Use ifaces instead of objs, stop wrapping everything in two (or three)
layers of no-value-added indirection, and remove some of the more
pointless/outdated idioms from the code.
This involved adding 'copy' to more generics than I hoped, but an
experiment with making it implicit showed that that way lies madness --
unless enforced, you will not remember to mark functions that don't
copy as not requiring copyable kind.
Issue #1177
This patch changes how to specify ABI and link name of a native module.
Before:
native "cdecl" mod llvm = "rustllvm" {...}
After:
#[abi = "cdecl"]
#[link_name = "rustllvm"]
native mod llvm {...}
The old optional syntax for ABI and link name is no longer supported.
Fixes issue #547
Vectors are allocated from the kernel's memory region, which has some heinous
synchronization. This is a stress test of vector allocation in many tasks.
I tried to pay attention to what was actually being tested so, e.g. when I
test was just using a vec as a boxed thing, I converted to boxed ints, etc.
Haven't converted the macro tests yet. Not sure what to do there.
that absolutely will not succeed with a large default stack. This
should be removed once we have stack grown working.
Also updated word-count to succeed under the new test framework.
This replaces the make-based test runner with a set of Rust-based test
runners. I believe that all existing functionality has been
preserved. The primary objective is to dogfood the Rust test
framework.
A few main things happen here:
1) The run-pass/lib-* tests are all moved into src/test/stdtest. This
is a standalone test crate intended for all standard library tests. It
compiles to build/test/stdtest.stageN.
2) rustc now compiles into yet another build artifact, this one a test
runner that runs any tests contained directly in the rustc crate. This
allows much more fine-grained unit testing of the compiler. It
compiles to build/test/rustctest.stageN.
3) There is a new custom test runner crate at src/test/compiletest
that reproduces all the functionality for running the compile-fail,
run-fail, run-pass and bench tests while integrating with Rust's test
framework. It compiles to build/test/compiletest.stageN.
4) The build rules have been completely changed to use the new test
runners, while also being less redundant, following the example of the
recent stageN.mk rewrite.
It adds two new features to the cfail/rfail/rpass/bench tests:
1) Tests can specify multiple 'error-pattern' directives which must be
satisfied in order.
2) Tests can specify a 'compile-flags' directive which will make the
test runner provide additional command line arguments to rustc.
There are some downsides, the primary being that Rust has to be
functioning pretty well just to run _any_ tests, which I imagine will
be the source of some frustration when the entire test suite
breaks. Will also cause some headaches during porting.
Not having individual make rules, each rpass, etc test no longer
remembers between runs whether it completed successfully. As a result,
it's not possible to incrementally fix multiple tests by just running
'make check', fixing a test, and repeating without re-running all the
tests contained in the test runner. Instead you can filter just the
tests you want to run by using the TESTNAME environment variable.
This also dispenses with the ability to run stage0 tests, but they
tended to be broken more often than not anyway.
Updated the MapReduce protocol so that it's correct more often. It's
still not perfect, but the bugs repro less often now.
Also found a race condition in channel sending. The problem is that
send and receive both need to refer to the _unread field in
circular_buffer. For now I just grabbed the port lock to send. We can
probably get around this by using atomics instead.
This meant most of the generic-ness of it had to go away, since our
type system doesn't quite support it yet. Hopefully someday...
This version has lots of memory management errors. My next commit will
hopefully fix these.
Currently it's only sequential, but it can do word frequency
counting. In an ideal world it would all be polymorphic, but that
pushes the limits of our type system right now. We can generalize it
later.