Add libm to mikros std
This commit is contained in:
parent
aefc4ee221
commit
a70304b471
11
Cargo.lock
11
Cargo.lock
@ -1787,7 +1787,7 @@ version = "2.1.3"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "6cb51c9a029ddc91b07a787f1d86b53ccfa49b0e86688c946ebe8d3555685dd7"
|
||||
dependencies = [
|
||||
"libm",
|
||||
"libm 0.2.8 (registry+https://github.com/rust-lang/crates.io-index)",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@ -2258,6 +2258,14 @@ dependencies = [
|
||||
"windows-targets 0.48.5",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "libm"
|
||||
version = "0.2.8"
|
||||
dependencies = [
|
||||
"compiler_builtins",
|
||||
"rustc-std-workspace-core",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "libm"
|
||||
version = "0.2.8"
|
||||
@ -5418,6 +5426,7 @@ dependencies = [
|
||||
"hashbrown",
|
||||
"hermit-abi 0.4.0",
|
||||
"libc",
|
||||
"libm 0.2.8",
|
||||
"miniz_oxide",
|
||||
"object 0.36.0",
|
||||
"panic_abort",
|
||||
|
@ -65,6 +65,7 @@ x86_64 = { path = "../../mikros_std_deps/x86_64-0.15.1", default-features = fals
|
||||
elf = { path = "../../mikros_std_deps/elf-0.7.4/", default-features = false, features = ["rustc-dep-of-std"] }
|
||||
serde = { path = "../../mikros_std_deps/serde-1.0.203/", default-features = false, features = ["rustc-dep-of-std", "alloc"]}
|
||||
postcard = { path = "../../mikros_std_deps/postcard-1.0.8/", default-features = false, features = ["rustc-dep-of-std", "alloc"]}
|
||||
libm = { path = "../../mikros_std_deps/libm-0.2.8/", default-features = false, features = ["rustc-dep-of-std"] }
|
||||
|
||||
|
||||
[features]
|
||||
|
570
library/std/src/sys/pal/mikros/math.rs
Normal file
570
library/std/src/sys/pal/mikros/math.rs
Normal file
@ -0,0 +1,570 @@
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn acosf(x: f32) -> f32 {
|
||||
libm::acosf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn acoshf(x: f32) -> f32 {
|
||||
libm::acoshf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn asinf(x: f32) -> f32 {
|
||||
libm::asinf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn asinhf(x: f32) -> f32 {
|
||||
libm::asinhf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn atanf(x: f32) -> f32 {
|
||||
libm::atanf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn atan2f(y: f32, x: f32) -> f32 {
|
||||
libm::atan2f(y, x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn atanhf(x: f32) -> f32 {
|
||||
libm::atanhf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn cbrtf(x: f32) -> f32 {
|
||||
libm::cbrtf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn ceilf(x: f32) -> f32 {
|
||||
libm::ceilf(x)
|
||||
}
|
||||
//#[no_mangle]
|
||||
//#[allow(unused)]
|
||||
//pub extern "C" fn copysignf(x: f32, y: f32) -> f32 {
|
||||
// libm::copysignf(x, y)
|
||||
//}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn cosf(x: f32) -> f32 {
|
||||
libm::cosf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn coshf(x: f32) -> f32 {
|
||||
libm::coshf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn erff(x: f32) -> f32 {
|
||||
libm::erff(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn erfcf(x: f32) -> f32 {
|
||||
libm::erfcf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn expf(x: f32) -> f32 {
|
||||
libm::expf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn exp2f(x: f32) -> f32 {
|
||||
libm::exp2f(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn exp10f(x: f32) -> f32 {
|
||||
libm::exp10f(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn expm1f(x: f32) -> f32 {
|
||||
libm::expm1f(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn fabsf(x: f32) -> f32 {
|
||||
libm::fabsf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn fdimf(x: f32, y: f32) -> f32 {
|
||||
libm::fdimf(x, y)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn floorf(x: f32) -> f32 {
|
||||
