`/dev/urandom` is usually available on Emscripten, except when using
the special `NODERAWFS` filesystem backend, which replaces all normal
filesystem access with direct Node.js operations.
Since this filesystem backend directly access the filesystem on the
OS, it is not recommended to depend on `/dev/urandom`, especially
when trying to run the Wasm binary on OSes that are not Unix-based.
This can be considered a non-functional change, since Emscripten
implements `/dev/urandom` in the same way as `getentropy()` when not
linking with `-sNODERAWFS`.
Remove `identity_future` indirection
This was previously needed because the indirection used to hide some unexplained lifetime errors, which it turned out were related to the `min_choice` algorithm.
Removing the indirection also solves a couple of cycle errors, large moves and makes async blocks support the `#[track_caller]`annotation.
Fixes https://github.com/rust-lang/rust/issues/104826.
use `as_ptr` to determine the address of atomics
The PR #107736 renamed atomic `as_mut_ptr` to `as_ptr`. Consequently, the futex implementation of the tier-3 platform `RutyHermit` has to use this new interface. In addition, this PR removes also an unused import.
Stabilize `atomic_as_ptr`
Fixes#66893
This stabilizes the `as_ptr` methods for atomics. The stabilization feature gate used here is `atomic_as_ptr` which supersedes `atomic_mut_ptr` to match the change in https://github.com/rust-lang/rust/pull/107736.
This needs FCP.
New stable API:
```rust
impl AtomicBool {
pub const fn as_ptr(&self) -> *mut bool;
}
impl AtomicI32 {
pub const fn as_ptr(&self) -> *mut i32;
}
// Includes all other atomic types
impl<T> AtomicPtr<T> {
pub const fn as_ptr(&self) -> *mut *mut T;
}
```
r? libs-api
``@rustbot`` label +needs-fcp
Move `Option::as_slice` to an always-sound implementation
This approach depends on CSE to not have any branches or selects when the guessed offset is correct -- which it always will be right now -- but to also be *sound* (just less efficient) if the layout algorithms change such that the guess is incorrect.
The codegen test confirms that CSE handles this as expected, leaving the optimal codegen.
cc JakobDegen #108545
Introduce `Rc::into_inner`, as a parallel to `Arc::into_inner`
Unlike `Arc`, `Rc` doesn't have the same race condition to avoid, but
maintaining an equivalent API still makes it easier to work with both
`Rc` and `Arc`.
This approach depends on CSE to not have any branches or selects when the guessed offset is correct -- which it always will be right now -- but to also be *sound* (just less efficient) if the layout algorithms change such that the guess is incorrect.
I was looking into `array::IntoIter` optimization, and noticed that it wasn't annotating the loads with `noundef` for simple things like `array::IntoIter<i32, N>`.
Turned out to be a more general problem as `MaybeUninit::assume_init_read` isn't marking the load as initialized (<https://rust.godbolt.org/z/Mxd8TPTnv>), which is unfortunate since that's basically its reason to exist.
This PR lowers `ptr::read(p)` to `copy *p` in MIR, which fortuitiously also improves the IR we give to LLVM for things like `mem::replace`.
Unlike `Arc`, `Rc` doesn't have the same race condition to avoid, but
maintaining an equivalent API still makes it easier to work with both
`Rc` and `Arc`.
Rollup of 9 pull requests
Successful merges:
- #104363 (Make `unused_allocation` lint against `Box::new` too)
- #106633 (Stabilize `nonzero_min_max`)
- #106844 (allow negative numeric literals in `concat!`)
- #108071 (Implement goal caching with the new solver)
- #108542 (Force parentheses around `match` expression in binary expression)
- #108690 (Place size limits on query keys and values)
- #108708 (Prevent overflow through Arc::downgrade)
- #108739 (Prevent the `start_bx` basic block in codegen from having two `Builder`s at the same time)
- #108806 (Querify register_tools and post-expansion early lints)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Guarantee that when `read_buf_exact` returns, all bytes read will be
appended to the buffer. Including the case when the operations fails.
