14f656d1a7
Closes #12771
914 lines
34 KiB
Rust
914 lines
34 KiB
Rust
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
/*!
|
|
* # Representation of Algebraic Data Types
|
|
*
|
|
* This module determines how to represent enums, structs, and tuples
|
|
* based on their monomorphized types; it is responsible both for
|
|
* choosing a representation and translating basic operations on
|
|
* values of those types. (Note: exporting the representations for
|
|
* debuggers is handled in debuginfo.rs, not here.)
|
|
*
|
|
* Note that the interface treats everything as a general case of an
|
|
* enum, so structs/tuples/etc. have one pseudo-variant with
|
|
* discriminant 0; i.e., as if they were a univariant enum.
|
|
*
|
|
* Having everything in one place will enable improvements to data
|
|
* structure representation; possibilities include:
|
|
*
|
|
* - User-specified alignment (e.g., cacheline-aligning parts of
|
|
* concurrently accessed data structures); LLVM can't represent this
|
|
* directly, so we'd have to insert padding fields in any structure
|
|
* that might contain one and adjust GEP indices accordingly. See
|
|
* issue #4578.
|
|
*
|
|
* - Store nested enums' discriminants in the same word. Rather, if
|
|
* some variants start with enums, and those enums representations
|
|
* have unused alignment padding between discriminant and body, the
|
|
* outer enum's discriminant can be stored there and those variants
|
|
* can start at offset 0. Kind of fancy, and might need work to
|
|
* make copies of the inner enum type cooperate, but it could help
|
|
* with `Option` or `Result` wrapped around another enum.
|
|
*
|
|
* - Tagged pointers would be neat, but given that any type can be
|
|
* used unboxed and any field can have pointers (including mutable)
|
|
* taken to it, implementing them for Rust seems difficult.
|
|
*/
|
|
|
|
use std::container::Map;
|
|
use std::libc::c_ulonglong;
|
|
use std::option::{Option, Some, None};
|
|
use std::num::{Bitwise};
|
|
|
|
use lib::llvm::{ValueRef, True, IntEQ, IntNE};
|
|
use middle::trans::_match;
|
|
use middle::trans::build::*;
|
|
use middle::trans::common::*;
|
|
use middle::trans::machine;
|
|
use middle::trans::type_::Type;
|
|
use middle::trans::type_of;
|
|
use middle::ty;
|
|
use middle::ty::Disr;
|
|
use std::vec::Vec;
|
|
use std::vec;
|
|
use syntax::abi::{X86, X86_64, Arm, Mips};
|
|
use syntax::ast;
|
|
use syntax::attr;
|
|
use syntax::attr::IntType;
|
|
use util::ppaux::ty_to_str;
|
|
|
|
type Hint = attr::ReprAttr;
|
|
|
|
|
|
/// Representations.
|
|
pub enum Repr {
|
|
/// C-like enums; basically an int.
|
|
CEnum(IntType, Disr, Disr), // discriminant range (signedness based on the IntType)
|
|
/**
|
|
* Single-case variants, and structs/tuples/records.
|
|
*
|
|
* Structs with destructors need a dynamic destroyedness flag to
|
|
* avoid running the destructor too many times; this is included
|
|
* in the `Struct` if present.
|
|
*/
|
|
Univariant(Struct, bool),
|
|
/**
|
|
* General-case enums: for each case there is a struct, and they
|
|
* all start with a field for the discriminant.
|
|
*/
|
|
General(IntType, Vec<Struct> ),
|
|
/**
|
|
* Two cases distinguished by a nullable pointer: the case with discriminant
|
|
* `nndiscr` is represented by the struct `nonnull`, where the `ptrfield`th
|
|
* field is known to be nonnull due to its type; if that field is null, then
|
|
* it represents the other case, which is inhabited by at most one value
|
|
* (and all other fields are undefined/unused).
|
|
*
|
|
* For example, `std::option::Option` instantiated at a safe pointer type
|
|
* is represented such that `None` is a null pointer and `Some` is the
|
|
* identity function.
|
|
*/
|
|
NullablePointer{ nonnull: Struct, nndiscr: Disr, ptrfield: uint,
|
|
nullfields: Vec<ty::t> }
|
|
}
|
|
|
|
/// For structs, and struct-like parts of anything fancier.
|
|
pub struct Struct {
|
|
size: u64,
|
|
align: u64,
|
|
packed: bool,
|
|
fields: Vec<ty::t> }
|
|
|
|
/**
|
|
* Convenience for `represent_type`. There should probably be more or
|
|
* these, for places in trans where the `ty::t` isn't directly
|
|
* available.
|
|
*/
|
|
pub fn represent_node(bcx: &Block, node: ast::NodeId) -> @Repr {
|
|
represent_type(bcx.ccx(), node_id_type(bcx, node))
|
|
}
|
|
|
|
/// Decides how to represent a given type.