libm::floorf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn fmaf(x: f32, y: f32, z: f32) -> f32 {
|
||||
libm::fmaf(x, y, z)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn fmaxf(x: f32, y: f32) -> f32 {
|
||||
libm::fmaxf(x, y)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn fminf(x: f32, y: f32) -> f32 {
|
||||
libm::fminf(x, y)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn fmodf(x: f32, y: f32) -> f32 {
|
||||
libm::fmodf(x, y)
|
||||
}
|
||||
//#[no_mangle]
|
||||
//#[allow(unused)]
|
||||
//pub extern "C" fn frexpf(x: f32) -> (f32, i32) {
|
||||
// libm::frexpf(x)
|
||||
//}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn hypotf(x: f32, y: f32) -> f32 {
|
||||
libm::hypotf(x, y)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn ilogbf(x: f32) -> i32 {
|
||||
libm::ilogbf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn j0f(x: f32) -> f32 {
|
||||
libm::j0f(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn j1f(x: f32) -> f32 {
|
||||
libm::j1f(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn jnf(n: i32, x: f32) -> f32 {
|
||||
libm::jnf(n, x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn ldexpf(x: f32, n: i32) -> f32 {
|
||||
libm::ldexpf(x, n)
|
||||
}
|
||||
//#[no_mangle]
|
||||
//#[allow(unused)]
|
||||
//pub extern "C" fn lgammaf_r(x: f32) -> (f32, i32) {
|
||||
// libm::lgammaf_r(x)
|
||||
//}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn lgammaf(x: f32) -> f32 {
|
||||
libm::lgammaf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn logf(x: f32) -> f32 {
|
||||
libm::logf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn log1pf(x: f32) -> f32 {
|
||||
libm::log1pf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn log2f(x: f32) -> f32 {
|
||||
libm::log2f(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn log10f(x: f32) -> f32 {
|
||||
libm::log10f(x)
|
||||
}
|
||||
//#[no_mangle]
|
||||
//#[allow(unused)]
|
||||
//pub extern "C" fn modff(x: f32) -> (f32, f32) {
|
||||
// libm::modff(x)
|
||||
//}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn nextafterf(x: f32, y: f32) -> f32 {
|
||||
libm::nextafterf(x, y)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn powf(x: f32, y: f32) -> f32 {
|
||||
libm::powf(x, y)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn remainderf(x: f32, y: f32) -> f32 {
|
||||
libm::remainderf(x, y)
|
||||
}
|
||||
//#[no_mangle]
|
||||
//#[allow(unused)]
|
||||
//pub extern "C" fn remquof(x: f32, y: f32) -> (f32, i32) {
|
||||
// libm::remquof(x, y)
|
||||
//}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn rintf(x: f32) -> f32 {
|
||||
libm::rintf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn roundf(x: f32) -> f32 {
|
||||
libm::roundf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn scalbnf(x: f32, n: i32) -> f32 {
|
||||
libm::scalbnf(x, n)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn sinf(x: f32) -> f32 {
|
||||
libm::sinf(x)
|
||||
}
|
||||
//#[no_mangle]
|
||||
//#[allow(unused)]
|
||||
//pub extern "C" fn sincosf(x: f32) -> (f32, f32) {
|
||||
// libm::sincosf(x)
|
||||
//}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn sinhf(x: f32) -> f32 {
|
||||
libm::sinhf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn sqrtf(x: f32) -> f32 {
|
||||
libm::sqrtf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn tanf(x: f32) -> f32 {
|
||||
libm::tanf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn tanhf(x: f32) -> f32 {
|
||||
libm::tanhf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn tgammaf(x: f32) -> f32 {
|
||||
libm::tgammaf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn truncf(x: f32) -> f32 {
|
||||
libm::truncf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn y0f(x: f32) -> f32 {
|
||||
libm::y0f(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn y1f(x: f32) -> f32 {
|
||||
