adjust how closure/generator types are printed
I saw `&[closure@$DIR/issue-20862.rs:2:5]` and I thought it is a slice type, because that's usually what `&[_]` is... it took me a while to realize that this is just a confusing printer and actually there's no slice. Let's use something that cannot be mistaken for a regular type.
This function is now used to check `#[panic_handler]`, `start` lang item, `main`, `#[start]` and intrinsic functions.
The diagnosis produced are now closer to the ones produced by trait/impl method signature mismatch.
Avoid blessing cargo deps's source code in ui tests
Before this PR, the source code of dependencies was included in UI test error messages whenever possible. Unfortunately, "whenever possible" means in some cases the source code wouldn't be injected, resulting in a test failure.
One such case is when `$CARGO_HOME` is remapped to something that is not present on disk [^1]. As the remapped path doesn't exist on disk, the source code wouldn't be showed in `tests/ui/issues/issue-21763.rs`:
```diff
= note: required for `hashbrown::raw::RawTable<(Rc<()>, Rc<()>)>` to implement `Send`
note: required because it appears within the type `HashMap<Rc<()>, Rc<()>, RandomState>`
--> $HASHBROWN_SRC_LOCATION
- |
-LL | pub struct HashMap<K, V, S = DefaultHashBuilder, A: Allocator + Clone = Global> {
- | ^^^^^^^
note: required because it appears within the type `HashMap<Rc<()>, Rc<()>>`
--> $SRC_DIR/std/src/collections/hash/map.rs:LL:COL
note: required by a bound in `foo`
```
This PR fixes the problem by always hiding dependencies source code in the error messages generated during UI tests. This is implemented with a new internal flag, `-Z ignore-directory-in-diagnostics-source-blocks=$path`, which compiletest passes during UI tests. Once this is merged, remapping the Cargo home will be supported.
This PR is best reviewed commit-by-commit.
[^1]: After being puzzled for a bit, I discovered why this never impacted `rust-lang/rust`: we don't remap `$CARGO_HOME` 😅. Instead, we set `$CARGO_HOME` to `/cargo` in CI, which sort-of-but-not-really achieves the same effect.
Improve diagnostic for generic params from outer items (E0401)
Generalize the wording of E0401 to talk about *outer items* instead of *outer functions* since the current phrasing is outdated. The outer item can be a function, constant, trait, ADT or impl block (see the new UI test for the more exotic examples).
Further, don't suggest introducing generic parameters to constant items unless the feature `generic_const_items` is enabled.
Lastly, make E0401 translatable while we're at it.
Fixes#115720.
On the following example, point at `String` instead of the whole type:
```
error[E0277]: the trait bound `String: Copy` is not satisfied
--> $DIR/own-bound-span.rs:14:24
|
LL | let _: <S as D>::P<String>;
| ^^^^^^ the trait `Copy` is not implemented for `String`
|
note: required by a bound in `D::P`
--> $DIR/own-bound-span.rs:4:15
|
LL | type P<T: Copy>;
| ^^^^ required by this bound in `D::P`
```
Allow explicit `#[repr(Rust)]`
This is identical to no `repr()` at all. For `Rust, packed` and `Rust, align(x)`, it should be the same as no `Rust` at all (as, afaik, `#[repr(align(16))]` uses the Rust ABI.)
The main use case for this is being able to explicitly say "I want to use the Rust ABI" in very very rare circumstances where the first obvious choice would be the C ABI yet is undesirable, which is already possible with functions as `extern "Rust"`. This would be useful for silencing https://github.com/rust-lang/rust-clippy/pull/11253. It's also more consistent with `extern`.
The lack of this also tripped me up a bit when I was new to Rust, as I expected this to be possible.
Fix argument removal suggestion around macros
Fixes#112437.
Fixes#113866.
Helps with #114255.
The issue was that `span.find_ancestor_inside(outer)` could previously return a span with a different expansion context from `outer`.
This happens for example for the built-in macro `panic!`, which expands to another macro call of `panic_2021!` or `panic_2015!`. Because the call site of `panic_20xx!` has not associated source code, its span currently points to the call site of `panic!` instead.
Something similar also happens items that get desugared in AST->HIR lowering. For example, `for` loops get two spans: One "inner" span that has the `.desugaring_kind()` kind set to `DesugaringKind::ForLoop` and one "outer" span that does not. Similar to the macro situation, both of these spans point to the same source code, but have different expansion contexts.
This causes problems, because joining two spans with different expansion contexts will usually[^1] not actually join them together to avoid creating "spaghetti" spans that go from the macro definition to the macro call. For example, in the following snippet `full_span` might not actually contain the `adjusted_start` and `adjusted_end`. This caused the broken suggestion / debug ICE in the linked issues.
