::field_ty(ccx.tcx(), substs, &fields[0]),
monomorphize::field_ty(ccx.tcx(), substs, &fields[1])])
}
ty::TyClosure(def_id, substs) => {
let mut tys = substs.upvar_tys(def_id, ccx.tcx());
tys.next().and_then(|first_ty| tys.next().and_then(|second_ty| {
if tys.next().is_some() {
None
} else {
Some([first_ty, second_ty])
}
}))
}
ty::TyTuple(tys) => {
if tys.len() != 2 {
return None;
}
Some([tys[0], tys[1]])
}
_ => None
}
}
/// Returns true if the type is represented as a pair of immediates.
pub fn type_is_imm_pair<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>)
-> bool {
match *ccx.layout_of(ty) {
Layout::FatPointer { .. } => true,
Layout::Univariant { ref variant, .. } => {
// There must be only 2 fields.
if variant.offsets.len() != 2 {
return false;
}
match type_pair_fields(ccx, ty) {
Some([a, b]) => {
type_is_immediate(ccx, a) && type_is_immediate(ccx, b)
}
None => false
}
}
_ => false
}
}
/// Identify types which have size zero at runtime.
pub fn type_is_zero_size<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> bool {
use machine::llsize_of_alloc;
use type_of::sizing_type_of;
let llty = sizing_type_of(ccx, ty);
llsize_of_alloc(ccx, llty) == 0
}
/*
* A note on nomenclature of linking: "extern", "foreign", and "upcall".
*
* An "extern" is an LLVM symbol we wind up emitting an undefined external
* reference to. This means "we don't have the thing in this compilation unit,
* please make sure you link it in at runtime". This could be a reference to
* C code found in a C library, or rust code found in a rust crate.
*
* Most "externs" are implicitly declared (automatically) as a result of a
* user declaring an extern _module_ dependency; this causes the rust driver
* to locate an extern crate, scan its compilation metadata, and emit extern
* declarations for any symbols used by the declaring crate.
*
* A "foreign" is an extern that references C (or other non-rust ABI) code.
* There is no metadata to scan for extern references so in these cases either
* a header-digester like bindgen, or manual function prototypes, have to
* serve as declarators. So these are usually given explicitly as prototype
* declarations, in rust code, with ABI attributes on them noting which ABI to
* link via.
*
* An "upcall" is a foreign call generated by the compiler (not corresponding
* to any user-written call in the code) into the runtime library, to perform
* some helper task such as bringing a task to life, allocating memory, etc.
*
*/
use Disr;
/// The concrete version of ty::FieldDef. The name is the field index if
/// the field is numeric.
pub struct Field<'tcx>(pub ast::Name, pub Ty<'tcx>);
/// The concrete version of ty::VariantDef
pub struct VariantInfo<'tcx> {
pub discr: Disr,
pub fields: Vec<Field<'tcx>>
}
impl<'a, 'tcx> VariantInfo<'tcx> {
pub fn from_ty(tcx: TyCtxt<'a, 'tcx, 'tcx>,
ty: Ty<'tcx>,
opt_def: Option<Def>)
-> Self
{
match ty.sty {
ty::TyAdt(adt, substs) => {
let variant = match opt_def {
None => adt.struct_variant(),
Some(def) => adt.variant_of_def(def)
};
VariantInfo {
discr: Disr::from(variant.disr_val),
fields: variant.fields.iter().map(|f| {
Field(f.name, monomorphize::field_ty(tcx, substs, f))
}).collect()
}
}
ty::TyTuple(ref v) => {
VariantInfo {
discr: Disr(0),
fields: v.iter().enumerate().map(|(i, &t)| {
Field(Symbol::intern(&i.to_string()), t)
}).collect()
}
}
_ => {
bug!("cannot get field types from the type {:?}", ty);
}
}
}
}
pub struct BuilderRef_res {
pub b: BuilderRef,
}
impl Drop for BuilderRef_res {
fn drop(&mut self) {
unsafe {
llvm::LLVMDisposeBuilder(self.b);
}
}
}
pub fn BuilderRef_res(b: BuilderRef) -> BuilderRef_res {
BuilderRef_res {
b: b
}
}
pub fn validate_substs(substs: &Substs) {
assert!(!substs.needs_infer());
}
// Function context. Every LLVM function we create will have one of
// these.
