This includes updating the language items and marking what needs to
change after a snapshot.
If you do not use the standard library, the language items you need to
implement have changed. For example:
```rust
#[lang = "fail_fmt"] fn fail_fmt() -> ! { loop {} }
```
is now
```rust
#[lang = "panic_fmt"] fn panic_fmt() -> ! { loop {} }
```
Related, lesser-implemented language items `fail` and
`fail_bounds_check` have become `panic` and `panic_bounds_check`, as
well. These are implemented by `libcore`, so it is unlikely (though
possible!) that these two renamings will affect you.
[breaking-change]
Fix test suite
https://github.com/rust-lang/rfcs/pull/221
The current terminology of "task failure" often causes problems when
writing or speaking about code. You often want to talk about the
possibility of an operation that returns a Result "failing", but cannot
because of the ambiguity with task failure. Instead, you have to speak
of "the failing case" or "when the operation does not succeed" or other
circumlocutions.
Likewise, we use a "Failure" header in rustdoc to describe when
operations may fail the task, but it would often be helpful to separate
out a section describing the "Err-producing" case.
We have been steadily moving away from task failure and toward Result as
an error-handling mechanism, so we should optimize our terminology
accordingly: Result-producing functions should be easy to describe.
To update your code, rename any call to `fail!` to `panic!` instead.
Assuming you have not created your own macro named `panic!`, this
will work on UNIX based systems:
grep -lZR 'fail!' . | xargs -0 -l sed -i -e 's/fail!/panic!/g'
You can of course also do this by hand.
[breaking-change]
This PR changes the signature of several methods from `foo(self, ...)` to
`foo(&self, ...)`/`foo(&mut self, ...)`, but there is no breakage of the usage
of these methods due to the autoref nature of `method.call()`s. This PR also
removes the lifetime parameter from some traits (`Trait<'a>` -> `Trait`). These
changes break any use of the extension traits for generic programming, but
those traits are not meant to be used for generic programming in the first
place. In the whole rust distribution there was only one misuse of a extension
trait as a bound, which got corrected (the bound was unnecessary and got
removed) as part of this PR.
[breaking-change]
Adds an `assume` intrinsic that gets translated to llvm.assume. It is
used on a boolean expression and allows the optimizer to assume that
the expression is true.
This implements #18051.
Old vs. New vs. Vec::push_all
```
test slice ... bench: 3091942 ns/iter (+/- 54460)
test slice_new ... bench: 1800065 ns/iter (+/- 69513)
test vec ... bench: 1804805 ns/iter (+/- 75609)
```
Convert trait method dispatch to use new trait matching machinery.
This fixes about 90% of #17918. What remains to be done is to make inherent dispatch work with conditional dispatch as well. I plan to do this in a future patch by generalizing the "method match" code slightly to work for inherent impls as well (the basic algorithm is precisely the same).
Fixes#17178.
This is a [breaking-change] for two reasons:
1. The old code was a bit broken. I found various minor cases, particularly around operators, where the old code incorrectly matched, but an extra `*` or other change is now required. (See commit e8cef25 ("Correct case where the old version of method lookup...") for examples.)
2. The old code didn't type check calls against the method signature from the *trait* but rather the *impl*. The two can be different in subtle ways. This makes the new method dispatch both more liberal and more conservative than the original. (See commit 8308332 ("The new method lookup mechanism typechecks...") for examples.)
r? @pcwalton since he's been reviewing most of this series of changes
f? @nick29581 for commit 39df55f ("Permit DST types to unify like other types")
cc @aturon as this relates to library stabilization
This is a large spring-cleaning commit now that the 0.12.0 release has passed removing an amount of deprecated functionality. This removes a number of deprecated crates (all still available as cargo packages in the rust-lang organization) as well as a slew of deprecated functions. All `#[crate_id]` support has also been removed.
I tried to avoid anything that was recently deprecated, but I may have missed something! The major pain points of this commit is the fact that rustc/syntax have `#[allow(deprecated)]`, but I've removed that annotation so moving forward they should be cleaned up as we go.
Spring cleaning is here! In the Fall! This commit removes quite a large amount
of deprecated functionality from the standard libraries. I tried to ensure that
only old deprecated functionality was removed.
This is removing lots and lots of deprecated features, so this is a breaking
change. Please consult the deprecation messages of the deleted code to see how
to migrate code forward if it still needs migration.
[breaking-change]
Make the doc more consistent & runnable.
* Use `_index` instead of `_rhs` when appropriate.
* Use `_from` and `_to` to avoid warning.
* Remove unnecessary `::core::ops`
Adds an `assume` intrinsic that gets translated to llvm.assume. It is
used on a boolean expression and allows the optimizer to assume that
the expression is true.
This implements #18051.
This change is an implementation of [RFC 69][rfc] which adds a third kind of
global to the language, `const`. This global is most similar to what the old
`static` was, and if you're unsure about what to use then you should use a
`const`.
The semantics of these three kinds of globals are:
* A `const` does not represent a memory location, but only a value. Constants
are translated as rvalues, which means that their values are directly inlined
at usage location (similar to a #define in C/C++). Constant values are, well,
constant, and can not be modified. Any "modification" is actually a
modification to a local value on the stack rather than the actual constant
itself.
Almost all values are allowed inside constants, whether they have interior
mutability or not. There are a few minor restrictions listed in the RFC, but
they should in general not come up too often.
* A `static` now always represents a memory location (unconditionally). Any
references to the same `static` are actually a reference to the same memory
location. Only values whose types ascribe to `Sync` are allowed in a `static`.
This restriction is in place because many threads may access a `static`
concurrently. Lifting this restriction (and allowing unsafe access) is a
future extension not implemented at this time.
* A `static mut` continues to always represent a memory location. All references
to a `static mut` continue to be `unsafe`.
This is a large breaking change, and many programs will need to be updated
accordingly. A summary of the breaking changes is:
* Statics may no longer be used in patterns. Statics now always represent a
memory location, which can sometimes be modified. To fix code, repurpose the
matched-on-`static` to a `const`.
static FOO: uint = 4;
match n {
FOO => { /* ... */ }
_ => { /* ... */ }
}
change this code to:
const FOO: uint = 4;
match n {
FOO => { /* ... */ }
_ => { /* ... */ }
}
* Statics may no longer refer to other statics by value. Due to statics being
able to change at runtime, allowing them to reference one another could
possibly lead to confusing semantics. If you are in this situation, use a
constant initializer instead. Note, however, that statics may reference other
statics by address, however.
* Statics may no longer be used in constant expressions, such as array lengths.
This is due to the same restrictions as listed above. Use a `const` instead.
[breaking-change]
Closes#17718
[rfc]: https://github.com/rust-lang/rfcs/pull/246