```rust
let adjusted_start = start.find_ancestor_inside(shared_ancestor);
let adjusted_end = end.find_ancestor_inside(shared_ancestor);
let full_span = adjusted_start.to(adjusted_end)
```
To fix the issue, this PR introduces a new method, `find_ancestor_inside_same_ctxt`, which combines the functionality of `find_ancestor_inside` and `find_ancestor_in_same_ctxt`: It finds an ancestor span that is contained within the parent *and* has the same syntax context, and is therefore safe to extend. This new method should probably be used everywhere, where the returned span is extended, but for now it is just used for the argument removal suggestion.
Additionally, this PR fixes a second issue where the function call itself is inside a macro but the arguments come from outside the macro. The test is added in the first commit to include stderr diff, so this is best reviewed commit by commit.
[^1]: If one expansion context is the root context and the other is not.
When encountering code like
```rust
fn foo() -> i32 {
match 0 {
1 => return 0,
2 => "",
_ => 1,
}
}
```
Point at the return type and not at the prior arm, as that arm has type
`!` which isn't influencing the arm corresponding to arm `2`.
Fix#78124.
Indexing is similar to method calls in having an arbitrary
left-hand-side and then something on the right, which is the main part
of the expression. Method calls already have a span for that right part,
but indexing does not. This means that long method chains that use
indexing have really bad spans, especially when the indexing panics and
that span in coverted into a panic location.
This does the same thing as method calls for the AST and HIR, storing an
extra span which is then put into the `fn_span` field in THIR.
new unstable option: -Zwrite-long-types-to-disk
This option guards the logic of writing long type names in files and instead using short forms in error messages in rustc_middle/ty/error behind a flag. The main motivation for this change is to disable this behaviour when running ui tests.
This logic can be triggered by running tests in a directory that has a long enough path, e.g. /my/very-long-path/where/rust-codebase/exists/
This means ui tests can fail depending on how long the path to their file is.
Some ui tests actually rely on this behaviour for their assertions, so for those we enable the flag manually.
This option guards the logic of writing long type names in files and
instead using short forms in error messages in rustc_middle/ty/error
behind a flag. The main motivation for this change is to disable this
behaviour when running ui tests.
This logic can be triggered by running tests in a directory that has a
long enough path, e.g. /my/very-long-path/where/rust-codebase/exists/
This means ui tests can fail depending on how long the path to their
file is.
Some ui tests actually rely on this behaviour for their assertions,
so for those we enable the flag manually.
Implement selection for `Unsize` for better coercion behavior
In order for much of coercion to succeed, we need to be able to deal with partial ambiguity of `Unsize` traits during selection. However, I pessimistically implemented selection in the new trait solver to just bail out with ambiguity if it was a built-in impl:
9227ff28af/compiler/rustc_trait_selection/src/solve/eval_ctxt/select.rs (L126)
This implements a proper "rematch" procedure for dealing with built-in `Unsize` goals, so that even if the goal is ambiguous, we are able to get nested obligations which are used in the coercion selection-like loop:
9227ff28af/compiler/rustc_hir_typeck/src/coercion.rs (L702)
Second commit just moves a `resolve_vars_if_possible` call to fix a bug where we weren't detecting a trait upcasting to occur.
r? ``@lcnr``
Don't call `query_normalize` when reporting similar impls
Firstly, It's sketchy to be using `query_normalize` at all during HIR typeck -- it's asking for an ICE 😅. Secondly, we're normalizing an impl trait ref that potentially has parameter types in `ty::ParamEnv::empty()`, which is kinda sketchy as well.
The only UI test change from removing this normalization is that we don't evaluate anonymous constants in impls, which end up giving us really ugly suggestions:
```
error[E0277]: the trait bound `[X; 35]: Default` is not satisfied
--> /home/gh-compiler-errors/test.rs:4:5
|
4 | <[X; 35] as Default>::default();
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ the trait `Default` is not implemented for `[X; 35]`
|
= help: the following other types implement trait `Default`:
&[T]
&mut [T]
[T; 32]
[T; core::::array::{impl#30}::{constant#0}]
[T; core::::array::{impl#31}::{constant#0}]
[T; core::::array::{impl#32}::{constant#0}]
[T; core::::array::{impl#33}::{constant#0}]
[T; core::::array::{impl#34}::{constant#0}]
and 27 others
```
So just fold the impls with a `BottomUpFolder` that calls `ty::Const::eval`. This doesn't work totally correctly with generic-const-exprs, but it's fine for stable code, and this is error reporting after all.