|
|
pub fn represent_type(cx: &CrateContext, t: ty::t) -> @Repr {
|
|
debug!("Representing: {}", ty_to_str(cx.tcx(), t));
|
|
{
|
|
let adt_reprs = cx.adt_reprs.borrow();
|
|
match adt_reprs.get().find(&t) {
|
|
Some(repr) => return *repr,
|
|
None => {}
|
|
}
|
|
}
|
|
|
|
let repr = @represent_type_uncached(cx, t);
|
|
debug!("Represented as: {:?}", repr)
|
|
let mut adt_reprs = cx.adt_reprs.borrow_mut();
|
|
adt_reprs.get().insert(t, repr);
|
|
return repr;
|
|
}
|
|
|
|
fn represent_type_uncached(cx: &CrateContext, t: ty::t) -> Repr {
|
|
match ty::get(t).sty {
|
|
ty::ty_tup(ref elems) => {
|
|
return Univariant(mk_struct(cx, elems.as_slice(), false), false)
|
|
}
|
|
ty::ty_struct(def_id, ref substs) => {
|
|
let fields = ty::lookup_struct_fields(cx.tcx(), def_id);
|
|
let mut ftys = fields.map(|field| {
|
|
ty::lookup_field_type(cx.tcx(), def_id, field.id, substs)
|
|
});
|
|
let packed = ty::lookup_packed(cx.tcx(), def_id);
|
|
let dtor = ty::ty_dtor(cx.tcx(), def_id).has_drop_flag();
|
|
if dtor { ftys.push(ty::mk_bool()); }
|
|
|
|
return Univariant(mk_struct(cx, ftys.as_slice(), packed), dtor)
|
|
}
|
|
ty::ty_enum(def_id, ref substs) => {
|
|
let cases = get_cases(cx.tcx(), def_id, substs);
|
|
let hint = ty::lookup_repr_hint(cx.tcx(), def_id);
|
|
|
|
if cases.len() == 0 {
|
|
// Uninhabitable; represent as unit
|
|
// (Typechecking will reject discriminant-sizing attrs.)
|
|
assert_eq!(hint, attr::ReprAny);
|
|
return Univariant(mk_struct(cx, [], false), false);
|
|
}
|
|
|
|
if cases.iter().all(|c| c.tys.len() == 0) {
|
|
// All bodies empty -> intlike
|
|
let discrs = cases.map(|c| c.discr);
|
|
let bounds = IntBounds {
|
|
ulo: *discrs.iter().min().unwrap(),
|
|
uhi: *discrs.iter().max().unwrap(),
|
|
slo: discrs.iter().map(|n| *n as i64).min().unwrap(),
|
|
shi: discrs.iter().map(|n| *n as i64).max().unwrap()
|
|
};
|
|
return mk_cenum(cx, hint, &bounds);
|
|
}
|
|
|
|
// Since there's at least one
|
|
// non-empty body, explicit discriminants should have
|
|
// been rejected by a checker before this point.
|
|
if !cases.iter().enumerate().all(|(i,c)| c.discr == (i as Disr)) {
|
|
cx.sess().bug(format!("non-C-like enum {} with specified \
|
|
discriminants",
|
|
ty::item_path_str(cx.tcx(), def_id)))
|
|
}
|
|
|
|
if cases.len() == 1 {
|
|
// Equivalent to a struct/tuple/newtype.
|
|
// (Typechecking will reject discriminant-sizing attrs.)
|
|
assert_eq!(hint, attr::ReprAny);
|
|
return Univariant(mk_struct(cx,
|
|
cases.get(0).tys.as_slice(),
|
|
false),
|
|
false)
|
|
}
|
|
|
|
if cases.len() == 2 && hint == attr::ReprAny {
|
|
// Nullable pointer optimization
|
|
let mut discr = 0;
|
|
while discr < 2 {
|
|
if cases.get(1 - discr).is_zerolen(cx) {
|
|
match cases.get(discr).find_ptr() {
|
|
Some(ptrfield) => {
|
|
return NullablePointer {
|
|
nndiscr: discr as u64,
|
|
nonnull: mk_struct(cx,
|
|
cases.get(discr)
|
|
.tys
|
|
.as_slice(),
|
|
false),
|
|
ptrfield: ptrfield,
|
|
nullfields: cases.get(1 - discr).tys
|
|
.clone()
|
|
}
|
|
}
|
|
None => { }
|
|
}
|
|
}
|
|
discr += 1;
|
|
}
|
|
}
|
|
|
|
// The general case.
|
|
assert!((cases.len() - 1) as i64 >= 0);
|
|
let bounds = IntBounds { ulo: 0, uhi: (cases.len() - 1) as u64,
|
|
slo: 0, shi: (cases.len() - 1) as i64 };
|
|
let ity = range_to_inttype(cx, hint, &bounds);
|
|
return General(ity, cases.map(|c| {
|
|
let discr = vec!(ty_of_inttype(ity));
|
|
mk_struct(cx,
|
|
vec::append(discr, c.tys.as_slice()).as_slice(),
|
|
false)
|
|
}))
|
|
}
|
|
_ => cx.sess().bug("adt::represent_type called on non-ADT type")
|
|
}
|
|
}
|
|
|
|
/// Determine, without doing translation, whether an ADT must be FFI-safe.
|
|
/// For use in lint or similar, where being sound but slightly incomplete is acceptable.
