I just found this patch which at some point solved a problem I encountered. Unfortunately I apparently dropped it before I managed to write a test case. I'll try to dig up the code that triggered the issue.
The error messages still aren’t as good as they were before DST, but they better
describe the actual problem, not mentioning `Sized` at all (because that bound
is normally implied, not explicitly stated).
Closes#17567.
Closes#18040.
Closes#18159.
When building for multiple targets, the initial 'make' invocation
always fails. The missing build stamp causes clean-llvm to be
invoked, but clean-llvm cleans *all* llvm builds. So what happens
is that 1) all llvm's are cleaned (a no-op), 2) llvm-${target1}
builds, 3) all llvm's are cleaned (deleting llvm-${target1}),
4) llvm-${target2} is built, 5) the remaining build for ${target1}
fails because llvm does not exist.
This makes the clean operation only clean the correct llvm build.
Should greatly reduce bot failures.
When building for multiple targets, the initial 'make' invocation
always fails. The missing build stamp causes clean-llvm to be
invoked, but clean-llvm cleans *all* llvm builds. So what happens
is that 1) all llvm's are cleaned (a no-op), 2) llvm-${target1}
builds, 3) all llvm's are cleaned (deleting llvm-${target1}),
4) llvm-${target2} is built, 5) the remaining build for ${target1}
fails because llvm does not exist.
This makes the clean operation only clean the correct llvm build.
Should greatly reduce bot failures.
closes#17670
[breaking-change]
Traits must be object-safe if they are to be used in trait objects. This might require splitting a trait into object-safe and non-object-safe parts.
Some standard library traits in std::io have been split - Reader has new traits BytesReader (for the bytes method) and AsRefReader (for by_ref), Writer has new trait AsRefWriter (for by_ref). All these new traits have blanket impls, so any type which implements Reader or Writer (respectively) will have an implmentation of the new traits. To fix your code, you just need to `use` the new trait.
This commit adds the following impls:
impl<T> Deref<[T]> for Vec<T>
impl<T> DerefMut<[T]> for Vec<T>
impl Deref<str> for String
This commit also removes all duplicated inherent methods from vectors and
strings as implementations will now silently call through to the slice
implementation. Some breakage occurred at std and beneath due to inherent
methods removed in favor of those in the slice traits and std doesn't use its
own prelude,
cc #18424
Simpler, safer and shorter, in the same spirit of the current version, and the
same performances.
@mahkoh please review, I think I didn't change any performances related thing.
This in-progress PR implements https://github.com/rust-lang/rust/issues/17489.
I made the code changes in this commit, next is to go through alllllllll the documentation and fix various things.
- Rename column headings as appropriate, `# Panics` for panic conditions and `# Errors` for `Result`s.
- clean up usage of words like 'fail' in error messages
Anything else to add to the list, @aturon ? I think I should leave the actual functions with names like `slice_or_fail` alone, since you'll get to those in your conventions work?
I'm submitting just the code bits now so that we can see it separately, and I also don't want to have to keep re-building rust over and over again if I don't have to 😉
Listing all the bits so I can remember as I go:
- [x] compiler-rt
- [x] compiletest
- [x] doc
- [x] driver
- [x] etc
- [x] grammar
- [x] jemalloc
- [x] liballoc
- [x] libarena
- [x] libbacktrace
- [x] libcollections
- [x] libcore
- [x] libcoretest
- [x] libdebug
- [x] libflate
- [x] libfmt_macros
- [x] libfourcc
- [x] libgetopts
- [x] libglob
- [x] libgraphviz
- [x] libgreen
- [x] libhexfloat
- [x] liblibc
- [x] liblog
- [x] libnative
- [x] libnum
- [x] librand
- [x] librbml
- [x] libregex
- [x] libregex_macros
- [x] librlibc
- [x] librustc
- [x] librustc_back
- [x] librustc_llvm
- [x] librustdoc
- [x] librustrt
- [x] libsemver
- [x] libserialize
- [x] libstd
- [x] libsync
- [x] libsyntax
- [x] libterm
- [x] libtest
- [x] libtime
- [x] libunicode
- [x] liburl
- [x] libuuid
- [x] llvm
- [x] rt
- [x] test
This includes updating the language items and marking what needs to
change after a snapshot.
If you do not use the standard library, the language items you need to
implement have changed. For example:
```rust
#[lang = "fail_fmt"] fn fail_fmt() -> ! { loop {} }
```
is now
```rust
#[lang = "panic_fmt"] fn panic_fmt() -> ! { loop {} }
```
Related, lesser-implemented language items `fail` and
`fail_bounds_check` have become `panic` and `panic_bounds_check`, as
well. These are implemented by `libcore`, so it is unlikely (though
possible!) that these two renamings will affect you.
[breaking-change]
Fix test suite
https://github.com/rust-lang/rfcs/pull/221
The current terminology of "task failure" often causes problems when
writing or speaking about code. You often want to talk about the
possibility of an operation that returns a Result "failing", but cannot
because of the ambiguity with task failure. Instead, you have to speak
of "the failing case" or "when the operation does not succeed" or other
circumlocutions.
Likewise, we use a "Failure" header in rustdoc to describe when
operations may fail the task, but it would often be helpful to separate
out a section describing the "Err-producing" case.
We have been steadily moving away from task failure and toward Result as
an error-handling mechanism, so we should optimize our terminology
accordingly: Result-producing functions should be easy to describe.
To update your code, rename any call to `fail!` to `panic!` instead.
Assuming you have not created your own macro named `panic!`, this
will work on UNIX based systems:
grep -lZR 'fail!' . | xargs -0 -l sed -i -e 's/fail!/panic!/g'
You can of course also do this by hand.
[breaking-change]