CTFE interning: don't walk allocations that don't need it
The interning of const allocations visits the mplace looking for references to intern. Walking big aggregates like big static arrays can be costly, so we only do it if the allocation we're interning contains references or interior mutability.
Walking ZSTs was avoided before, and this optimization is now applied to cases where there are no references/relocations either.
---
While initially looking at this in the context of #93215, I've been testing with smaller allocations than the 16GB one in that issue, and with different init/uninit patterns (esp. via padding).
In that example, by default, `eval_to_allocation_raw` is the heaviest query followed by `incr_comp_serialize_result_cache`. So I'll show numbers when incremental compilation is disabled, to focus on the const allocations themselves at 95% of the compilation time, at bigger array sizes on these minimal examples like `static ARRAY: [u64; LEN] = [0; LEN];`.
That is a close construction to parts of the `ctfe-stress-test-5` benchmark, which has const allocations in the megabytes, while most crates usually have way smaller ones. This PR will have the most impact in these situations, as the walk during the interning starts to dominate the runtime.
Unicode crates (some of which are present in our benchmarks) like `ucd`, `encoding_rs`, etc come to mind as having bigger than usual allocations as well, because of big tables of code points (in the hundreds of KB, so still an order of magnitude or 2 less than the stress test).
In a check build, for a single static array shown above, from 100 to 10^9 u64s (for lengths in powers of ten), the constant factors are lowered:
(log scales for easier comparisons)
![plot_log](https://user-images.githubusercontent.com/247183/171422958-16f1ea19-3ed4-4643-812c-1c7c60a97e19.png)
(linear scale for absolute diff at higher Ns)
![plot_linear](https://user-images.githubusercontent.com/247183/171401886-2a869a4d-5cd5-47d3-9a5f-8ce34b7a6917.png)
For one of the alternatives of that issue
```rust
const ROWS: usize = 100_000;
const COLS: usize = 10_000;
static TWODARRAY: [[u128; COLS]; ROWS] = [[0; COLS]; ROWS];
```
we can see a similar reduction of around 3x (from 38s to 12s or so).
For the same size, the slowest case IIRC is when there are uninitialized bytes e.g. via padding
```rust
const ROWS: usize = 100_000;
const COLS: usize = 10_000;
static TWODARRAY: [[(u64, u8); COLS]; ROWS] = [[(0, 0); COLS]; ROWS];
```
then interning/walking does not dominate anymore (but means there is likely still some interesting work left to do here).
Compile times in this case rise up quite a bit, and avoiding interning walks has less impact: around 23%, from 730s on master to 568s with this PR.
Enable MIR inlining
Continuation of https://github.com/rust-lang/rust/pull/82280 by `@wesleywiser.`
#82280 has shown nice compile time wins could be obtained by enabling MIR inlining.
Most of the issues in https://github.com/rust-lang/rust/issues/81567 are now fixed,
except the interaction with polymorphization which is worked around specifically.
I believe we can proceed with enabling MIR inlining in the near future
(preferably just after beta branching, in case we discover new issues).
Steps before merging:
- [x] figure out the interaction with polymorphization;
- [x] figure out how miri should deal with extern types;
- [x] silence the extra arithmetic overflow warnings;
- [x] remove the codegen fulfilment ICE;
- [x] remove the type normalization ICEs while compiling nalgebra;
- [ ] tweak the inlining threshold.
interpret: make a comment less scary
This slipped past my review: "has no meaning" could be read as "is undefined behavior". That is certainly not what we mean so be more clear.
cleanup mir visitor for `rustc::pass_by_value`
by changing `& $($mutability)?` to `$(& $mutability)?`
I also did some formatting changes because I started doing them for the visit methods I changed and then couldn't get myself to stop xx, I hope that's still fairly easy to review.
Const eval no longer runs MIR optimizations so unless this is getting
run as part of a MIR optimization like const-prop, there can be unused
type parameters even if polymorphization is enabled.
interpret: add From<&MplaceTy> for PlaceTy
We have a similar instance for `&MPlaceTy` to `OpTy`. Also add the same for `&mut`.