|
|
pub fn is_ffi_safe(tcx: &ty::ctxt, def_id: ast::DefId) -> bool {
|
|
match ty::get(ty::lookup_item_type(tcx, def_id).ty).sty {
|
|
ty::ty_enum(def_id, _) => {
|
|
let variants = ty::enum_variants(tcx, def_id);
|
|
// Univariant => like struct/tuple.
|
|
if variants.len() <= 1 {
|
|
return true;
|
|
}
|
|
let hint = ty::lookup_repr_hint(tcx, def_id);
|
|
// Appropriate representation explicitly selected?
|
|
if hint.is_ffi_safe() {
|
|
return true;
|
|
}
|
|
// Option<~T> and similar are used in FFI. Rather than try to resolve type parameters
|
|
// and recognize this case exactly, this overapproximates -- assuming that if a
|
|
// non-C-like enum is being used in FFI then the user knows what they're doing.
|
|
if variants.iter().any(|vi| !vi.args.is_empty()) {
|
|
return true;
|
|
}
|
|
false
|
|
}
|
|
// struct, tuple, etc.
|
|
// (is this right in the present of typedefs?)
|
|
_ => true
|
|
}
|
|
}
|
|
|
|
// this should probably all be in ty
|
|
struct Case { discr: Disr, tys: Vec<ty::t> }
|
|
impl Case {
|
|
fn is_zerolen(&self, cx: &CrateContext) -> bool {
|
|
mk_struct(cx, self.tys.as_slice(), false).size == 0
|
|
}
|
|
fn find_ptr(&self) -> Option<uint> {
|
|
self.tys.iter().position(|&ty| mono_data_classify(ty) == MonoNonNull)
|
|
}
|
|
}
|
|
|
|
fn get_cases(tcx: &ty::ctxt, def_id: ast::DefId, substs: &ty::substs) -> Vec<Case> {
|
|
ty::enum_variants(tcx, def_id).map(|vi| {
|
|
let arg_tys = vi.args.map(|&raw_ty| {
|
|
ty::subst(tcx, substs, raw_ty)
|
|
});
|
|
Case { discr: vi.disr_val, tys: arg_tys }
|
|
})
|
|
}
|
|
|
|
|
|
fn mk_struct(cx: &CrateContext, tys: &[ty::t], packed: bool) -> Struct {
|
|
let lltys = tys.map(|&ty| type_of::sizing_type_of(cx, ty));
|
|
let llty_rec = Type::struct_(cx, lltys, packed);
|
|
Struct {
|
|
size: machine::llsize_of_alloc(cx, llty_rec) /*bad*/as u64,
|
|
align: machine::llalign_of_min(cx, llty_rec) /*bad*/as u64,
|
|
packed: packed,
|
|
fields: Vec::from_slice(tys),
|
|
}
|
|
}
|
|
|
|
struct IntBounds {
|
|
slo: i64,
|
|
shi: i64,
|
|
ulo: u64,
|
|
uhi: u64
|
|
}
|
|
|
|
fn mk_cenum(cx: &CrateContext, hint: Hint, bounds: &IntBounds) -> Repr {
|
|
let it = range_to_inttype(cx, hint, bounds);
|
|
match it {
|
|
attr::SignedInt(_) => CEnum(it, bounds.slo as Disr, bounds.shi as Disr),
|
|
attr::UnsignedInt(_) => CEnum(it, bounds.ulo, bounds.uhi)
|
|
}
|
|
}
|
|
|
|
fn range_to_inttype(cx: &CrateContext, hint: Hint, bounds: &IntBounds) -> IntType {
|
|
debug!("range_to_inttype: {:?} {:?}", hint, bounds);
|
|
// Lists of sizes to try. u64 is always allowed as a fallback.
|
|
static choose_shortest: &'static[IntType] = &[
|
|
attr::UnsignedInt(ast::TyU8), attr::SignedInt(ast::TyI8),
|
|
attr::UnsignedInt(ast::TyU16), attr::SignedInt(ast::TyI16),
|
|
attr::UnsignedInt(ast::TyU32), attr::SignedInt(ast::TyI32)];
|
|
static at_least_32: &'static[IntType] = &[
|
|
attr::UnsignedInt(ast::TyU32), attr::SignedInt(ast::TyI32)];
|
|
|
|
let attempts;
|
|
match hint {
|
|
attr::ReprInt(span, ity) => {
|
|
if !bounds_usable(cx, ity, bounds) {
|
|
cx.sess().span_bug(span, "representation hint insufficient for discriminant range")
|
|
}
|
|
return ity;
|
|
}
|
|
attr::ReprExtern => {
|
|
attempts = match cx.sess().targ_cfg.arch {
|
|
X86 | X86_64 => at_least_32,
|
|
// WARNING: the ARM EABI has two variants; the one corresponding to `at_least_32`
|
|
// appears to be used on Linux and NetBSD, but some systems may use the variant
|
|
// corresponding to `choose_shortest`. However, we don't run on those yet...?