pub struct FunctionContext<'a, 'tcx: 'a> {
// The MIR for this function.
pub mir: Option<Ref<'tcx, Mir<'tcx>>>,
// The ValueRef returned from a call to llvm::LLVMAddFunction; the
// address of the first instruction in the sequence of
// instructions for this function that will go in the .text
// section of the executable we're generating.
pub llfn: ValueRef,
// always an empty parameter-environment NOTE: @jroesch another use of ParamEnv
param_env: ty::ParameterEnvironment<'tcx>,
// A pointer to where to store the return value. If the return type is
// immediate, this points to an alloca in the function. Otherwise, it's a
// pointer to the hidden first parameter of the function. After function
// construction, this should always be Some.
pub llretslotptr: Cell<Option<ValueRef>>,
// These pub elements: "hoisted basic blocks" containing
// administrative activities that have to happen in only one place in
// the function, due to LLVM's quirks.
// A marker for the place where we want to insert the function's static
// allocas, so that LLVM will coalesce them into a single alloca call.
pub alloca_insert_pt: Cell<Option<ValueRef>>,
// When working with landingpad-based exceptions this value is alloca'd and
// later loaded when using the resume instruction. This ends up being
// critical to chaining landing pads and resuing already-translated
// cleanups.
//
// Note that for cleanuppad-based exceptions this is not used.
pub landingpad_alloca: Cell<Option<ValueRef>>,
// Describes the return/argument LLVM types and their ABI handling.
pub fn_ty: FnType,
// If this function is being monomorphized, this contains the type
// substitutions used.
pub param_substs: &'tcx Substs<'tcx>,
// This function's enclosing crate context.
pub ccx: &'a CrateContext<'a, 'tcx>,
// Used and maintained by the debuginfo module.
pub debug_context: debuginfo::FunctionDebugContext,
alloca_builder: OwnedBuilder<'a, 'tcx>,
}
impl<'a, 'tcx> FunctionContext<'a, 'tcx> {
/// Create a function context for the given function.
/// Beware that you must call `fcx.init` before doing anything with the returned function
/// context.
pub fn new(ccx: &'a CrateContext<'a, 'tcx>,
llfndecl: ValueRef,
fn_ty: FnType,
definition: Option<(Instance<'tcx>, &ty::FnSig<'tcx>, Abi)>)
-> FunctionContext<'a, 'tcx> {
let (param_substs, def_id) = match definition {
Some((instance, ..)) => {
validate_substs(instance.substs);
(instance.substs, Some(instance.def))
}
None => (ccx.tcx().intern_substs(&[]), None)
};
let local_id = def_id.and_then(|id| ccx.tcx().map.as_local_node_id(id));
debug!("FunctionContext::new({})", definition.map_or(String::new(), |d| d.0.to_string()));
let no_debug = if let Some(id) = local_id {
ccx.tcx().map.attrs(id).iter().any(|item| item.check_name("no_debug"))
} else if let Some(def_id) = def_id {
ccx.sess().cstore.item_attrs(def_id).iter().any(|item| item.check_name("no_debug"))
} else {
false
};
let mir = def_id.map(|id| ccx.tcx().item_mir(id));
let debug_context = if let (false, Some((instance, sig, abi)), &Some(ref mir)) =
(no_debug, definition, &mir) {
debuginfo::create_function_debug_context(ccx, instance, sig, abi, llfndecl, mir)
} else {
debuginfo::empty_function_debug_context(ccx)
};
FunctionContext {
mir: mir,
llfn: llfndecl,
llretslotptr: Cell::new(None),
param_env: ccx.tcx().empty_parameter_environment(),
alloca_insert_pt: Cell::new(None),
landingpad_alloca: Cell::new(None),
fn_ty: fn_ty,
param_substs: param_substs,
ccx: ccx,
debug_context: debug_context,
alloca_builder: OwnedBuilder::new_with_ccx(ccx),
}
}
/// Performs setup on a newly created function, creating the entry
/// scope block and allocating space for the return pointer.
pub fn init(&'a self, skip_retptr: bool) -> BlockAndBuilder<'a, 'tcx> {
let entry_bcx = self.build_new_block("entry-block");
// Use a dummy instruction as the insertion point for all allocas.
