This commit moves all logging out of the standard library into an external
crate. This crate is the new crate which is responsible for all logging macros
and logging implementation. A few reasons for this change are:
* The crate map has always been a bit of a code smell among rust programs. It
has difficulty being loaded on almost all platforms, and it's used almost
exclusively for logging and only logging. Removing the crate map is one of the
end goals of this movement.
* The compiler has a fair bit of special support for logging. It has the
__log_level() expression as well as generating a global word per module
specifying the log level. This is unfairly favoring the built-in logging
system, and is much better done purely in libraries instead of the compiler
itself.
* Initialization of logging is much easier to do if there is no reliance on a
magical crate map being available to set module log levels.
* If the logging library can be written outside of the standard library, there's
no reason that it shouldn't be. It's likely that we're not going to build the
highest quality logging library of all time, so third-party libraries should
be able to provide just as high-quality logging systems as the default one
provided in the rust distribution.
With a migration such as this, the change does not come for free. There are some
subtle changes in the behavior of liblog vs the previous logging macros:
* The core change of this migration is that there is no longer a physical
log-level per module. This concept is still emulated (it is quite useful), but
there is now only a global log level, not a local one. This global log level
is a reflection of the maximum of all log levels specified. The previously
generated logging code looked like:
if specified_level <= __module_log_level() {
println!(...)
}
The newly generated code looks like:
if specified_level <= ::log::LOG_LEVEL {
if ::log::module_enabled(module_path!()) {
println!(...)
}
}
Notably, the first layer of checking is still intended to be "super fast" in
that it's just a load of a global word and a compare. The second layer of
checking is executed to determine if the current module does indeed have
logging turned on.
This means that if any module has a debug log level turned on, all modules
with debug log levels get a little bit slower (they all do more expensive
dynamic checks to determine if they're turned on or not).
Semantically, this migration brings no change in this respect, but
runtime-wise, this will have a perf impact on some code.
* A `RUST_LOG=::help` directive will no longer print out a list of all modules
that can be logged. This is because the crate map will no longer specify the
log levels of all modules, so the list of modules is not known. Additionally,
warnings can no longer be provided if a malformed logging directive was
supplied.
The new "hello world" for logging looks like:
#[phase(syntax, link)]
extern crate log;
fn main() {
debug!("Hello, world!");
}
This commit goes back to using `gensym` to generate unique tokens to put into
the names of closures, allowing closures to be able to get demangled in
backtraces.
Closes#12400
There is a broader revision (that does this across the board) pending
in #12675, but that is awaiting the arrival of more data (to decide
whether to keep OptVec alive by using a non-Vec internally).
For this code, the representation of lifetime lists needs to be the
same in both ScopeChain and in the ast and ty structures. So it
seemed cleanest to just use `vec_ng::Vec`, now that it has a cheaper
empty representation than the current `vec` code.
It is often convenient to have forms of weak linkage or other various types of
linkage. Sadly, just using these flavors of linkage are not compatible with
Rust's typesystem and how it considers some pointers to be non-null.
As a compromise, this commit adds support for weak linkage to external symbols,
but it requires that this is only placed on extern statics of type `*T`.
Codegen-wise, we get translations like:
// rust code
extern {
#[linkage = "extern_weak"]
static foo: *i32;
}
// generated IR
@foo = extern_weak global i32
@_some_internal_symbol = internal global *i32 @foo
All references to the rust value of `foo` then reference `_some_internal_symbol`
instead of the symbol `_foo` itself. This allows us to guarantee that the
address of `foo` will never be null while the value may sometimes be null.
An example was implemented in `std::rt::thread` to determine if
`__pthread_get_minstack()` is available at runtime, and a test is checked in to
use it for a static value as well. Function pointers a little odd because you
still need to transmute the pointer value to a function pointer, but it's
thankfully better than not having this capability at all.
This leverages the new hashing framework and hashmap implementation to provide a
much speedier hashing algorithm for node ids and def ids. The hash algorithm
used is currentl FNV hashing, but it's quite easy to swap out.
I originally implemented hashing as the identity function, but this actually
ended up in slowing down rustc compiling libstd from 8s to 13s. I would suspect
that this is a result of a large number of collisions.
With FNV hashing, we get these timings (compiling with --no-trans, in seconds):
| | before | after |
|-----------|---------:|--------:|
| libstd | 8.324 | 6.703 |
| stdtest | 47.674 | 46.857 |
| libsyntax | 9.918 | 8.400 |
Cosmetic changes at best, but there are so many such typos that I couldn't ignore them. :) Some occurrences of typos are linked to the generated documentations but no changes should break the builds.
The llvm.copysign and llvm.round intrinsics weren't added until LLVM 3.4, so if
we're on LLVM 3.3 we lower these to calls in libm instead of LLVM intrinsics.
This should fix our travis failures.
This PR brings back limited debuginfo which allows for nice backtraces and breakpoints, but omits any info about variables and types.
The `-g` and `--debuginfo` command line options have been extended to take an optional argument:
`-g0` means no debug info.
`-g1` means line-tables only.
`-g2` means full debug info.
Specifying `-g` without argument is equivalent to `-g2`.
Fixes#12280
Closes#8506.