The motivating use case are operations on a non-blocking reader. When
`read_buf_exact` fails with `ErrorKind::WouldBlock` error, the operation
can be resumed at a later time.
Stabilize `nonzero_min_max`
## Overall
Stabilizes `nonzero_min_max` to allow the "infallible" construction of ordinary minimum and maximum `NonZero*` instances.
The feature is fairly straightforward and already matured for some time in stable toolchains.
```rust
let _ = NonZeroU8::MIN;
let _ = NonZeroI32::MAX;
```
## History
* On 2022-01-25, implementation was [created](https://github.com/rust-lang/rust/pull/93293).
## Considerations
* This report is fruit of the inanition observed after two unsuccessful attempts at getting feedback.
* Other constant variants discussed at https://github.com/rust-lang/rust/issues/89065#issuecomment-923238190 are orthogonal to this feature.
Fixes https://github.com/rust-lang/rust/issues/89065
Make `unused_allocation` lint against `Box::new` too
Previously it only linted against `box` syntax, which likely won't ever be stabilized, which is pretty useless. Even now I'm not sure if it's a meaningful lint, but it's at least something 🤷
This means that code like the following will be linted against:
```rust
Box::new([1, 2, 3]).len();
f(&Box::new(1)); // where f : &i32 -> ()
```
The lint works by checking if a `Box::new` (or `box`) expression has an a borrow adjustment, meaning that the code that first stores the box in a variable won't be linted against:
```rust
let boxed = Box::new([1, 2, 3]); // no lint
boxed.len();
```
Move __thread_local_inner to sys
Move `__thread_local_inner` macro in `crate:🧵:local` to `crate::sys`. Initially, I was thinking about removing this macro completely, but I could not find a way to create the generic statics without macros, so in the end, I just moved to code around.
This probably will need a rebase once https://github.com/rust-lang/rust/pull/108917 is merged
r? ``@workingjubilee``
Fix `vec_deque::Drain` FIXME
In my original `VecDeque` rewrite, I didn't use `VecDeque::slice_ranges` in `Drain::as_slices`, even though that's basically the exact use case for `slice_ranges`. The reason for this was that a `VecDeque` wrapped in a `Drain` actually has its length set to `drain_start`, so that there's no potential use after free if you `mem::forget` the `Drain`. I modified `slice_ranges` to accept an explicit `len` parameter instead, which it now uses to bounds check the given range. This way, `Drain::as_slices` can use `slice_ranges` internally instead of having to basically just copy paste the `slice_ranges` code. Since `slice_ranges` is just an internal helper function, this shouldn't change the user facing behavior in any way.
This allows removing all the platform-dependent code from `library/std/src/thread/local.rs` and `library/std/src/thread/mod.rs`
Signed-off-by: Ayush Singh <ayushsingh1325@gmail.com>
Split the __thread_local_inner macro to make it more readable. Also move
everything to crate::sys::common::thread_local.
Signed-off-by: Ayush Singh <ayushsingh1325@gmail.com>
Move __thread_local_inner macro in crate:🧵:local to crate::sys.
Currently, the tidy check does not fail for `library/std/src/thread/local.rs` even though it contains platform specific code. This is beacause target_family did not exist at the time the tidy checks were written [1].
[1]: https://github.com/rust-lang/rust/pull/105861#discussion_r1125841678
Signed-off-by: Ayush Singh <ayushsingh1325@gmail.com>
Fix the docs for pointer method with_metadata_of
The name of the argument to `{*const T, *mut T}::with_metadata_of` was changed from `val` to `meta` recently, but the docs weren't updated to match.
Relevant pull request: #103701
Rollup of 8 pull requests
Successful merges:
- #108754 (Retry `pred_known_to_hold_modulo_regions` with fulfillment if ambiguous)
- #108759 (1.41.1 supported 32-bit Apple targets)
- #108839 (Canonicalize root var when making response from new solver)
- #108856 (Remove DropAndReplace terminator)
- #108882 (Tweak E0740)
- #108898 (Set `LIBC_CHECK_CFG=1` when building Rust code in bootstrap)
- #108911 (Improve rustdoc-gui/tester.js code a bit)
- #108916 (Remove an unused return value in `rustc_hir_typeck`)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Guide `panic_immediate_abort` users away from `-Cpanic=unwind` and
towards `-Cpanic=abort` to avoid an accidental use of the feature with
the unwind strategy, e.g., on a targets where unwind is the default.