// This is later removed in FunctionContext::cleanup.
self.alloca_insert_pt.set(Some(unsafe {
entry_bcx.load(C_null(Type::i8p(self.ccx)));
llvm::LLVMGetFirstInstruction(entry_bcx.llbb())
}));
self.alloca_builder.builder.position_at_start(entry_bcx.llbb());
if !self.fn_ty.ret.is_ignore() && !skip_retptr {
// We normally allocate the llretslotptr, unless we
// have been instructed to skip it for immediate return
// values, or there is nothing to return at all.
// But if there are no nested returns, we skip the indirection
// and have a single retslot
let slot = if self.fn_ty.ret.is_indirect() {
get_param(self.llfn, 0)
} else {
// We create an alloca to hold a pointer of type `ret.original_ty`
// which will hold the pointer to the right alloca which has the
// final ret value
self.alloca(self.fn_ty.ret.memory_ty(self.ccx), "sret_slot")
};
self.llretslotptr.set(Some(slot));
}
entry_bcx
}
pub fn mir(&self) -> Ref<'tcx, Mir<'tcx>> {
self.mir.as_ref().map(Ref::clone).expect("fcx.mir was empty")
}
pub fn cleanup(&self) {
unsafe {
llvm::LLVMInstructionEraseFromParent(self.alloca_insert_pt.get().unwrap());
}
}
pub fn new_block(&'a self, name: &str) -> BasicBlockRef {
unsafe {
let name = CString::new(name).unwrap();
llvm::LLVMAppendBasicBlockInContext(
self.ccx.llcx(),
self.llfn,
name.as_ptr()
)
}
}
pub fn build_new_block(&'a self, name: &str) -> BlockAndBuilder<'a, 'tcx> {
BlockAndBuilder::new(self.new_block(name), self)
}
pub fn monomorphize<T>(&self, value: &T) -> T
where T: TransNormalize<'tcx>
{
monomorphize::apply_param_substs(self.ccx.shared(),
self.param_substs,
value)
}
/// This is the same as `common::type_needs_drop`, except that it
/// may use or update caches within this `FunctionContext`.
pub fn type_needs_drop(&self, ty: Ty<'tcx>) -> bool {
self.ccx.tcx().type_needs_drop_given_env(ty, &self.param_env)
}
pub fn eh_personality(&self) -> ValueRef {
// The exception handling personality function.
//
// If our compilation unit has the `eh_personality` lang item somewhere
// within it, then we just need to translate that. Otherwise, we're
// building an rlib which will depend on some upstream implementation of
// this function, so we just codegen a generic reference to it. We don't
// specify any of the types for the function, we just make it a symbol
// that LLVM can later use.
//
// Note that MSVC is a little special here in that we don't use the
// `eh_personality` lang item at all. Currently LLVM has support for
// both Dwarf and SEH unwind mechanisms for MSVC targets and uses the
// *name of the personality function* to decide what kind of unwind side
// tables/landing pads to emit. It looks like Dwarf is used by default,
// injecting a dependency on the `_Unwind_Resume` symbol for resuming
// an "exception", but for MSVC we want to force SEH. This means that we
// can't actually have the personality function be our standard
// `rust_eh_personality` function, but rather we wired it up to the
// CRT's custom personality function, which forces LLVM to consider
// landing pads as "landing pads for SEH".
let ccx = self.ccx;
let tcx = ccx.tcx();
match tcx.lang_items.eh_personality() {
Some(def_id) if !base::wants_msvc_seh(ccx.sess()) => {
Callee::def(ccx, def_id, tcx.intern_substs(&[])).reify(ccx)
}
_ => {
if let Some(llpersonality) = ccx.eh_personality().get() {
return llpersonality
}
let name = if base::wants_msvc_seh(ccx.sess()) {
"__CxxFrameHandler3"
} else {
"rust_eh_personality"
};
let fty = Type::variadic_func(&[], &Type::i32(ccx));
let f = declare::declare_cfn(ccx, name, fty);
ccx.eh_personality().set(Some(f));
f
}
}
}
// Returns a ValueRef of the "eh_unwind_resume" lang item if one is defined,
// otherwise declares it as an external function.