This avoids having to write `&(*place).into()`, which we have a few times here and at least twice in Miri (and it comes up again in my current patch).
r? ```@oli-obk```
interpret: do not prune requires_caller_location stack frames quite so early
https://github.com/rust-lang/rust/pull/87000 made the interpreter skip `caller_location` frames for its stacktraces and `cur_span`. However, those functions are used for much more than just panic reporting, and e.g. when Miri reports UB somewhere, it probably wants to point inside `caller_location` frames. (And if it did not, it would want to have its own logic to decide that, not be forced into it by the core interpreter engine.) This fixes some rare ICEs in Miri that say "we should never pop more than one frame at once".
So let's remove all `caller_location` logic from the core interpreter, and instead move it to CTFE error reporting. This does not change user-visible behavior. That's the first commit.
We might additionally want to change CTFE error reporting to treat panics differently from other errors: only prune `caller_location` frames for panics. The second commit does that. But honestly I am not sure if this is an improvement.
r? ``@oli-obk``
Checking the size/alignment of an mplace may be costly, so we only do it
on the types where the walk we want to avoid could be expensive: the larger types
like arrays and slices, rather than on all aggregates being interned.
Reorganizes the previous commits to have a single exit-point to avoid doing the
potentially costly walk. Also moves the relocations tests before the interior
mutability test: only references are important when checking for `UnsafeCell`s
and we're checking if there are any to decide to avoid the walk anyways.
The interning of const allocations visits the mplace looking for references
to intern. Walking big aggregates like big static arrays can be costly,
so we only do it if the allocation we're interning contains references
or interior mutability.
Walking ZSTs was avoided before, and this optimization is now applied
to cases where there are no references/relocations either.
We now have an infallible function that also tells us which kind of allocation we are talking about.
Also we do longer have to distinguish between data and function allocations for liveness.
Remove dereferencing of Box from codegen
Through #94043, #94414, #94873, and #95328, I've been fixing issues caused by Box being treated like a pointer when it is not a pointer. However, these PRs just introduced special cases for Box. This PR removes those special cases and instead transforms a deref of Box into a deref of the pointer it contains.
Hopefully, this is the end of the Box<T, A> ICEs.
The current code is a basis for `is_const_fn_raw`, and `impl_constness`
is no longer a valid name, which is previously used for determining the
constness of impls, and not items in general.
And likewise for the `Const::val` method.
Because its type is called `ConstKind`. Also `val` is a confusing name
because `ConstKind` is an enum with seven variants, one of which is
called `Value`. Also, this gives consistency with `TyS` and `PredicateS`
which have `kind` fields.
The commit also renames a few `Const` variables from `val` to `c`, to
avoid confusion with the `ConstKind::Value` variant.
Remove unnecessary `to_string` and `String::new`
73fa217bc1 changed the type of the `suggestion` argument to `impl ToString`. This patch removes unnecessary `to_string` and `String::new`.
cc: `````@davidtwco`````
interpret: unify offset_from check with offset check
`offset` does the check with a single `check_ptr_access` call while `offset_from` used two calls. Make them both just one one call.
I originally intended to actually factor this into a common function, but I am no longer sure if that makes a lot of sense... the two functions start with pretty different precondition (e.g. `offset` *knows* that the 2nd pointer has the same provenance).
I also reworded the UB messages a little. Saying it "cannot" do something is not how we usually phrase UB (as far as I know). Instead it's not *allowed* to do that.
r? ``````@oli-obk``````
use precise spans for recursive const evaluation
This fixes https://github.com/rust-lang/rust/issues/73283 by using a `TyCtxtAt` with a more precise span when the interpreter recursively calls itself. Hopefully such calls are sufficiently rare that this does not cost us too much performance.
(In theory, cycles can also arise through layout computation, as layout can depend on consts -- but layout computation happens all the time so we'd have to do something to not make this terrible for performance.)