libm::y1f(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn ynf(n: i32, x: f32) -> f32 {
|
||||
libm::ynf(n, x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn acos(x: f64) -> f64 {
|
||||
libm::acos(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn acosh(x: f64) -> f64 {
|
||||
libm::acosh(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn asin(x: f64) -> f64 {
|
||||
libm::asin(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn asinh(x: f64) -> f64 {
|
||||
libm::asinh(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn atan(x: f64) -> f64 {
|
||||
libm::atan(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn atan2(y: f64, x: f64) -> f64 {
|
||||
libm::atan2(y, x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn atanh(x: f64) -> f64 {
|
||||
libm::atanh(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn cbrt(x: f64) -> f64 {
|
||||
libm::cbrt(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn ceil(x: f64) -> f64 {
|
||||
libm::ceil(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn copysign(x: f64, y: f64) -> f64 {
|
||||
libm::copysign(x, y)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn cos(x: f64) -> f64 {
|
||||
libm::cos(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn cosh(x: f64) -> f64 {
|
||||
libm::cosh(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn erf(x: f64) -> f64 {
|
||||
libm::erf(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn erfc(x: f64) -> f64 {
|
||||
libm::erfc(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn exp(x: f64) -> f64 {
|
||||
libm::exp(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn exp2(x: f64) -> f64 {
|
||||
libm::exp2(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn exp10(x: f64) -> f64 {
|
||||
libm::exp10(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn expm1(x: f64) -> f64 {
|
||||
libm::expm1(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn fabs(x: f64) -> f64 {
|
||||
libm::fabs(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn fdim(x: f64, y: f64) -> f64 {
|
||||
libm::fdim(x, y)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn floor(x: f64) -> f64 {
|
||||
libm::floor(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn fma(x: f64, y: f64, z: f64) -> f64 {
|
||||
libm::fma(x, y, z)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn fmax(x: f64, y: f64) -> f64 {
|
||||
libm::fmax(x, y)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn fmin(x: f64, y: f64) -> f64 {
|
||||
libm::fmin(x, y)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn fmod(x: f64, y: f64) -> f64 {
|
||||
libm::fmod(x, y)
|
||||
}
|
||||
//#[no_mangle]
|
||||
//#[allow(unused)]
|
||||
//pub extern "C" fn frexp(x: f64) -> (f64, i32) {
|
||||
// libm::frexp(x)
|
||||
//}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn hypot(x: f64, y: f64) -> f64 {
|
||||
libm::hypot(x, y)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn ilogb(x: f64) -> i32 {
|
||||
libm::ilogb(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn j0(x: f64) -> f64 {
|
||||
libm::j0(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn j1(x: f64) -> f64 {
|
||||
libm::j1(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn jn(n: i32, x: f64) -> f64 {
|
||||
libm::jn(n, x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn ldexp(x: f64, n: i32) -> f64 {
|
||||
libm::ldexp(x, n)
|
||||
}
|
||||
//#[no_mangle]
|
||||
//#[allow(unused)]
|
||||
//pub extern "C" fn lgamma_r(x: f64) -> (f64, i32) {
|
||||
// libm::lgamma_r(x)
|
||||
//}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn lgamma(x: f64) -> f64 {
|
||||
libm::lgamma(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn log(x: f64) -> f64 {
|
||||
libm::log(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn log1p(x: f64) -> f64 {
|
||||
libm::log1p(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn log2(x: f64) -> f64 {
|
||||