pub fn eh_unwind_resume(&self) -> Callee<'tcx> {
use attributes;
let ccx = self.ccx;
let tcx = ccx.tcx();
assert!(ccx.sess().target.target.options.custom_unwind_resume);
if let Some(def_id) = tcx.lang_items.eh_unwind_resume() {
return Callee::def(ccx, def_id, tcx.intern_substs(&[]));
}
let ty = tcx.mk_fn_ptr(tcx.mk_bare_fn(ty::BareFnTy {
unsafety: hir::Unsafety::Unsafe,
abi: Abi::C,
sig: ty::Binder(tcx.mk_fn_sig(
iter::once(tcx.mk_mut_ptr(tcx.types.u8)),
tcx.types.never,
false
)),
}));
let unwresume = ccx.eh_unwind_resume();
if let Some(llfn) = unwresume.get() {
return Callee::ptr(llfn, ty);
}
let llfn = declare::declare_fn(ccx, "rust_eh_unwind_resume", ty);
attributes::unwind(llfn, true);
unwresume.set(Some(llfn));
Callee::ptr(llfn, ty)
}
pub fn alloca(&self, ty: Type, name: &str) -> ValueRef {
self.alloca_builder.builder.dynamic_alloca(ty, name)
}
}
pub struct OwnedBuilder<'blk, 'tcx: 'blk> {
builder: Builder<'blk, 'tcx>
}
impl<'blk, 'tcx> OwnedBuilder<'blk, 'tcx> {
pub fn new_with_ccx(ccx: &'blk CrateContext<'blk, 'tcx>) -> Self {
// Create a fresh builder from the crate context.
let llbuilder = unsafe {
llvm::LLVMCreateBuilderInContext(ccx.llcx())
};
OwnedBuilder {
builder: Builder {
llbuilder: llbuilder,
ccx: ccx,
}
}
}
}
impl<'blk, 'tcx> Drop for OwnedBuilder<'blk, 'tcx> {
fn drop(&mut self) {
unsafe {
llvm::LLVMDisposeBuilder(self.builder.llbuilder);
}
}
}
#[must_use]
pub struct BlockAndBuilder<'blk, 'tcx: 'blk> {
// The BasicBlockRef returned from a call to
// llvm::LLVMAppendBasicBlock(llfn, name), which adds a basic
// block to the function pointed to by llfn. We insert
// instructions into that block by way of this block context.
// The block pointing to this one in the function's digraph.
llbb: BasicBlockRef,
// The function context for the function to which this block is
// attached.
fcx: &'blk FunctionContext<'blk, 'tcx>,
owned_builder: OwnedBuilder<'blk, 'tcx>,
}
impl<'blk, 'tcx> BlockAndBuilder<'blk, 'tcx> {
pub fn new(llbb: BasicBlockRef, fcx: &'blk FunctionContext<'blk, 'tcx>) -> Self {
let owned_builder = OwnedBuilder::new_with_ccx(fcx.ccx);
// Set the builder's position to this block's end.
owned_builder.builder.position_at_end(llbb);
BlockAndBuilder {
llbb: llbb,
fcx: fcx,
owned_builder: owned_builder,
}
}
pub fn set_source_location(&self, scope: DIScope, sp: Span) {
debuginfo::set_source_location(self.fcx(), self, scope, sp)
}
pub fn at_start<F, R>(&self, f: F) -> R
where F: FnOnce(&BlockAndBuilder<'blk, 'tcx>) -> R
{
self.position_at_start(self.llbb);
let r = f(self);
self.position_at_end(self.llbb);
r
}
pub fn ccx(&self) -> &'blk CrateContext<'blk, 'tcx> {
self.fcx.ccx
}
pub fn fcx(&self) -> &'blk FunctionContext<'blk, 'tcx> {
self.fcx
}
pub fn tcx(&self) -> TyCtxt<'blk, 'tcx, 'tcx> {
self.fcx.ccx.tcx()
}
pub fn sess(&self) -> &'blk Session {
self.fcx.ccx.sess()
}
pub fn llbb(&self) -> BasicBlockRef {
self.llbb
}
}
impl<'blk, 'tcx> Deref for BlockAndBuilder<'blk, 'tcx> {
type Target = Builder<'blk, 'tcx>;
fn deref(&self) -> &Self::Target {
&self.owned_builder.builder
}
}
/// A structure representing an active landing pad for the duration of a basic
/// block.