|
|
Arm => at_least_32,
|
|
Mips => at_least_32,
|
|
}
|
|
}
|
|
attr::ReprAny => {
|
|
attempts = choose_shortest;
|
|
}
|
|
}
|
|
for &ity in attempts.iter() {
|
|
if bounds_usable(cx, ity, bounds) {
|
|
return ity;
|
|
}
|
|
}
|
|
return attr::UnsignedInt(ast::TyU64);
|
|
}
|
|
|
|
pub fn ll_inttype(cx: &CrateContext, ity: IntType) -> Type {
|
|
match ity {
|
|
attr::SignedInt(t) => Type::int_from_ty(cx, t),
|
|
attr::UnsignedInt(t) => Type::uint_from_ty(cx, t)
|
|
}
|
|
}
|
|
|
|
fn bounds_usable(cx: &CrateContext, ity: IntType, bounds: &IntBounds) -> bool {
|
|
debug!("bounds_usable: {:?} {:?}", ity, bounds);
|
|
match ity {
|
|
attr::SignedInt(_) => {
|
|
let lllo = C_integral(ll_inttype(cx, ity), bounds.slo as u64, true);
|
|
let llhi = C_integral(ll_inttype(cx, ity), bounds.shi as u64, true);
|
|
bounds.slo == const_to_int(lllo) as i64 && bounds.shi == const_to_int(llhi) as i64
|
|
}
|
|
attr::UnsignedInt(_) => {
|
|
let lllo = C_integral(ll_inttype(cx, ity), bounds.ulo, false);
|
|
let llhi = C_integral(ll_inttype(cx, ity), bounds.uhi, false);
|
|
bounds.ulo == const_to_uint(lllo) as u64 && bounds.uhi == const_to_uint(llhi) as u64
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn ty_of_inttype(ity: IntType) -> ty::t {
|
|
match ity {
|
|
attr::SignedInt(t) => ty::mk_mach_int(t),
|
|
attr::UnsignedInt(t) => ty::mk_mach_uint(t)
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* LLVM-level types are a little complicated.
|
|
*
|
|
* C-like enums need to be actual ints, not wrapped in a struct,
|
|
* because that changes the ABI on some platforms (see issue #10308).
|
|
*
|
|
* For nominal types, in some cases, we need to use LLVM named structs
|
|
* and fill in the actual contents in a second pass to prevent
|
|
* unbounded recursion; see also the comments in `trans::type_of`.
|
|
*/
|
|
pub fn type_of(cx: &CrateContext, r: &Repr) -> Type {
|
|
generic_type_of(cx, r, None, false)
|
|
}
|
|
pub fn sizing_type_of(cx: &CrateContext, r: &Repr) -> Type {
|
|
generic_type_of(cx, r, None, true)
|
|
}
|
|
pub fn incomplete_type_of(cx: &CrateContext, r: &Repr, name: &str) -> Type {
|
|
generic_type_of(cx, r, Some(name), false)
|
|
}
|
|
pub fn finish_type_of(cx: &CrateContext, r: &Repr, llty: &mut Type) {
|
|
match *r {
|
|
CEnum(..) | General(..) => { }
|
|
Univariant(ref st, _) | NullablePointer{ nonnull: ref st, .. } =>
|
|
llty.set_struct_body(struct_llfields(cx, st, false).as_slice(),
|
|
st.packed)
|
|
}
|
|
}
|
|
|
|
fn generic_type_of(cx: &CrateContext, r: &Repr, name: Option<&str>, sizing: bool) -> Type {
|
|
match *r {
|
|
CEnum(ity, _, _) => ll_inttype(cx, ity),
|
|
Univariant(ref st, _) | NullablePointer{ nonnull: ref st, .. } => {
|
|
match name {
|
|
None => {
|
|
Type::struct_(cx, struct_llfields(cx, st, sizing).as_slice(),
|
|
st.packed)
|
|
}
|
|
Some(name) => { assert_eq!(sizing, false); Type::named_struct(cx, name) }
|
|
}
|
|
}
|
|
General(ity, ref sts) => {
|
|
// We need a representation that has:
|
|
// * The alignment of the most-aligned field
|
|
// * The size of the largest variant (rounded up to that alignment)
|
|
// * No alignment padding anywhere any variant has actual data
|
|
// (currently matters only for enums small enough to be immediate)
|
|
// * The discriminant in an obvious place.
|
|
//
|
|
// So we start with the discriminant, pad it up to the alignment with
|
|
// more of its own type, then use alignment-sized ints to get the rest
|
|
// of the size.
|
|
//
|
|
// FIXME #10604: this breaks when vector types are present.