libm::log2(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn log10(x: f64) -> f64 {
|
||||
libm::log10(x)
|
||||
}
|
||||
//#[no_mangle]
|
||||
//#[allow(unused)]
|
||||
//pub extern "C" fn modf(x: f64) -> (f64, f64) {
|
||||
// libm::modf(x)
|
||||
//}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn nextafter(x: f64, y: f64) -> f64 {
|
||||
libm::nextafter(x, y)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn pow(x: f64, y: f64) -> f64 {
|
||||
libm::pow(x, y)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn remainder(x: f64, y: f64) -> f64 {
|
||||
libm::remainder(x, y)
|
||||
}
|
||||
//#[no_mangle]
|
||||
//#[allow(unused)]
|
||||
//pub extern "C" fn remquo(x: f64, y: f64) -> (f64, i32) {
|
||||
// libm::remquo(x, y)
|
||||
//}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn rint(x: f64) -> f64 {
|
||||
libm::rint(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn round(x: f64) -> f64 {
|
||||
libm::round(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn scalbn(x: f64, n: i32) -> f64 {
|
||||
libm::scalbn(x, n)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn sin(x: f64) -> f64 {
|
||||
libm::sin(x)
|
||||
}
|
||||
//#[no_mangle]
|
||||
//#[allow(unused)]
|
||||
//pub extern "C" fn sincos(x: f64) -> (f64, f64) {
|
||||
// libm::sincos(x)
|
||||
//}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn sinh(x: f64) -> f64 {
|
||||
libm::sinh(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn sqrt(x: f64) -> f64 {
|
||||
libm::sqrt(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn tan(x: f64) -> f64 {
|
||||
libm::tan(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn tanh(x: f64) -> f64 {
|
||||
libm::tanh(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn tgamma(x: f64) -> f64 {
|
||||
libm::tgamma(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn trunc(x: f64) -> f64 {
|
||||
libm::trunc(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn y0(x: f64) -> f64 {
|
||||
libm::y0(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn y1(x: f64) -> f64 {
|
||||
libm::y1(x)
|
||||
}
|
||||
#[no_mangle]
|
||||
#[allow(unused)]
|
||||
pub extern "C" fn yn(n: i32, x: f64) -> f64 {
|
||||
libm::yn(n, x)
|
||||
}
|
@ -23,3 +23,5 @@
|
||||
|
||||
mod common;
|
||||
pub use common::*;
|
||||
|
||||
mod math;
|
||||
|
6
mikros_std_deps/libm-0.2.8/.cargo_vcs_info.json
Normal file
6
mikros_std_deps/libm-0.2.8/.cargo_vcs_info.json
Normal file
@ -0,0 +1,6 @@
|
||||
{
|
||||
"git": {
|
||||
"sha1": "721a5edc1be6b0412e4b1704590aed76f9a55899"
|
||||
},
|
||||
"path_in_vcs": ""
|
||||
}
|
21
mikros_std_deps/libm-0.2.8/.editorconfig
Normal file
21
mikros_std_deps/libm-0.2.8/.editorconfig
Normal file
@ -0,0 +1,21 @@
|
||||
# EditorConfig helps developers define and maintain consistent
|
||||
# coding styles between different editors and IDEs
|
||||
# editorconfig.org
|
||||
|
||||
root = true
|
||||
|
||||
[*]
|
||||
end_of_line = lf
|
||||
charset = utf-8
|
||||
trim_trailing_whitespace = true
|
||||
insert_final_newline = true
|
||||
indent_style = space
|
||||
indent_size = 4
|
||||
|
||||
[*.md]
|
||||
# double whitespace at end of line
|
||||
# denotes a line break in Markdown
|
||||
trim_trailing_whitespace = false
|
||||
|
||||
[*.yml]
|
||||
indent_size = 2
|
8
mikros_std_deps/libm-0.2.8/.gitignore
vendored
Normal file
8
mikros_std_deps/libm-0.2.8/.gitignore
vendored
Normal file
@ -0,0 +1,8 @@
|
||||
**/*.rs.bk
|
||||
.#*
|
||||
/bin
|
||||
/math/src
|
||||
/math/target
|
||||
/target
|
||||
/tests
|
||||
Cargo.lock
|
123
mikros_std_deps/libm-0.2.8/CHANGELOG.md
Normal file
123
mikros_std_deps/libm-0.2.8/CHANGELOG.md
Normal file
@ -0,0 +1,123 @@
|
||||
# Change Log
|
||||
|
||||
All notable changes to this project will be documented in this file.
|
||||
This project adheres to [Semantic Versioning](http://semver.org/).
|
||||
|
||||
## [Unreleased]
|
||||
|
||||
...