This commit makes type folding more like the way chalk does it.
Currently, `TypeFoldable` has `fold_with` and `super_fold_with` methods.
- `fold_with` is the standard entry point, and defaults to calling
`super_fold_with`.
- `super_fold_with` does the actual work of traversing a type.
- For a few types of interest (`Ty`, `Region`, etc.) `fold_with` instead
calls into a `TypeFolder`, which can then call back into
`super_fold_with`.
With the new approach, `TypeFoldable` has `fold_with` and
`TypeSuperFoldable` has `super_fold_with`.
- `fold_with` is still the standard entry point, *and* it does the
actual work of traversing a type, for all types except types of
interest.
- `super_fold_with` is only implemented for the types of interest.
Benefits of the new model.
- I find it easier to understand. The distinction between types of
interest and other types is clearer, and `super_fold_with` doesn't
exist for most types.
- With the current model is easy to get confused and implement a
`super_fold_with` method that should be left defaulted. (Some of the
precursor commits fixed such cases.)
- With the current model it's easy to call `super_fold_with` within
`TypeFolder` impls where `fold_with` should be called. The new
approach makes this mistake impossible, and this commit fixes a number
of such cases.
- It's potentially faster, because it avoids the `fold_with` ->
`super_fold_with` call in all cases except types of interest. A lot of
the time the compile would inline those away, but not necessarily
always.
Rollup of 5 pull requests
Successful merges:
- #97312 (Compute lifetimes in scope at diagnostic time)
- #97495 (Add E0788 for improper #[no_coverage] usage)
- #97579 (Avoid creating `SmallVec`s in `global_llvm_features`)
- #97767 (interpret: do not claim UB until we looked more into variadic functions)
- #97787 (E0432: rust 2018 -> rust 2018 or later in --explain message)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
interpret: better control over whether we read data with provenance
The resolution in https://github.com/rust-lang/unsafe-code-guidelines/issues/286 seems to be that when we load data at integer type, we implicitly strip provenance. So let's implement that in Miri at least for scalar loads. This makes use of the fact that `Scalar` layouts distinguish pointer-sized integers and pointers -- so I was expecting some wild bugs where layouts set this incorrectly, but so far that does not seem to happen.
This does not entirely implement the solution to https://github.com/rust-lang/unsafe-code-guidelines/issues/286; we still do the wrong thing for integers in larger types: we will `copy_op` them and then do validation, and validation will complain about the provenance. To fix that we need mutating validation; validation needs to strip the provenance rather than complaining about it. This is a larger undertaking (but will also help resolve https://github.com/rust-lang/miri/issues/845 since we can reset padding to `Uninit`).
The reason this is useful is that we can now implement `addr` as a `transmute` from a pointer to an integer, and actually get the desired behavior of stripping provenance without exposing it!
take back half-baked noaliasing check in Assignment
Doing an aliasing check in `copy_op` does not make a ton of sense. We have to eventually do something in the `Assignment` statement handling instead.
rename PointerAddress → PointerExposeAddress
`PointerAddress` sounds a bit too much like `ptr.addr()`, but this corresponds to `ptr.expose_addr()`.
r? `@tmiasko`
Ensure we never consider the null pointer dereferencable
This replaces the checks that are being removed in https://github.com/rust-lang/rust/pull/97188. Those checks were too early and hence incorrect.
Miri call ABI check: ensure type size+align stay the same
We should almost certainly not accept calls where caller and callee disagree on the size or alignment of the type.
The checks we do *almost* imply that, except that `ScalarPair` types can have `repr(align)` and thus differ in size/align even when they are pairs of the same primitive type.
r? ``@oli-obk``
Add validation layer for Derefer
_Follow up work to #96549#96116#95857 #95649_
This adds validation for Derefer making sure it is always the first projection.
r? rust-lang/mir-opt
Replace `#[default_method_body_is_const]` with `#[const_trait]`
pulled out of #96077
related issues: #67792 and #92158
cc `@fee1-dead`
This is groundwork to only allowing `impl const Trait` for traits that are marked with `#[const_trait]`. This is necessary to prevent adding a new default method from becoming a breaking change (as it could be a non-const fn).