|
|
let size = sts.iter().map(|st| st.size).max().unwrap();
|
|
let most_aligned = sts.iter().max_by(|st| st.align).unwrap();
|
|
let align = most_aligned.align;
|
|
let discr_ty = ll_inttype(cx, ity);
|
|
let discr_size = machine::llsize_of_alloc(cx, discr_ty) as u64;
|
|
let align_units = (size + align - 1) / align - 1;
|
|
let pad_ty = match align {
|
|
1 => Type::array(&Type::i8(cx), align_units),
|
|
2 => Type::array(&Type::i16(cx), align_units),
|
|
4 => Type::array(&Type::i32(cx), align_units),
|
|
8 if machine::llalign_of_min(cx, Type::i64(cx)) == 8 =>
|
|
Type::array(&Type::i64(cx), align_units),
|
|
a if a.count_ones() == 1 => Type::array(&Type::vector(&Type::i32(cx), a / 4),
|
|
align_units),
|
|
_ => fail!("unsupported enum alignment: {:?}", align)
|
|
};
|
|
assert_eq!(machine::llalign_of_min(cx, pad_ty) as u64, align);
|
|
assert_eq!(align % discr_size, 0);
|
|
let fields = vec!(discr_ty,
|
|
Type::array(&discr_ty, align / discr_size - 1),
|
|
pad_ty);
|
|
match name {
|
|
None => Type::struct_(cx, fields.as_slice(), false),
|
|
Some(name) => {
|
|
let mut llty = Type::named_struct(cx, name);
|
|
llty.set_struct_body(fields.as_slice(), false);
|
|
llty
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn struct_llfields(cx: &CrateContext, st: &Struct, sizing: bool) -> Vec<Type> {
|
|
if sizing {
|
|
st.fields.map(|&ty| type_of::sizing_type_of(cx, ty))
|
|
} else {
|
|
st.fields.map(|&ty| type_of::type_of(cx, ty))
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Obtain a representation of the discriminant sufficient to translate
|
|
* destructuring; this may or may not involve the actual discriminant.
|
|
*
|
|
* This should ideally be less tightly tied to `_match`.
|
|
*/
|
|
pub fn trans_switch(bcx: &Block, r: &Repr, scrutinee: ValueRef)
|
|
-> (_match::branch_kind, Option<ValueRef>) {
|
|
match *r {
|
|
CEnum(..) | General(..) => {
|
|
(_match::switch, Some(trans_get_discr(bcx, r, scrutinee, None)))
|
|
}
|
|
NullablePointer{ nonnull: ref nonnull, nndiscr, ptrfield, .. } => {
|
|
(_match::switch, Some(nullable_bitdiscr(bcx, nonnull, nndiscr, ptrfield, scrutinee)))
|
|
}
|
|
Univariant(..) => {
|
|
(_match::single, None)
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/// Obtain the actual discriminant of a value.
|
|
pub fn trans_get_discr(bcx: &Block, r: &Repr, scrutinee: ValueRef, cast_to: Option<Type>)
|
|
-> ValueRef {
|
|
let signed;
|
|
let val;
|
|
match *r {
|
|
CEnum(ity, min, max) => {
|
|
val = load_discr(bcx, ity, scrutinee, min, max);
|
|
signed = ity.is_signed();
|
|
}
|
|
General(ity, ref cases) => {
|
|
let ptr = GEPi(bcx, scrutinee, [0, 0]);
|
|
val = load_discr(bcx, ity, ptr, 0, (cases.len() - 1) as Disr);
|
|
signed = ity.is_signed();
|
|
}
|
|
Univariant(..) => {
|
|
val = C_u8(bcx.ccx(), 0);
|
|
signed = false;
|
|
}
|
|
NullablePointer{ nonnull: ref nonnull, nndiscr, ptrfield, .. } => {
|
|
val = nullable_bitdiscr(bcx, nonnull, nndiscr, ptrfield, scrutinee);
|
|
signed = false;
|
|
}
|
|
}
|
|
match cast_to {
|
|
None => val,
|
|
Some(llty) => if signed { SExt(bcx, val, llty) } else { ZExt(bcx, val, llty) }
|
|
}
|
|
}
|
|
|
|
fn nullable_bitdiscr(bcx: &Block, nonnull: &Struct, nndiscr: Disr, ptrfield: uint,
|
|
scrutinee: ValueRef) -> ValueRef {
|
|
let cmp = if nndiscr == 0 { IntEQ } else { IntNE };
|
|
let llptr = Load(bcx, GEPi(bcx, scrutinee, [0, ptrfield]));
|
|
let llptrty = type_of::type_of(bcx.ccx(), *nonnull.fields.get(ptrfield));
|
|
ICmp(bcx, cmp, llptr, C_null(llptrty))
|
|
}
|
|
|
|
/// Helper for cases where the discriminant is simply loaded.
|
|
fn load_discr(bcx: &Block, ity: IntType, ptr: ValueRef, min: Disr, max: Disr)
|
|
-> ValueRef {
|
|
let llty = ll_inttype(bcx.ccx(), ity);
|
|
assert_eq!(val_ty(ptr), llty.ptr_to());
|
|
let bits = machine::llbitsize_of_real(bcx.ccx(), llty);
|
|
assert!(bits <= 64);
|
|
let mask = (-1u64 >> (64 - bits)) as Disr;
|
|
if (max + 1) & mask == min & mask {
|
|
// i.e., if the range is everything. The lo==hi case would be
|
|
// rejected by the LLVM verifier (it would mean either an
|
|
// empty set, which is impossible, or the entire range of the
|
|
// type, which is pointless).
|
|
Load(bcx, ptr)
|
|
} else {
|
|
// llvm::ConstantRange can deal with ranges that wrap around,
|
|
// so an overflow on (max + 1) is fine.