|
||||
|
||||
## [v0.2.1] - 2019-11-22
|
||||
|
||||
### Fixed
|
||||
- sincosf
|
||||
|
||||
## [v0.2.0] - 2019-10-18
|
||||
|
||||
### Added
|
||||
- Benchmarks
|
||||
- signum
|
||||
- remainder
|
||||
- remainderf
|
||||
- nextafter
|
||||
- nextafterf
|
||||
|
||||
### Fixed
|
||||
- Rounding to negative zero
|
||||
- Overflows in rem_pio2 and remquo
|
||||
- Overflows in fma
|
||||
- sincosf
|
||||
|
||||
### Removed
|
||||
- F32Ext and F64Ext traits
|
||||
|
||||
## [v0.1.4] - 2019-06-12
|
||||
|
||||
### Fixed
|
||||
- Restored compatibility with Rust 1.31.0
|
||||
|
||||
## [v0.1.3] - 2019-05-14
|
||||
|
||||
### Added
|
||||
|
||||
- minf
|
||||
- fmin
|
||||
- fmaxf
|
||||
- fmax
|
||||
|
||||
## [v0.1.2] - 2018-07-18
|
||||
|
||||
### Added
|
||||
|
||||
- acosf
|
||||
- asin
|
||||
- asinf
|
||||
- atan
|
||||
- atan2
|
||||
- atan2f
|
||||
- atanf
|
||||
- cos
|
||||
- cosf
|
||||
- cosh
|
||||
- coshf
|
||||
- exp2
|
||||
- expm1
|
||||
- expm1f
|
||||
- expo2
|
||||
- fmaf
|
||||
- pow
|
||||
- sin
|
||||
- sinf
|
||||
- sinh
|
||||
- sinhf
|
||||
- tan
|
||||
- tanf
|
||||
- tanh
|
||||
- tanhf
|
||||
|
||||
## [v0.1.1] - 2018-07-14
|
||||
|
||||
### Added
|
||||
|
||||
- acos
|
||||
- acosf
|
||||
- asin
|
||||
- asinf
|
||||
- atanf
|
||||
- cbrt
|
||||
- cbrtf
|
||||
- ceil
|
||||
- ceilf
|
||||
- cosf
|
||||
- exp
|
||||
- exp2
|
||||
- exp2f
|
||||
- expm1
|
||||
- expm1f
|
||||
- fdim
|
||||
- fdimf
|
||||
- floorf
|
||||
- fma
|
||||
- fmod
|
||||
- log
|
||||
- log2
|
||||
- log10
|
||||
- log10f
|
||||
- log1p
|
||||
- log1pf
|
||||
- log2f
|
||||
- roundf
|
||||
- sinf
|
||||
- tanf
|
||||
|
||||
## v0.1.0 - 2018-07-13
|
||||
|
||||
- Initial release
|
||||
|
||||
[Unreleased]: https://github.com/japaric/libm/compare/v0.2.1...HEAD
|
||||
[v0.2.1]: https://github.com/japaric/libm/compare/0.2.0...v0.2.1
|
||||
[v0.2.0]: https://github.com/japaric/libm/compare/0.1.4...v0.2.0
|
||||
[v0.1.4]: https://github.com/japaric/libm/compare/0.1.3...v0.1.4
|
||||
[v0.1.3]: https://github.com/japaric/libm/compare/v0.1.2...0.1.3
|
||||
[v0.1.2]: https://github.com/japaric/libm/compare/v0.1.1...v0.1.2
|
||||
[v0.1.1]: https://github.com/japaric/libm/compare/v0.1.0...v0.1.1
|
95
mikros_std_deps/libm-0.2.8/CONTRIBUTING.md
Normal file
95
mikros_std_deps/libm-0.2.8/CONTRIBUTING.md
Normal file
@ -0,0 +1,95 @@
|
||||
# How to contribute
|
||||
|
||||
- Pick your favorite math function from the [issue tracker].
|
||||
- Look for the C implementation of the function in the [MUSL source code][src].
|
||||
- Copy paste the C code into a Rust file in the `src/math` directory and adjust
|
||||
`src/math/mod.rs` accordingly. Also, uncomment the corresponding trait method
|
||||
in `src/lib.rs`.