///
/// Each `Block` may contain an instance of this, indicating whether the block
/// is part of a landing pad or not. This is used to make decision about whether
/// to emit `invoke` instructions (e.g. in a landing pad we don't continue to
/// use `invoke`) and also about various function call metadata.
///
/// For GNU exceptions (`landingpad` + `resume` instructions) this structure is
/// just a bunch of `None` instances (not too interesting), but for MSVC
/// exceptions (`cleanuppad` + `cleanupret` instructions) this contains data.
/// When inside of a landing pad, each function call in LLVM IR needs to be
/// annotated with which landing pad it's a part of. This is accomplished via
/// the `OperandBundleDef` value created for MSVC landing pads.
pub struct Funclet {
cleanuppad: ValueRef,
operand: OperandBundleDef,
}
impl Funclet {
pub fn gnu() -> Option<Funclet> {
None
}
pub fn msvc(cleanuppad: ValueRef) -> Option<Funclet> {
Some(Funclet {
cleanuppad: cleanuppad,
operand: OperandBundleDef::new("funclet", &[cleanuppad]),
})
}
pub fn cleanuppad(&self) -> ValueRef {
self.cleanuppad
}
pub fn bundle(&self) -> &OperandBundleDef {
&self.operand
}
}
impl Clone for Funclet {
fn clone(&self) -> Funclet {
Funclet {
cleanuppad: self.cleanuppad,
operand: OperandBundleDef::new("funclet", &[self.cleanuppad]),
}
}
}
pub fn val_ty(v: ValueRef) -> Type {
unsafe {
Type::from_ref(llvm::LLVMTypeOf(v))
}
}
// LLVM constant constructors.
pub fn C_null(t: Type) -> ValueRef {
unsafe {
llvm::LLVMConstNull(t.to_ref())
}
}
pub fn C_undef(t: Type) -> ValueRef {
unsafe {
llvm::LLVMGetUndef(t.to_ref())
}
}
pub fn C_integral(t: Type, u: u64, sign_extend: bool) -> ValueRef {
unsafe {
llvm::LLVMConstInt(t.to_ref(), u, sign_extend as Bool)
}
}
pub fn C_floating_f64(f: f64, t: Type) -> ValueRef {
unsafe {
llvm::LLVMConstReal(t.to_ref(), f)
}
}
pub fn C_nil(ccx: &CrateContext) -> ValueRef {
C_struct(ccx, &[], false)
}
pub fn C_bool(ccx: &CrateContext, val: bool) -> ValueRef {
C_integral(Type::i1(ccx), val as u64, false)
}
pub fn C_i32(ccx: &CrateContext, i: i32) -> ValueRef {
C_integral(Type::i32(ccx), i as u64, true)
}
pub fn C_u32(ccx: &CrateContext, i: u32) -> ValueRef {
C_integral(Type::i32(ccx), i as u64, false)
}
pub fn C_u64(ccx: &CrateContext, i: u64) -> ValueRef {
C_integral(Type::i64(ccx), i, false)
}
pub fn C_uint<I: AsU64>(ccx: &CrateContext, i: I) -> ValueRef {
let v = i.as_u64();
let bit_size = machine::llbitsize_of_real(ccx, ccx.int_type());
if bit_size < 64 {
// make sure it doesn't overflow
assert!(v < (1<<bit_size));
}
C_integral(ccx.int_type(), v, false)
}
pub trait AsI64 { fn as_i64(self) -> i64; }
pub trait AsU64 { fn as_u64(self) -> u64; }
// FIXME: remove the intptr conversions, because they
// are host-architecture-dependent
impl AsI64 for i64 { fn as_i64(self) -> i64 { self as i64 }}
impl AsI64 for i32 { fn as_i64(self) -> i64 { self as i64 }}
impl AsI64 for isize { fn as_i64(self) -> i64 { self as i64 }}
impl AsU64 for u64 { fn as_u64(self) -> u64 { self as u64 }}
impl AsU64 for u32 { fn as_u64(self) -> u64 { self as u64 }}
impl AsU64 for usize { fn as_u64(self) -> u64 { self as u64 }}
pub fn C_u8(ccx: &CrateContext, i: u8) -> ValueRef {
C_integral(Type::i8(ccx), i as u64, false)
}
// This is a 'c-like' raw string, which differs from
// our boxed-and-length-annotated strings.