|
|
LoadRangeAssert(bcx, ptr, min as c_ulonglong,
|
|
(max + 1) as c_ulonglong,
|
|
/* signed: */ True)
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Yield information about how to dispatch a case of the
|
|
* discriminant-like value returned by `trans_switch`.
|
|
*
|
|
* This should ideally be less tightly tied to `_match`.
|
|
*/
|
|
pub fn trans_case<'a>(bcx: &'a Block<'a>, r: &Repr, discr: Disr)
|
|
-> _match::opt_result<'a> {
|
|
match *r {
|
|
CEnum(ity, _, _) => {
|
|
_match::single_result(rslt(bcx, C_integral(ll_inttype(bcx.ccx(), ity),
|
|
discr as u64, true)))
|
|
}
|
|
General(ity, _) => {
|
|
_match::single_result(rslt(bcx, C_integral(ll_inttype(bcx.ccx(), ity),
|
|
discr as u64, true)))
|
|
}
|
|
Univariant(..) => {
|
|
bcx.ccx().sess().bug("no cases for univariants or structs")
|
|
}
|
|
NullablePointer{ .. } => {
|
|
assert!(discr == 0 || discr == 1);
|
|
_match::single_result(rslt(bcx, C_i1(bcx.ccx(), discr != 0)))
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Begin initializing a new value of the given case of the given
|
|
* representation. The fields, if any, should then be initialized via
|
|
* `trans_field_ptr`.
|
|
*/
|
|
pub fn trans_start_init(bcx: &Block, r: &Repr, val: ValueRef, discr: Disr) {
|
|
match *r {
|
|
CEnum(ity, min, max) => {
|
|
assert_discr_in_range(ity, min, max, discr);
|
|
Store(bcx, C_integral(ll_inttype(bcx.ccx(), ity), discr as u64, true),
|
|
val)
|
|
}
|
|
General(ity, _) => {
|
|
Store(bcx, C_integral(ll_inttype(bcx.ccx(), ity), discr as u64, true),
|
|
GEPi(bcx, val, [0, 0]))
|
|
}
|
|
Univariant(ref st, true) => {
|
|
assert_eq!(discr, 0);
|
|
Store(bcx, C_bool(bcx.ccx(), true),
|
|
GEPi(bcx, val, [0, st.fields.len() - 1]))
|
|
}
|
|
Univariant(..) => {
|
|
assert_eq!(discr, 0);
|
|
}
|
|
NullablePointer{ nonnull: ref nonnull, nndiscr, ptrfield, .. } => {
|
|
if discr != nndiscr {
|
|
let llptrptr = GEPi(bcx, val, [0, ptrfield]);
|
|
let llptrty = type_of::type_of(bcx.ccx(),
|
|
*nonnull.fields.get(ptrfield));
|
|
Store(bcx, C_null(llptrty), llptrptr)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn assert_discr_in_range(ity: IntType, min: Disr, max: Disr, discr: Disr) {
|
|
match ity {
|
|
attr::UnsignedInt(_) => assert!(min <= discr && discr <= max),
|
|
attr::SignedInt(_) => assert!(min as i64 <= discr as i64 && discr as i64 <= max as i64)
|
|
}
|
|
}
|
|
|
|
/**
|
|
* The number of fields in a given case; for use when obtaining this
|
|
* information from the type or definition is less convenient.
|
|
*/
|
|
pub fn num_args(r: &Repr, discr: Disr) -> uint {
|
|
match *r {
|
|
CEnum(..) => 0,
|
|
Univariant(ref st, dtor) => {
|
|
assert_eq!(discr, 0);
|
|
st.fields.len() - (if dtor { 1 } else { 0 })
|
|
}
|
|
General(_, ref cases) => cases.get(discr as uint).fields.len() - 1,
|
|
NullablePointer{ nonnull: ref nonnull, nndiscr,
|
|
nullfields: ref nullfields, .. } => {
|
|
if discr == nndiscr { nonnull.fields.len() } else { nullfields.len() }
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Access a field, at a point when the value's case is known.
|
|
pub fn deref_ty(ccx: &CrateContext, r: &Repr) -> ty::t {
|
|
match *r {
|
|
CEnum(..) => {
|
|
ccx.sess().bug("deref of c-like enum")
|
|
}
|
|
Univariant(ref st, _) => {
|
|
*st.fields.get(0)
|
|
}
|
|
General(_, ref cases) => {
|
|
assert!(cases.len() == 1);
|
|
*cases.get(0).fields.get(0)
|
|
}
|
|
NullablePointer{ .. } => {
|
|
ccx.sess().bug("deref of nullable ptr")
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Access a field, at a point when the value's case is known.
|
|
pub fn trans_field_ptr(bcx: &Block, r: &Repr, val: ValueRef, discr: Disr,
|
|
ix: uint) -> ValueRef {
|
|
// Note: if this ever needs to generate conditionals (e.g., if we
|
|
// decide to do some kind of cdr-coding-like non-unique repr
|
|
// someday), it will need to return a possibly-new bcx as well.