The `-Cpanic=unwind` combination doesn't offer the same benefits, since
the code would still be generated under the assumption that functions
implemented in Rust can unwind.
This was previously needed because the indirection used to hide some unexplained lifetime errors, which it turned out were related to the `min_choice` algorithm.
Removing the indirection also solves a couple of cycle errors, large moves and makes async blocks support the `#[track_caller]` annotation.
Use `nuw` when calculating slice lengths from `Range`s
An `assume` would definitely not be worth it, but since the flag is almost free we might as well tell LLVM this, especially on `_unchecked` calls where there's no obvious way for it to deduce it.
(Today neither safe nor unsafe indexing gets it: <https://rust.godbolt.org/z/G1jYT548s>)
Add `round_ties_even` to `f32` and `f64`
Tracking issue: #96710
Redux of #82273. See also #55107
Adds a new method, `round_ties_even`, to `f32` and `f64`, that rounds the float to the nearest integer , rounding halfway cases to the number with an even least significant bit. Uses the `roundeven` LLVM intrinsic to do this.
Of the five IEEE 754 rounding modes, this is the only one that doesn't already have a round-to-integer function exposed by Rust (others are `round`, `floor`, `ceil`, and `trunc`). Ties-to-even is also the rounding mode used for int-to-float and float-to-float `as` casts, as well as float arithmentic operations. So not having an explicit rounding method for it seems like an oversight.
Bikeshed: this PR currently uses `round_ties_even` for the name of the method. But maybe `round_ties_to_even` is better, or `round_even`, or `round_to_even`?
Implement read_buf for TcpStream, Stdin, StdinLock, ChildStdout,
ChildStderr (and internally for AnonPipe, Handle, Socket), so
that it skips buffer initialization.
The other provided methods like read_to_string and read_to_end are
implemented in terms of read_buf and so benefit from the optimization
as well.
This commit also implements read_vectored and is_read_vectored where
applicable.
An `assume` would definitely not be worth it, but since the flag is almost free we might as well tell LLVM this, especially on `_unchecked` calls where there's no obvious way for it to deduce it.
(Today neither safe nor unsafe indexing gets it: <https://rust.godbolt.org/z/G1jYT548s>)
Use `partial_cmp` to implement tuple `lt`/`le`/`ge`/`gt`
In today's implementation, `(A, B)::gt` contains calls to *both* `A::eq` *and* `A::gt`.
That's fine for primitives, but for things like `String`s it's kinda weird -- `(String, usize)::gt` has a call to both `bcmp` and `memcmp` (<https://rust.godbolt.org/z/7jbbPMesf>) because when `bcmp` says the `String`s aren't equal, it turns around and calls `memcmp` to find out which one's bigger.
This PR changes the implementation to instead implement `(A, …, C, Z)::gt` using `A::partial_cmp`, `…::partial_cmp`, `C::partial_cmp`, and `Z::gt`. (And analogously for `lt`, `le`, and `ge`.) That way expensive comparisons don't need to be repeated.
Technically this is an observable change on stable, so I've marked it `needs-fcp` + `T-libs-api` and will
r? rust-lang/libs-api
I'm hoping that this will be non-controversial, however, since it's very similar to the observable changes that were made to the derives (#81384#98655) -- like those, this only changes behaviour if a type overrode behaviour in a way inconsistent with the rules for the various traits involved.
(The first commit here is #108156, adding the codegen test, which I used to make sure this doesn't regress behaviour for primitives.)
Zulip conversation about this change: <https://rust-lang.zulipchat.com/#narrow/stream/219381-t-libs/topic/.60.3E.60.20on.20Tuples/near/328392927>.