pub fn C_cstr(cx: &CrateContext, s: InternedString, null_terminated: bool) -> ValueRef {
unsafe {
if let Some(&llval) = cx.const_cstr_cache().borrow().get(&s) {
return llval;
}
let sc = llvm::LLVMConstStringInContext(cx.llcx(),
s.as_ptr() as *const c_char,
s.len() as c_uint,
!null_terminated as Bool);
let sym = cx.generate_local_symbol_name("str");
let g = declare::define_global(cx, &sym[..], val_ty(sc)).unwrap_or_else(||{
bug!("symbol `{}` is already defined", sym);
});
llvm::LLVMSetInitializer(g, sc);
llvm::LLVMSetGlobalConstant(g, True);
llvm::LLVMRustSetLinkage(g, llvm::Linkage::InternalLinkage);
cx.const_cstr_cache().borrow_mut().insert(s, g);
g
}
}
// NB: Do not use `do_spill_noroot` to make this into a constant string, or
// you will be kicked off fast isel. See issue #4352 for an example of this.
pub fn C_str_slice(cx: &CrateContext, s: InternedString) -> ValueRef {
let len = s.len();
let cs = consts::ptrcast(C_cstr(cx, s, false), Type::i8p(cx));
C_named_struct(cx.str_slice_type(), &[cs, C_uint(cx, len)])
}
pub fn C_struct(cx: &CrateContext, elts: &[ValueRef], packed: bool) -> ValueRef {
C_struct_in_context(cx.llcx(), elts, packed)
}
pub fn C_struct_in_context(llcx: ContextRef, elts: &[ValueRef], packed: bool) -> ValueRef {
unsafe {
llvm::LLVMConstStructInContext(llcx,
elts.as_ptr(), elts.len() as c_uint,
packed as Bool)
}
}
pub fn C_named_struct(t: Type, elts: &[ValueRef]) -> ValueRef {
unsafe {
llvm::LLVMConstNamedStruct(t.to_ref(), elts.as_ptr(), elts.len() as c_uint)
}
}
pub fn C_array(ty: Type, elts: &[ValueRef]) -> ValueRef {
unsafe {
return llvm::LLVMConstArray(ty.to_ref(), elts.as_ptr(), elts.len() as c_uint);
}
}
pub fn C_vector(elts: &[ValueRef]) -> ValueRef {
unsafe {
return llvm::LLVMConstVector(elts.as_ptr(), elts.len() as c_uint);
}
}
pub fn C_bytes(cx: &CrateContext, bytes: &[u8]) -> ValueRef {
C_bytes_in_context(cx.llcx(), bytes)
}
pub fn C_bytes_in_context(llcx: ContextRef, bytes: &[u8]) -> ValueRef {
unsafe {
let ptr = bytes.as_ptr() as *const c_char;
return llvm::LLVMConstStringInContext(llcx, ptr, bytes.len() as c_uint, True);
}
}
pub fn const_get_elt(v: ValueRef, us: &[c_uint])
-> ValueRef {
unsafe {
let r = llvm::LLVMConstExtractValue(v, us.as_ptr(), us.len() as c_uint);
debug!("const_get_elt(v={:?}, us={:?}, r={:?})",
Value(v), us, Value(r));
r
}
}
pub fn const_to_uint(v: ValueRef) -> u64 {
unsafe {
llvm::LLVMConstIntGetZExtValue(v)
}
}
fn is_const_integral(v: ValueRef) -> bool {
unsafe {
!llvm::LLVMIsAConstantInt(v).is_null()
}
}
pub fn const_to_opt_int(v: ValueRef) -> Option<i64> {
unsafe {
if is_const_integral(v) {
Some(llvm::LLVMConstIntGetSExtValue(v))
} else {
None
}
}
}
pub fn const_to_opt_uint(v: ValueRef) -> Option<u64> {
unsafe {
if is_const_integral(v) {
Some(llvm::LLVMConstIntGetZExtValue(v))
} else {
None
}
}
}
pub fn is_undef(val: ValueRef) -> bool {
unsafe {
llvm::LLVMIsUndef(val) != False
}
}
#[allow(dead_code)] // potentially useful
pub fn is_null(val: ValueRef) -> bool {
unsafe {
llvm::LLVMIsNull(val) != False