|
|
match *r {
|
|
CEnum(..) => {
|
|
bcx.ccx().sess().bug("element access in C-like enum")
|
|
}
|
|
Univariant(ref st, _dtor) => {
|
|
assert_eq!(discr, 0);
|
|
struct_field_ptr(bcx, st, val, ix, false)
|
|
}
|
|
General(_, ref cases) => {
|
|
struct_field_ptr(bcx, cases.get(discr as uint), val, ix + 1, true)
|
|
}
|
|
NullablePointer{ nonnull: ref nonnull, nullfields: ref nullfields,
|
|
nndiscr, .. } => {
|
|
if discr == nndiscr {
|
|
struct_field_ptr(bcx, nonnull, val, ix, false)
|
|
} else {
|
|
// The unit-like case might have a nonzero number of unit-like fields.
|
|
// (e.g., Result or Either with () as one side.)
|
|
let ty = type_of::type_of(bcx.ccx(), *nullfields.get(ix));
|
|
assert_eq!(machine::llsize_of_alloc(bcx.ccx(), ty), 0);
|
|
// The contents of memory at this pointer can't matter, but use
|
|
// the value that's "reasonable" in case of pointer comparison.
|
|
PointerCast(bcx, val, ty.ptr_to())
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn struct_field_ptr(bcx: &Block, st: &Struct, val: ValueRef, ix: uint,
|
|
needs_cast: bool) -> ValueRef {
|
|
let ccx = bcx.ccx();
|
|
|
|
let val = if needs_cast {
|
|
let fields = st.fields.map(|&ty| type_of::type_of(ccx, ty));
|
|
let real_ty = Type::struct_(ccx, fields.as_slice(), st.packed);
|
|
PointerCast(bcx, val, real_ty.ptr_to())
|
|
} else {
|
|
val
|
|
};
|
|
|
|
GEPi(bcx, val, [0, ix])
|
|
}
|
|
|
|
/// Access the struct drop flag, if present.
|
|
pub fn trans_drop_flag_ptr(bcx: &Block, r: &Repr, val: ValueRef) -> ValueRef {
|
|
match *r {
|
|
Univariant(ref st, true) => GEPi(bcx, val, [0, st.fields.len() - 1]),
|
|
_ => bcx.ccx().sess().bug("tried to get drop flag of non-droppable type")
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Construct a constant value, suitable for initializing a
|
|
* GlobalVariable, given a case and constant values for its fields.
|
|
* Note that this may have a different LLVM type (and different
|
|
* alignment!) from the representation's `type_of`, so it needs a
|
|
* pointer cast before use.
|
|
*
|
|
* The LLVM type system does not directly support unions, and only
|
|
* pointers can be bitcast, so a constant (and, by extension, the
|
|
* GlobalVariable initialized by it) will have a type that can vary
|
|
* depending on which case of an enum it is.
|
|
*
|
|
* To understand the alignment situation, consider `enum E { V64(u64),
|
|
* V32(u32, u32) }` on win32. The type has 8-byte alignment to
|
|
* accommodate the u64, but `V32(x, y)` would have LLVM type `{i32,
|
|
* i32, i32}`, which is 4-byte aligned.
|
|
*
|
|
* Currently the returned value has the same size as the type, but
|
|
* this could be changed in the future to avoid allocating unnecessary
|
|
* space after values of shorter-than-maximum cases.
|
|
*/
|
|
pub fn trans_const(ccx: &CrateContext, r: &Repr, discr: Disr,
|
|
vals: &[ValueRef]) -> ValueRef {
|
|
match *r {
|
|
CEnum(ity, min, max) => {
|
|
assert_eq!(vals.len(), 0);
|
|
assert_discr_in_range(ity, min, max, discr);
|
|
C_integral(ll_inttype(ccx, ity), discr as u64, true)
|
|
}
|
|
General(ity, ref cases) => {
|
|
let case = cases.get(discr as uint);
|
|
let max_sz = cases.iter().map(|x| x.size).max().unwrap();
|
|
let lldiscr = C_integral(ll_inttype(ccx, ity), discr as u64, true);
|
|
let contents = build_const_struct(ccx,
|
|
case,
|
|
vec::append(
|
|
vec!(lldiscr),
|
|
vals).as_slice());
|
|
C_struct(ccx, vec::append(
|
|
contents,
|
|
&[padding(ccx, max_sz - case.size)]).as_slice(),
|
|
false)
|
|
}
|
|
Univariant(ref st, _dro) => {
|
|
assert!(discr == 0);
|
|
let contents = build_const_struct(ccx, st, vals);
|
|
C_struct(ccx, contents.as_slice(), st.packed)
|
|
}
|
|
NullablePointer{ nonnull: ref nonnull, nndiscr, .. } => {
|
|
if discr == nndiscr {
|
|
C_struct(ccx, build_const_struct(ccx,
|
|
nonnull,
|
|
vals).as_slice(),
|
|
false)
|
|
} else {
|
|
let vals = nonnull.fields.map(|&ty| {
|
|
// Always use null even if it's not the `ptrfield`th
|
|
// field; see #8506.
|
|
C_null(type_of::sizing_type_of(ccx, ty))
|
|
}).move_iter().collect::<Vec<ValueRef> >();
|
|
C_struct(ccx, build_const_struct(ccx,
|
|
nonnull,
|
|
vals.as_slice()).as_slice(),
|
|
false)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Building structs is a little complicated, because we might need to
|
|
* insert padding if a field's value is less aligned than its type.