The `trans::adt` code for statics uses fields with `C_undef` values to
insert alignment padding (because LLVM's own alignment padding isn't
always sufficient for aggregate constants), and assumes that all fields
in the actual Rust value are represented by non-undef LLVM values, to
distinguish them from that padding.
But for nullable pointer enums, if non-null variant has fields other
than the pointer used as the discriminant, they would be set to undef in
the null case, to reflect that they're never accessed.
To avoid the obvious conflict between these two items, the latter undefs
were wrapped in unary LLVM structs to distinguish them from the former
undefs. Except this doesn't actually work -- LLVM, not unreasonably,
treats the "wrapped undef" as a regular undef.
So this commit just sets all fields to null in the null pointer case of
a nullable pointer enum static, because the other fields don't really
need to be undef in the first place.
The llvm.copysign and llvm.round intrinsics weren't added until LLVM 3.4, so if
we're on LLVM 3.3 we lower these to calls in libm instead of LLVM intrinsics.
This should fix our travis failures.
While we are not yet ready for compiler i18n, this also keeps the error handling code clean. The set of altered error messages was obtained by grepping for `"s"` and `(s)`, so there might be some missing messages.
Previously `ast::Arm` was always storing a single `ast::Expr` wrapped in an
`ast::Block` (for historical reasons, AIUI), so we might as just store
that expr directly.
Closes#3085.
We weren't passing the node id for the enum and hence it couldn't retrieve the field types for the struct variant we were trying to destructure.
Fixes#11577.
Formatting via reflection has been a little questionable for some time now, and
it's a little unfortunate that one of the standard macros will silently use
reflection when you weren't expecting it. This adds small bits of code bloat to
libraries, as well as not always being necessary. In light of this information,
this commit switches assert_eq!() to using {} in the error message instead of
{:?}.
In updating existing code, there were a few error cases that I encountered:
* It's impossible to define Show for [T, ..N]. I think DST will alleviate this
because we can define Show for [T].
* A few types here and there just needed a #[deriving(Show)]
* Type parameters needed a Show bound, I often moved this to `assert!(a == b)`
* `Path` doesn't implement `Show`, so assert_eq!() cannot be used on two paths.
I don't think this is much of a regression though because {:?} on paths looks
awful (it's a byte array).
Concretely speaking, this shaved 10K off a 656K binary. Not a lot, but sometime
significant for smaller binaries.
This new SVH is used to uniquely identify all crates as a snapshot in time of
their ABI/API/publicly reachable state. This current calculation is just a hash
of the entire crate's AST. This is obviously incorrect, but it is currently the
reality for today.
This change threads through the new Svh structure which originates from crate
dependencies. The concept of crate id hash is preserved to provide efficient
matching on filenames for crate loading. The inspected hash once crate metadata
is opened has been changed to use the new Svh.
The goal of this hash is to identify when upstream crates have changed but
downstream crates have not been recompiled. This will prevent the def-id drift
problem where upstream crates were recompiled, thereby changing their metadata,
but downstream crates were not recompiled.
In the future this hash can be expanded to exclude contents of the AST like doc
comments, but limitations in the compiler prevent this change from being made at
this time.
Closes#10207
The previous code passed around a {name,version} pair everywhere, but this is
better expressed as a CrateId. This patch changes these paths to store and pass
around crate ids instead of these pairs of name/version. This also prepares the
code to change the type of hash that is stored in crates.
This patch series does a couple things:
* replaces manual `Hash` implementations with `#[deriving(Hash)]`
* adds `Hash` back to `std::prelude`
* minor cleanup of whitespace and variable names.
The by-value argument is a copy that is only valid for the duration of
the function call, therefore keeping any pointer to it that outlives the
call is illegal.
Commits for details. Highlights:
- `flate` returns `CVec<u8>` to save reallocating a whole new `&[u8]`
- a lot of `transmute`s removed outright or replaced with `as` (etc.)
Makes labelled loops hygiene by performing renaming of the labels defined in e.g. `'x: loop { ... }` and then used in break and continue statements within loop body so that they act hygienically when used with macros.
Closes#12262.
This trades an O(n) allocation + memcpy for a O(1) proc allocation (for
the destructor). Most users only need &[u8] anyway (all of the users in
the main repo), and so this offers large gains.
Makes labelled loops hygiene by performing renaming of the labels
defined in e.g. `'x: loop { ... }` and then used in break and continue
statements within loop body so that they act hygienically when used with
macros.
Closes#12262.
These two containers are indeed collections, so their place is in
libcollections, not in libstd. There will always be a hash map as part of the
standard distribution of Rust, but by moving it out of the standard library it
makes libstd that much more portable to more platforms and environments.
This conveniently also removes the stuttering of 'std::hashmap::HashMap',
although 'collections::HashMap' is only one character shorter.
Closes#12366.
Parentheses around assignment statements such as
let mut a = (0);
a = (1);
a += (2);
are not necessary and therefore an unnecessary_parens warning is raised when
statements like this occur.
The warning mechanism was refactored along the way to allow for code reuse
between the routines for checking expressions and statements.
Code had to be adopted throughout the compiler and standard libraries to comply
with this modification of the lint.