Move various checks to typeck so them failing causes the typeck result to get tainted
Fixes#69487fixes#79047
cc `@RalfJung` this gets rid of the `Transmute` invalid program error variant
Implement proper stability check for const impl Trait, fall back to unstable const when undeclared
Continuation of #93960
`@jhpratt` it looks to me like the test was simply not testing for the failure you were looking for? Your checks actually do the right thing for const traits?
Remove unneeded null pointer asserts in ptr2int casts
This removes an assert that a pointer with address 0 has no provenance. This change is needed to support permissive provenance work in Miri, and seems justified by `ptr.with_addr(0)` working and a discussion on Zulip regarding LLVM semantics.
r? `@RalfJung`
interpret/validity: separately control checking numbers for being init and non-ptr
This lets Miri control this in a more fine-grained way.
r? `@oli-obk`
Rather than deferring to const eval for checking if a trait is const, we
now check up-front. This allows the error to be emitted earlier, notably
at the same time as other stability checks.
Also included in this commit is a change of the default const stability
level to UNstable. Previously, an item that was `const` but did not
explicitly state it was unstable was implicitly stable.
interpret/validity: reject references to uninhabited types
According to https://doc.rust-lang.org/reference/behavior-considered-undefined.html, this is definitely UB. And we can check this without actually looking up anything in memory, we just need the reference value and its type, making this a great candidate for a validity invariant IMO and my favorite resolution of https://github.com/rust-lang/unsafe-code-guidelines/issues/77.
With this PR, Miri with `-Zmiri-check-number-validity` implements all my preferred options for what the validity invariants of our types could be. :)
CTFE has been doing recursive checking anyway, so this is backwards compatible but might change the error output. I will submit a PR with the new Miri tests soon.
r? `@oli-obk`
Add a query for checking whether a function is an intrinsic.
work towards #93145
This will reduce churn when we add more ways to declare intrinsics
r? `@scottmcm`
Add EarlyBinder
Chalk has no concept of `Param` (e0ade19d13/chalk-ir/src/lib.rs (L579)) or `ReEarlyBound` (e0ade19d13/chalk-ir/src/lib.rs (L1308)). Everything is just "bound" - the equivalent of rustc's late-bound. It's not completely clear yet whether to move everything to the same time of binder in rustc or add `Param` and `ReEarlyBound` in Chalk.
Either way, tracking when we have or haven't already substituted out these in rustc can be helpful.
As a first step, I'm just adding a `EarlyBinder` newtype that is required to call `subst`. I also add a couple "transparent" `bound_*` wrappers around a couple query that are often immediately substituted.
r? `@nikomatsakis`
Initial work on Miri permissive-exposed-provenance
Rustc portion of the changes for portions of a permissive ptr-to-int model for Miri. The main changes here are changing `ptr_get_alloc` and `get_alloc_id` to return an Option, and also making ptr-to-int casts have an expose side effect.
don't encode only locally used attrs
Part of https://github.com/rust-lang/compiler-team/issues/505.
We now filter builtin attributes before encoding them in the crate metadata in case they should only be used in the local crate. To prevent accidental misuse `get_attrs` now requires the caller to state which attribute they are interested in. For places where that isn't trivially possible, I've added a method `fn get_attrs_unchecked` which I intend to remove in a followup PR.
After this pull request landed, we can then slowly move all attributes to only be used in the local crate while being certain that we don't accidentally try to access them from extern crates.
cc https://github.com/rust-lang/rust/pull/94963#issuecomment-1082924289
Remove `PartialOrd`/`Ord` impl for `PlaceRef`
This is a new attempt at #93315. It removes one usage
of the `Ord` impl for `DefId`, which should make it easier
to eventually remove that impl.