|
|
*
|
|
* Continuing the example from `trans_const`, a value of type `(u32,
|
|
* E)` should have the `E` at offset 8, but if that field's
|
|
* initializer is 4-byte aligned then simply translating the tuple as
|
|
* a two-element struct will locate it at offset 4, and accesses to it
|
|
* will read the wrong memory.
|
|
*/
|
|
fn build_const_struct(ccx: &CrateContext, st: &Struct, vals: &[ValueRef])
|
|
-> Vec<ValueRef> {
|
|
assert_eq!(vals.len(), st.fields.len());
|
|
|
|
let mut offset = 0;
|
|
let mut cfields = Vec::new();
|
|
for (i, &ty) in st.fields.iter().enumerate() {
|
|
let llty = type_of::sizing_type_of(ccx, ty);
|
|
let type_align = machine::llalign_of_min(ccx, llty)
|
|
/*bad*/as u64;
|
|
let val_align = machine::llalign_of_min(ccx, val_ty(vals[i]))
|
|
/*bad*/as u64;
|
|
let target_offset = roundup(offset, type_align);
|
|
offset = roundup(offset, val_align);
|
|
if offset != target_offset {
|
|
cfields.push(padding(ccx, target_offset - offset));
|
|
offset = target_offset;
|
|
}
|
|
assert!(!is_undef(vals[i]));
|
|
cfields.push(vals[i]);
|
|
offset += machine::llsize_of_alloc(ccx, llty) as u64
|
|
}
|
|
|
|
return cfields;
|
|
}
|
|
|
|
fn padding(ccx: &CrateContext, size: u64) -> ValueRef {
|
|
C_undef(Type::array(&Type::i8(ccx), size))
|
|
}
|
|
|
|
// FIXME this utility routine should be somewhere more general
|
|
#[inline]
|
|
fn roundup(x: u64, a: u64) -> u64 { ((x + (a - 1)) / a) * a }
|
|
|
|
/// Get the discriminant of a constant value. (Not currently used.)
|
|
pub fn const_get_discrim(ccx: &CrateContext, r: &Repr, val: ValueRef)
|
|
-> Disr {
|
|
match *r {
|
|
CEnum(ity, _, _) => {
|
|
match ity {
|
|
attr::SignedInt(..) => const_to_int(val) as Disr,
|
|
attr::UnsignedInt(..) => const_to_uint(val) as Disr
|
|
}
|
|
}
|
|
General(ity, _) => {
|
|
match ity {
|
|
attr::SignedInt(..) => const_to_int(const_get_elt(ccx, val, [0])) as Disr,
|
|
attr::UnsignedInt(..) => const_to_uint(const_get_elt(ccx, val, [0])) as Disr
|
|
}
|
|
}
|
|
Univariant(..) => 0,
|
|
NullablePointer{ nndiscr, ptrfield, .. } => {
|
|
if is_null(const_struct_field(ccx, val, ptrfield)) {
|
|
/* subtraction as uint is ok because nndiscr is either 0 or 1 */
|
|
(1 - nndiscr) as Disr
|
|
} else {
|
|
nndiscr
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Extract a field of a constant value, as appropriate for its
|
|
* representation.
|
|
*
|
|
* (Not to be confused with `common::const_get_elt`, which operates on
|
|
* raw LLVM-level structs and arrays.)
|
|
*/
|
|
pub fn const_get_field(ccx: &CrateContext, r: &Repr, val: ValueRef,
|
|
_discr: Disr, ix: uint) -> ValueRef {
|
|
match *r {
|
|
CEnum(..) => ccx.sess().bug("element access in C-like enum const"),
|
|
Univariant(..) => const_struct_field(ccx, val, ix),
|
|
General(..) => const_struct_field(ccx, val, ix + 1),
|
|
NullablePointer{ .. } => const_struct_field(ccx, val, ix)
|
|
}
|
|
}
|
|
|
|
/// Extract field of struct-like const, skipping our alignment padding.
|
|
fn const_struct_field(ccx: &CrateContext, val: ValueRef, ix: uint)
|
|
-> ValueRef {
|
|
// Get the ix-th non-undef element of the struct.
|
|
let mut real_ix = 0; // actual position in the struct
|
|
let mut ix = ix; // logical index relative to real_ix
|
|
let mut field;
|
|
loop {
|
|
loop {
|
|
field = const_get_elt(ccx, val, [real_ix]);
|
|
if !is_undef(field) {
|
|
break;
|
|
}
|
|
real_ix = real_ix + 1;
|
|
}
|
|
if ix == 0 {
|
|
return field;
|
|
}
|
|
ix = ix - 1;
|
|
real_ix = real_ix + 1;
|
|
}
|
|
}
|
|
|
|
/// Is it safe to bitcast a value to the one field of its one variant?
|
|
pub fn is_newtypeish(r: &Repr) -> bool {
|
|
match *r {
|
|
Univariant(ref st, false) => st.fields.len() == 1,
|
|
_ => false
|
|
}
|
|
}
|