}
}
/// Attempts to resolve an obligation. The result is a shallow vtable resolution -- meaning that we
/// do not (necessarily) resolve all nested obligations on the impl. Note that type check should
/// guarantee to us that all nested obligations *could be* resolved if we wanted to.
pub fn fulfill_obligation<'a, 'tcx>(scx: &SharedCrateContext<'a, 'tcx>,
span: Span,
trait_ref: ty::PolyTraitRef<'tcx>)
-> traits::Vtable<'tcx, ()>
{
let tcx = scx.tcx();
// Remove any references to regions; this helps improve caching.
let trait_ref = tcx.erase_regions(&trait_ref);
scx.trait_cache().memoize(trait_ref, || {
debug!("trans::fulfill_obligation(trait_ref={:?}, def_id={:?})",
trait_ref, trait_ref.def_id());
// Do the initial selection for the obligation. This yields the
// shallow result we are looking for -- that is, what specific impl.
tcx.infer_ctxt(None, None, Reveal::All).enter(|infcx| {
let mut selcx = SelectionContext::new(&infcx);
let obligation_cause = traits::ObligationCause::misc(span,
ast::DUMMY_NODE_ID);
let obligation = traits::Obligation::new(obligation_cause,
trait_ref.to_poly_trait_predicate());
let selection = match selcx.select(&obligation) {
Ok(Some(selection)) => selection,
Ok(None) => {
// Ambiguity can happen when monomorphizing during trans
// expands to some humongo type that never occurred
// statically -- this humongo type can then overflow,
// leading to an ambiguous result. So report this as an
// overflow bug, since I believe this is the only case
// where ambiguity can result.
debug!("Encountered ambiguity selecting `{:?}` during trans, \
presuming due to overflow",
trait_ref);
tcx.sess.span_fatal(span,
"reached the recursion limit during monomorphization \
(selection ambiguity)");
}
Err(e) => {
span_bug!(span, "Encountered error `{:?}` selecting `{:?}` during trans",
e, trait_ref)
}
};
debug!("fulfill_obligation: selection={:?}", selection);
// Currently, we use a fulfillment context to completely resolve
// all nested obligations. This is because they can inform the
// inference of the impl's type parameters.
let mut fulfill_cx = traits::FulfillmentContext::new();
let vtable = selection.map(|predicate| {
debug!("fulfill_obligation: register_predicate_obligation {:?}", predicate);
fulfill_cx.register_predicate_obligation(&infcx, predicate);
});
let vtable = infcx.drain_fulfillment_cx_or_panic(span, &mut fulfill_cx, &vtable);
info!("Cache miss: {:?} => {:?}", trait_ref, vtable);
vtable
})
})
}
pub fn langcall(tcx: TyCtxt,
span: Option<Span>,
msg: &str,
li: LangItem)
-> DefId {
match tcx.lang_items.require(li) {
Ok(id) => id,
Err(s) => {
let msg = format!("{} {}", msg, s);
match span {
Some(span) => tcx.sess.span_fatal(span, &msg[..]),
None => tcx.sess.fatal(&msg[..]),
}
}
}
}
// To avoid UB from LLVM, these two functions mask RHS with an
// appropriate mask unconditionally (i.e. the fallback behavior for
// all shifts). For 32- and 64-bit types, this matches the semantics
// of Java. (See related discussion on #1877 and #10183.)