Like we have `add`/`sub` which are the `usize` version of `offset`, this adds the `usize` equivalent of `offset_from`. Like how `.add(d)` replaced a whole bunch of `.offset(d as isize)`, you can see from the changes here that it's fairly common that code actually knows the order between the pointers and *wants* a `usize`, not an `isize`.
As a bonus, this can do `sub nuw`+`udiv exact`, rather than `sub`+`sdiv exact`, which can be optimized slightly better because it doesn't have to worry about negatives. That's why the slice iterators weren't using `offset_from`, though I haven't updated that code in this PR because slices are so perf-critical that I'll do it as its own change.
This is an intrinsic, like `offset_from`, so that it can eventually be allowed in CTFE. It also allows checking the extra safety condition -- see the test confirming that CTFE catches it if you pass the pointers in the wrong order.
tighten sanity checks around Scalar and ScalarPair
While investigating https://github.com/rust-lang/rust/issues/96185 I noticed codegen has tighter sanity checks here than Miri does, so I added some more assertions. Strangely, some of them fail, so I also needed to add a HACK... that is probably worth looking into.
This does not fix that issue, but it changes the ICE messages, making it quite clear that we have a scalar whose size is not the same as that of the surrounding layout.
r? `@oli-obk`
Fix inaccurate function name in `rustc_const_eval` docs
Looks to me like this fixes#85513. I had trouble making a intra-docs link to `eval_place_to_op` work, though...
optimize `promote_consts` by caching the results of `validate_local`
From the FIXME in the impl of `promote_consts`. Early return the `validate_local` should save some compile time.
`qualif_local` is similar to this, but requires futher changing because there are different types of qualif checks. If this PR is effective, I will do it as well.
interpret/validity: debug-check ScalarPair layout information
This would have caught https://github.com/rust-lang/rust/issues/96158.
I ran the Miri test suite and it still passes.
r? `@oli-obk`
Only crate root def-ids don't have a parent, and in majority of cases the argument of `DefIdTree::parent` cannot be a crate root.
So we now panic by default in `parent` and introduce a new non-panicing function `opt_parent` for cases where the argument can be a crate root.
Same applies to `local_parent`/`opt_local_parent`.
Reduce duplication of RPO calculation of mir
Computing the RPO of mir is not a low-cost thing, but it is duplicate in many places. In particular the `iterate_to_fixpoint` method which is called multiple times when computing the data flow.
This PR reduces the number of times the RPO is recalculated as much as possible, which should save some compile time.
Implement Valtree to ConstValue conversion
Once we start to use `ValTree`s in the type system we will need to be able to convert them into `ConstValue` instances, which we want to continue to use after MIR construction.
r? `@oli-obk`
cc `@RalfJung`
Miri provenance cleanup
Reviewing https://github.com/rust-lang/rust/pull/95826 by ``@carbotaniuman`` made me realize that we could clean things up a little here.
``@carbotaniuman`` please let me know if you're okay with landing this (it will create a lot of conflicts with your PR), or if you'd prefer incorporating the ideas from this PR into yours. I think we want to end up in a situation where the function you called `ptr_reify_alloc` returns just two things, a concrete tag and an offset. Getting an `AllocId` from a concrete tag should be infallible like now. However a concrete tag and `Tag` don't have to be the same type.
r? ``@oli-obk``
Include Refs in Valtree Creation
This adds references to `const_to_valtree`, which isn't used in the compiler yet, but after the previous changes we made to the thir and mir representations and this change we should be able to finally introduce them in the next PR.
I wasn't able to properly test this code, except indirectly by including a call of `const_to_valtree` in the code that currently creates constants (`turn_into_const_value`).
r? `@lcnr`
cc `@oli-obk` `@RalfJung`
Remove some now-dead code that was only relevant before deaggregation.
