A quick and dirty fix for #15036 until we get serious decoder reform.
Right now it is impossible for a Decodable to signal a decode error,
for example if it has only finitely many allowed values, is a string
which must be encoded a certain way, needs a valid checksum, etc. For
example in the libuuid implementation of Decodable an Option is
unwrapped, meaning that a decode of a malformed UUID will cause the
task to fail.
Since this adds a method to the `Decoder` trait, all users will need
to update their implementations to add it. The strategy used for the
current implementations for JSON and EBML is to add a new entry to
the error enum `ApplicationError(String)` which stores the string
provided to `.error()`.
[breaking-change]
Our implementation of ebml has diverged from the standard in order
to better serve the needs of the compiler, so it doesn't make much
sense to call what we have ebml anyore. Furthermore, our implementation
is pretty crufty, and should eventually be rewritten into a format
that better suits the needs of the compiler. This patch factors out
serialize::ebml into librbml, otherwise known as the Really Bad
Markup Language. This is a stopgap library that shouldn't be used
by end users, and will eventually be replaced by something better.
[breaking-change]
I ran `make check` and everything went smoothly. I also tested `#[deriving(Decodable, Encodable)]` on a struct containing both Cell<T> and RefCell<T> and everything now seems to work fine.
This was parsed by the parser but completely ignored; not even stored in
the AST!
This breaks code that looks like:
static X: &'static [u8] = &'static [1, 2, 3];
Change this code to the shorter:
static X: &'static [u8] = &[1, 2, 3];
Closes#15312.
[breaking-change]
Now you can just use `json::encode` and `json::decode`, which is very
practical
**Deprecated `Encoder::str_encode` in favor of `json::encode`**
[breaking-change]
* Tried to make the code more idiomatic
* Renamed the `wr` field of the `Encoder` and `PrettyEncoder` structs to `writer`
* Replaced some `from_utf8` by `from_utf8_owned` to avoid unnecessary allocations
* Removed unnecessary `unsafe` code
I ended up altering the semantics of Json's PartialOrd implementation.
It used to be the case that Null < Null, but I can't think of any reason
for an ordering other than the default one so I just switched it over to
using the derived implementation.
This also fixes broken `PartialOrd` implementations for `Vec` and
`TreeMap`.
RFC: 0028-partial-cmp
floating point numbers for real.
This will break code that looks like:
let mut x = 0;
while ... {
x += 1;
}
println!("{}", x);
Change that code to:
let mut x = 0i;
while ... {
x += 1;
}
println!("{}", x);
Closes#15201.
[breaking-change]
This change registers new snapshots, allowing `*T` to be removed from the language. This is a large breaking change, and it is recommended that if compiler errors are seen that any FFI calls are audited to determine whether they should be actually taking `*mut T`.
The JSON spec requires that these special values be serialized as null; the current serialization breaks any conformant JSON parser. So encoding needs to output "null", to_json on floating-point types can return Null as well as Number, and reading null when specifically expecting a number should be interpreted as NaN. There's no way to round-trip Infinity.
This breaks a fair amount of code. The typical patterns are:
* `for _ in range(0, 10)`: change to `for _ in range(0u, 10)`;
* `println!("{}", 3)`: change to `println!("{}", 3i)`;
* `[1, 2, 3].len()`: change to `[1i, 2, 3].len()`.
RFC #30. Closes#6023.
[breaking-change]
This creates a stability baseline for all crates that we distribute that are not `std`. In general, all library code must start as experimental and progress in stages to become stable.