pub fn build_unchecked_lshift<'blk, 'tcx>(bcx: &BlockAndBuilder<'blk, 'tcx>,
lhs: ValueRef,
rhs: ValueRef) -> ValueRef {
let rhs = base::cast_shift_expr_rhs(bcx, hir::BinOp_::BiShl, lhs, rhs);
// #1877, #10183: Ensure that input is always valid
let rhs = shift_mask_rhs(bcx, rhs);
bcx.shl(lhs, rhs)
}
pub fn build_unchecked_rshift<'blk, 'tcx>(bcx: &BlockAndBuilder<'blk, 'tcx>,
lhs_t: Ty<'tcx>,
lhs: ValueRef,
rhs: ValueRef) -> ValueRef {
let rhs = base::cast_shift_expr_rhs(bcx, hir::BinOp_::BiShr, lhs, rhs);
// #1877, #10183: Ensure that input is always valid
let rhs = shift_mask_rhs(bcx, rhs);
let is_signed = lhs_t.is_signed();
if is_signed {
bcx.ashr(lhs, rhs)
} else {
bcx.lshr(lhs, rhs)
}
}
fn shift_mask_rhs<'blk, 'tcx>(bcx: &BlockAndBuilder<'blk, 'tcx>,
rhs: ValueRef) -> ValueRef {
let rhs_llty = val_ty(rhs);
bcx.and(rhs, shift_mask_val(bcx, rhs_llty, rhs_llty, false))
}
pub fn shift_mask_val<'blk, 'tcx>(
bcx: &BlockAndBuilder<'blk, 'tcx>,
llty: Type,
mask_llty: Type,
invert: bool
) -> ValueRef {
let kind = llty.kind();
match kind {
TypeKind::Integer => {
// i8/u8 can shift by at most 7, i16/u16 by at most 15, etc.
let val = llty.int_width() - 1;
if invert {
C_integral(mask_llty, !val, true)
} else {
C_integral(mask_llty, val, false)
}
},
TypeKind::Vector => {
let mask = shift_mask_val(bcx, llty.element_type(), mask_llty.element_type(), invert);
bcx.vector_splat(mask_llty.vector_length(), mask)
},
_ => bug!("shift_mask_val: expected Integer or Vector, found {:?}", kind),
}
}
pub fn ty_fn_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
ty: Ty<'tcx>)
-> Cow<'tcx, ty::BareFnTy<'tcx>>
{
match ty.sty {
ty::TyFnDef(_, _, fty) => Cow::Borrowed(fty),
// Shims currently have type TyFnPtr. Not sure this should remain.
ty::TyFnPtr(fty) => Cow::Borrowed(fty),
ty::TyClosure(def_id, substs) => {
let tcx = ccx.tcx();
let ty::ClosureTy { unsafety, abi, sig } = tcx.closure_type(def_id, substs);
let env_region = ty::ReLateBound(ty::DebruijnIndex::new(1), ty::BrEnv);
let env_ty = match tcx.closure_kind(def_id) {
ty::ClosureKind::Fn => tcx.mk_imm_ref(tcx.mk_region(env_region), ty),
ty::ClosureKind::FnMut => tcx.mk_mut_ref(tcx.mk_region(env_region), ty),
ty::ClosureKind::FnOnce => ty,
};
let sig = sig.map_bound(|sig| tcx.mk_fn_sig(
iter::once(env_ty).chain(sig.inputs().iter().cloned()),
sig.output(),
sig.variadic
));
Cow::Owned(ty::BareFnTy { unsafety: unsafety, abi: abi, sig: sig })
}
_ => bug!("unexpected type {:?} to ty_fn_sig", ty)
}
}
pub fn is_closure(tcx: TyCtxt, def_id: DefId) -> bool {
tcx.def_key(def_id).disambiguated_data.data == DefPathData::ClosureExpr
}