The code was broken anyway, if the deaggregator is disabled, it would have ICEd on any non-enum Adt
r? ```@RalfJung```
interp/validity: enforce Scalar::Initialized
This is a follow-up to https://github.com/rust-lang/rust/pull/94527, to also account for the new kind of `Scalar` layout inside the validity checker.
r? `@oli-obk`
interp: pass TyCtxt to Machine methods that do not take InterpCx
This just seems like something you might need, so let's consistently have it.
One day we might have to add `ParamEnv` as well, though that seems less likely (and in Miri you can always use `reveal_all` anyway). It might make sense to have a type that packages `TyCtxt` and `ParamEnv`, this pairing occurs quite frequently in rustc...
r? `@oli-obk`
Let CTFE to handle partially uninitialized unions without marking the entire value as uninitialized.
follow up to #94411
To fix https://github.com/rust-lang/rust/issues/69488 and by extension fix https://github.com/rust-lang/rust/issues/94371, we should stop treating types like `MaybeUninit<usize>` as something that the `Scalar` type in the interpreter engine can represent. So we add a new field to `abi::Primitive` that records whether the primitive is nested in a union
cc `@RalfJung`
r? `@ghost`
Remember mutability in `DefKind::Static`.
This allows to compute the `BodyOwnerKind` from `DefKind` only, and
removes a direct dependency of some MIR queries onto HIR.
As a side effect, it also simplifies metadata, since we don't need 4
flavours of `EntryKind::*Static` any more.
Rollup of 5 pull requests
Successful merges:
- #95294 (Document Linux kernel handoff in std::io::copy and std::fs::copy)
- #95443 (Clarify how `src/tools/x` searches for python)
- #95452 (fix since field version for termination stabilization)
- #95460 (Spellchecking compiler code)
- #95461 (Spellchecking some comments)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
This allows to compute the `BodyOwnerKind` from `DefKind` only, and
removes a direct dependency of some MIR queries onto HIR.
As a side effect, it also simplifies metadata, since we don't need 4
flavours of `EntryKind::*Static` any more.
Remove `Session::one_time_diagnostic`
This is untracked mutable state, which modified the behaviour of queries.
It was used for 2 things: some full-blown errors, but mostly for lint declaration notes ("the lint level is defined here" notes).
It is replaced by the diagnostic deduplication infra which already exists in the diagnostic emitter.
A new diagnostic level `OnceNote` is introduced specifically for lint notes, to deduplicate subdiagnostics.
As a drive-by, diagnostic emission takes a `&mut` to allow dropping the `SubDiagnostic`s.
Clarify which kinds of MIR are allowed during which phases.
This enhances documentation with these details and extends the validator to check these requirements more thoroughly. Most of these conditions were already being checked.
There was also some disagreement between the `MirPhase` docs and validator as to what it meant for the `body.phase` field to have a certain value. This PR resolves those disagreements in favor of the `MirPhase` docs (which is what the pass manager implemented), adjusting the validator accordingly. The result is now that the `DropLowering` phase begins with the end of the elaborate drops pass, and lasts until the beginning of the generator lowring pass. This doesn't feel entirely natural to me, but as long as it's documented accurately it should be ok.
r? rust-lang/mir-opt
This enhances documentation with these details and extends the validator to check these requirements
more thoroughly. As a part of this, we add a new `Deaggregated` phase, and rename other phases so
that their names more naturally correspond to what they represent.
interpret/memory: simplify check_and_deref_ptr
*Finally* I saw a way to make this code simpler. The odd preprocessing in `let ptr_or_addr =` has bothered me since forever, but it actually became unnecessary in the last provenance refactoring. :)
This also leads to slightly more explicit error messages as a nice side-effect. 🎉
r? `@oli-obk`
Rename `~const Drop` to `~const Destruct`
r? `@oli-obk`
Completely switching to `~const Destructible` would be rather complicated, so it seems best to add it for now and wait for it to be backported to beta in the next release.
The rationale is to prevent complications such as #92149 and #94803 by introducing an entirely new trait. And `~const Destructible` reads a bit better than `~const Drop`. Name Bikesheddable.
There are a few places were we have to construct it, though, and a few
places that are more invasive to change. To do this, we create a
constructor with a long obvious name.
