Previously an `unsafe` block created by the compiler (like those in the
formatting macros) would be "ignored" if surrounded by `unsafe`, that
is, the internal unsafety would be being legitimised by the external
block:
unsafe { println!("...") } =(expansion)=> unsafe { ... unsafe { ... } }
And the code in the inner block would be using the outer block, making
it considered used (and the inner one considered unused).
This patch forces the compiler to create a new unsafe context for
compiler generated blocks, so that their internal unsafety doesn't
escape to external blocks.
Fixes#12418.
Added allow(non_camel_case_types) to librustc where necesary
Tried to fix problems with non_camel_case_types outside rustc
fixed failing tests
Docs updated
Moved #[allow(non_camel_case_types)] a level higher.
markdown.rs reverted
Fixed timer that was failing tests
Fixed another timer
Previously an `unsafe` block created by the compiler (like those in the
formatting macros) would be "ignored" if surrounded by `unsafe`, that
is, the internal unsafety would be being legitimised by the external
block:
unsafe { println!("...") } =(expansion)=> unsafe { ... unsafe { ... } }
And the code in the inner block would be using the outer block, making
it considered used (and the inner one considered unused).
This patch forces the compiler to create a new unsafe context for
compiler generated blocks, so that their internal unsafety doesn't
escape to external blocks.
Fixes#12418.
Function parameters that are to be passed by value but don't fit into a
single register are currently passed by creating a copy on the stack and
passing a pointer to that copy to the callee. Since the copy is made
just for the function call, there are no aliases.
For example, this sometimes allows LLVM to eliminate unnecessary calls
to drop glue. Given
````rust
struct Foo {
a: int,
b: Option<~str>,
}
extern {
fn eat(eat: Option<~str>);
}
pub fn foo(v: Foo) {
match v {
Foo { a: _, b } => unsafe { eat(b) }
}
}
````
LLVM currently can't eliminate the drop call for the string, because it
only sees a _pointer_ to Foo, for which it has to expect an alias. So we
get:
````llvm
; Function Attrs: uwtable
define void @_ZN3foo20h9f32c90ae7201edbxaa4v0.0E(%struct.Foo* nocapture) unnamed_addr #0 {
"_ZN34std..option..Option$LT$$UP$str$GT$9glue_drop17hc39b3015f3b9c69dE.exit":
%1 = getelementptr inbounds %struct.Foo* %0, i64 0, i32 1, i32 0
%2 = load { i64, i64, [0 x i8] }** %1, align 8
store { i64, i64, [0 x i8] }* null, { i64, i64, [0 x i8] }** %1, align 8
%3 = ptrtoint { i64, i64, [0 x i8] }* %2 to i64
%.fca.0.insert = insertvalue { i64 } undef, i64 %3, 0
tail call void @eat({ i64 } %.fca.0.insert)
%4 = load { i64, i64, [0 x i8] }** %1, align 8
%5 = icmp eq { i64, i64, [0 x i8] }* %4, null
br i1 %5, label %_ZN3Foo9glue_drop17hf611996539d3036fE.exit, label %"_ZN8_$UP$str9glue_drop17h15dbdbe2b8897a98E.exit.i.i"
"_ZN8_$UP$str9glue_drop17h15dbdbe2b8897a98E.exit.i.i": ; preds = %"_ZN34std..option..Option$LT$$UP$str$GT$9glue_drop17hc39b3015f3b9c69dE.exit"
%6 = bitcast { i64, i64, [0 x i8] }* %4 to i8*
tail call void @free(i8* %6) #1
br label %_ZN3Foo9glue_drop17hf611996539d3036fE.exit
_ZN3Foo9glue_drop17hf611996539d3036fE.exit: ; preds = %"_ZN34std..option..Option$LT$$UP$str$GT$9glue_drop17hc39b3015f3b9c69dE.exit", %"_ZN8_$UP$str9glue_drop17h15dbdbe2b8897a98E.exit.i.i"
ret void
}
````
But with the `noalias` attribute, it can safely optimize that to:
````llvm
define void @_ZN3foo20hd28431f929f0d6c4xaa4v0.0E(%struct.Foo* noalias nocapture) unnamed_addr #0 {
_ZN3Foo9glue_drop17he9afbc09d4e9c851E.exit:
%1 = getelementptr inbounds %struct.Foo* %0, i64 0, i32 1, i32 0
%2 = load { i64, i64, [0 x i8] }** %1, align 8
store { i64, i64, [0 x i8] }* null, { i64, i64, [0 x i8] }** %1, align 8
%3 = ptrtoint { i64, i64, [0 x i8] }* %2 to i64
%.fca.0.insert = insertvalue { i64 } undef, i64 %3, 0
tail call void @eat({ i64 } %.fca.0.insert)
ret void
}
````
The first setp for #9880 is to add a new `crate` keyword. This PR does exactly that. I took a chance to refactor `parse_item_foreign_mod` and I broke it down into 2 separate methods to isolate each feature.
The next step will be to push a new stage0 snapshot and then get rid of all `extern mod` around the code.
This patch replaces all `crate` usage with `krate` before introducing the
new keyword. This ensures that after introducing the keyword, there
won't be any compilation errors.
krate might not be the most expressive substitution for crate but it's a
very close abbreviation for it. `module` was already used in several
places already.
Error messages cleaned in librustc/middle
Error messages cleaned in libsyntax
Error messages cleaned in libsyntax more agressively
Error messages cleaned in librustc more aggressively
Fixed affected tests
Fixed other failing tests
Last failing tests fixed
The lexer and json were using `transmute(-1): char` as a sentinel value for EOF, which is invalid since `char` is strictly a unicode codepoint.
Fixing this allows for range asserts on chars since they always lie between 0 and 0x10FFFF.
This also drops support for the managed pointer POISON_ON_FREE feature
as it's not worth adding back the support for it. After a snapshot, the
leftovers can be removed.
This commit removes the -c, --emit-llvm, -s, --rlib, --dylib, --staticlib,
--lib, and --bin flags from rustc, adding the following flags:
* --emit=[asm,ir,bc,obj,link]
* --crate-type=[dylib,rlib,staticlib,bin,lib]
The -o option has also been redefined to be used for *all* flavors of outputs.
This means that we no longer ignore it for libraries. The --out-dir remains the
same as before.
The new logic for files that rustc emits is as follows:
1. Output types are dictated by the --emit flag. The default value is
--emit=link, and this option can be passed multiple times and have all
options stacked on one another.
2. Crate types are dictated by the --crate-type flag and the #[crate_type]
attribute. The flags can be passed many times and stack with the crate
attribute.
3. If the -o flag is specified, and only one output type is specified, the
output will be emitted at this location. If more than one output type is
specified, then the filename of -o is ignored, and all output goes in the
directory that -o specifies. The -o option always ignores the --out-dir
option.
4. If the --out-dir flag is specified, all output goes in this directory.
5. If -o and --out-dir are both not present, all output goes in the current
directory of the process.
6. When multiple output types are specified, the filestem of all output is the
same as the name of the CrateId (derived from a crate attribute or from the
filestem of the crate file).
Closes#7791Closes#11056Closes#11667
This time everything should be okay, No break due to a failed merge or rebase...
Sorry for the abuse of pull request.
So this move extra::sync, extra::arc, extra::future, extra::comm and extra::task_pool to libsync.
This removes @[] from the parser as well as much of the handling of it (and `@str`) from the compiler as I can find.
I've just rebased @pcwalton's (already reviewed) `@str` removal (and fixed the problems in a separate commit); the only new work is the trailing commits with my authorship.
Closes#11967