[breaking-change]
1. The internal layout for traits has changed from (vtable, data) to (data, vtable). If you were relying on this in unsafe transmutes, you might get some very weird and apparently unrelated errors. You should not be doing this! Prefer not to do this at all, but if you must, you should use raw::TraitObject rather than hardcoding rustc's internal representation into your code.
2. The minimal type of reference-to-vec-literals (e.g., `&[1, 2, 3]`) is now a fixed size vec (e.g., `&[int, ..3]`) where it used to be an unsized vec (e.g., `&[int]`). If you want the unszied type, you must explicitly give the type (e.g., `let x: &[_] = &[1, 2, 3]`). Note in particular where multiple blocks must have the same type (e.g., if and else clauses, vec elements), the compiler will not coerce to the unsized type without a hint. E.g., `[&[1], &[1, 2]]` used to be a valid expression of type '[&[int]]'. It no longer type checks since the first element now has type `&[int, ..1]` and the second has type &[int, ..2]` which are incompatible.
3. The type of blocks (including functions) must be coercible to the expected type (used to be a subtype). Mostly this makes things more flexible and not less (in particular, in the case of coercing function bodies to the return type). However, in some rare cases, this is less flexible. TBH, I'm not exactly sure of the exact effects. I think the change causes us to resolve inferred type variables slightly earlier which might make us slightly more restrictive. Possibly it only affects blocks with unreachable code. E.g., `if ... { fail!(); "Hello" }` used to type check, it no longer does. The fix is to add a semicolon after the string.
As of RFC 18, struct layout is undefined. Opting into a C-compatible struct
layout is now down with #[repr(C)]. For consistency, specifying a packed
layout is now also down with #[repr(packed)]. Both can be specified.
To fix errors caused by this, just add #[repr(C)] to the structs, and change
#[packed] to #[repr(packed)]
Closes#14309
[breaking-change]
This patch primarily does two things: (1) it prevents lifetimes from
leaking out of unboxed closures; (2) it allows unboxed closure type
notation, call notation, and construction notation to construct closures
matching any of the three traits.
This breaks code that looked like:
let mut f;
{
let x = &5i;
f = |&mut:| *x + 10;
}
Change this code to avoid having a reference escape. For example:
{
let x = &5i;
let mut f; // <-- move here to avoid dangling reference
f = |&mut:| *x + 10;
}
I believe this is enough to consider unboxed closures essentially
implemented. Further issues (for example, higher-rank lifetimes) should
be filed as followups.
Closes#14449.
[breaking-change]
Extend the null ptr optimization to work with slices, closures, procs, & trait objects by using the internal pointers as the discriminant.
This decreases the size of `Option<&[int]>` (and similar) by one word.
LLVM doesn't really like types with a bit-width that isn't a multiple of
8 and disable various optimizations if it encounters such types used
with loads/stores. OTOH, booleans must be represented as i1 when used as
SSA values. To get the best results, we must use i1 for SSA values, and
i8 when storing the value to memory.
By using range asserts on loads, LLVM can eliminate the required
zero-extend and truncate operations.
Fixes#15203
This breaks a fair amount of code. The typical patterns are:
* `for _ in range(0, 10)`: change to `for _ in range(0u, 10)`;
* `println!("{}", 3)`: change to `println!("{}", 3i)`;
* `[1, 2, 3].len()`: change to `[1i, 2, 3].len()`.
RFC #30. Closes#6023.
[breaking-change]
The aim of these changes is not working out a generic bi-endianness architectures support but to allow people develop for little endian MIPS machines (issue #7190).
Use ty_rptr/ty_uniq(ty_trait) rather than TraitStore to represent trait types.
Also addresses (but doesn't close) #12470.
Part of the work towards DST (#12938).
[breaking-change] lifetime parameters in `&mut trait` are now invariant. They used to be contravariant.
for `~str`/`~[]`.
Note that `~self` still remains, since I forgot to add support for
`Box<self>` before the snapshot.
How to update your code:
* Instead of `~EXPR`, you should write `box EXPR`.
* Instead of `~TYPE`, you should write `Box<Type>`.
* Instead of `~PATTERN`, you should write `box PATTERN`.
[breaking-change]
This patch fixes issue #13186.
When generating constant expression for enum, it is possible that
alignment of expression may be not equal to alignment of type. In that
case space after last struct field must be padded to match size of value
and size of struct. This commit adds that padding.
See detailed explanation in src/test/run-pass/trans-tag-static-padding.rs
Similar to my recent changes to ~[T]/&[T], these changes remove the vstore abstraction and represent str types as ~(str) and &(str). The Option<uint> in ty_str is the length of the string, None if the string is dynamically sized.
This patch fixes issue #13186.
When generating constant expression for enum, it is possible that
alignment of expression may be not equal to alignment of type. In that
case space after last struct field must be padded to match size of value
and size of struct. This commit adds that padding.
See detailed explanation in src/test/run-pass/trans-tag-static-padding.rs
Closes#8506.
The `trans::adt` code for statics uses fields with `C_undef` values to
insert alignment padding (because LLVM's own alignment padding isn't
always sufficient for aggregate constants), and assumes that all fields
in the actual Rust value are represented by non-undef LLVM values, to
distinguish them from that padding.
But for nullable pointer enums, if non-null variant has fields other
than the pointer used as the discriminant, they would be set to undef in
the null case, to reflect that they're never accessed.
To avoid the obvious conflict between these two items, the latter undefs
were wrapped in unary LLVM structs to distinguish them from the former
undefs. Except this doesn't actually work -- LLVM, not unreasonably,
treats the "wrapped undef" as a regular undef.
So this commit just sets all fields to null in the null pointer case of
a nullable pointer enum static, because the other fields don't really
need to be undef in the first place.