Improve `AdtDef` interning.
This commit makes `AdtDef` use `Interned`. Much of the commit is tedious
changes to introduce getter functions. The interesting changes are in
`compiler/rustc_middle/src/ty/adt.rs`.
r? `@fee1-dead`
CTFE/Miri: detect out-of-bounds pointers in offset_from
Also I became uneasy with aggressively doing `try_to_int` here -- this will always succeed on Miri, leading to the wrong codepath being taken. We should rather try to convert them both to pointers, and use the integer path as a fallback, so that's what I implemented now.
Hiding whitespaces helps with the diff.
Fixes https://github.com/rust-lang/miri/issues/1950
r? ``@oli-obk``
This commit makes `AdtDef` use `Interned`. Much the commit is tedious
changes to introduce getter functions. The interesting changes are in
`compiler/rustc_middle/src/ty/adt.rs`.
interpret: move saturating_add/sub into (pub) helper method
I plan to use them for `simd_saturating_add/sub`.
The first commit just moves code, the 2nd simplifies it a bit with some helper methods that did not exist yet when the code was originally written.
CTFE engine: expose misc_cast to Miri
We need that to implement `simd_cast`/`simd_as` in Miri.
While at it, also change other code outside `cast.rs` to use `misc_cast` instead of lower-level methods.
r? `@oli-obk`
Introduce `ConstAllocation`.
Currently some `Allocation`s are interned, some are not, and it's very
hard to tell at a use point which is which.
This commit introduces `ConstAllocation` for the known-interned ones,
which makes the division much clearer. `ConstAllocation::inner()` is
used to get the underlying `Allocation`.
In some places it's natural to use an `Allocation`, in some it's natural
to use a `ConstAllocation`, and in some places there's no clear choice.
I've tried to make things look as nice as possible, while generally
favouring `ConstAllocation`, which is the type that embodies more
information. This does require quite a few calls to `inner()`.
The commit also tweaks how `PartialOrd` works for `Interned`. The
previous code was too clever by half, building on `T: Ord` to make the
code shorter. That caused problems with deriving `PartialOrd` and `Ord`
for `ConstAllocation`, so I changed it to build on `T: PartialOrd`,
which is slightly more verbose but much more standard and avoided the
problems.
r? `@fee1-dead`
Currently some `Allocation`s are interned, some are not, and it's very
hard to tell at a use point which is which.
This commit introduces `ConstAllocation` for the known-interned ones,
which makes the division much clearer. `ConstAllocation::inner()` is
used to get the underlying `Allocation`.
In some places it's natural to use an `Allocation`, in some it's natural
to use a `ConstAllocation`, and in some places there's no clear choice.
I've tried to make things look as nice as possible, while generally
favouring `ConstAllocation`, which is the type that embodies more
information. This does require quite a few calls to `inner()`.
The commit also tweaks how `PartialOrd` works for `Interned`. The
previous code was too clever by half, building on `T: Ord` to make the
code shorter. That caused problems with deriving `PartialOrd` and `Ord`
for `ConstAllocation`, so I changed it to build on `T: PartialOrd`,
which is slightly more verbose but much more standard and avoided the
problems.
Miri/CTFE: properly treat overflow in (signed) division/rem as UB
To my surprise, it looks like LLVM treats overflow of signed div/rem as UB. From what I can tell, MIR `Div`/`Rem` directly lowers to the corresponding LLVM operation, so to make that correct we also have to consider these overflows UB in the CTFE/Miri interpreter engine.
r? `@oli-obk`
Miri fn ptr check: don't use conservative null check
In https://github.com/rust-lang/rust/pull/94270 I used the wrong NULL check for function pointers: `memory.ptr_may_be_null` is conservative even on machines that support ptr-to-int casts, leading to false errors in Miri.
This fixes that problem, and also replaces that foot-fun of a method with `scalar_may_be_null` which is never unnecessarily conservative.
r? `@oli-obk`