|
||||
- Write some simple tests in your module (using `#[test]`)
|
||||
- Run `cargo test` to make sure it works
|
||||
- Run `cargo test --features musl-reference-tests` to compare your
|
||||
implementation against musl's
|
||||
- Send us a pull request! Make sure to run `cargo fmt` on your code before
|
||||
sending the PR. Also include "closes #42" in the PR description to close the
|
||||
corresponding issue.
|
||||
- :tada:
|
||||
|
||||
[issue tracker]: https://github.com/rust-lang/libm/issues
|
||||
[src]: https://git.musl-libc.org/cgit/musl/tree/src/math
|
||||
[`src/math/truncf.rs`]: https://github.com/rust-lang/libm/blob/master/src/math/truncf.rs
|
||||
|
||||
Check [PR #65] for an example.
|
||||
|
||||
[PR #65]: https://github.com/rust-lang/libm/pull/65
|
||||
|
||||
## Tips and tricks
|
||||
|
||||
- *IMPORTANT* The code in this crate will end up being used in the `core` crate so it can **not**
|
||||
have any external dependencies (other than `core` itself).
|
||||
|
||||
- Only use relative imports within the `math` directory / module, e.g. `use self::fabs::fabs` or
|
||||
`use super::k_cos`. Absolute imports from core are OK, e.g. `use core::u64`.
|
||||
|
||||
- To reinterpret a float as an integer use the `to_bits` method. The MUSL code uses the
|
||||
`GET_FLOAT_WORD` macro, or a union, to do this operation.
|
||||
|
||||
- To reinterpret an integer as a float use the `f32::from_bits` constructor. The MUSL code uses the
|
||||
`SET_FLOAT_WORD` macro, or a union, to do this operation.
|
||||
|
||||
- You may use other methods from core like `f64::is_nan`, etc. as appropriate.
|
||||
|
||||
- If you're implementing one of the private double-underscore functions, take a look at the
|
||||
"source" name in the comment at the top for an idea for alternate naming. For example, `__sin`
|
||||
was renamed to `k_sin` after the FreeBSD source code naming. Do `use` these private functions in
|
||||
`mod.rs`.
|
||||
|
||||
- You may encounter weird literals like `0x1p127f` in the MUSL code. These are hexadecimal floating
|
||||
point literals. Rust (the language) doesn't support these kind of literals. The best way I have
|
||||
found to deal with these literals is to turn them into their integer representation using the
|
||||
[`hexf!`] macro and then turn them back into floats. See below:
|
||||
|
||||
[`hexf!`]: https://crates.io/crates/hexf
|
||||
|
||||
``` rust
|
||||
// Step 1: write a program to convert the float into its integer representation
|
||||
#[macro_use]
|
||||
extern crate hexf;
|
||||
|
||||
fn main() {
|
||||
println!("{:#x}", hexf32!("0x1.0p127").to_bits());
|
||||
}
|
||||
```
|
||||
|
||||
``` console
|
||||
$ # Step 2: run the program
|
||||
$ cargo run
|
||||
0x7f000000
|
||||
```
|
||||
|
||||
``` rust
|
||||
// Step 3: copy paste the output into libm
|
||||
let x1p127 = f32::from_bits(0x7f000000); // 0x1p127f === 2 ^ 12
|
||||
```
|
||||
|
||||
- Rust code panics on arithmetic overflows when not optimized. You may need to use the [`Wrapping`]
|
||||
newtype to avoid this problem.
|
||||
|
||||
[`Wrapping`]: https://doc.rust-lang.org/std/num/struct.Wrapping.html
|
||||
|
||||
## Testing
|
||||
|
||||
Normal tests can be executed with:
|
||||
|
||||
```
|
||||
cargo test
|
||||
```
|
||||
|
||||
If you'd like to run tests with randomized inputs that get compared against musl
|
||||
itself, you'll need to be on a Linux system and then you can execute:
|
||||
|
||||
```
|
||||
cargo test --features musl-reference-tests
|
||||
```
|
||||
|
||||
Note that you may need to pass `--release` to Cargo if there are errors related
|
||||
to integer overflow.
|
59
mikros_std_deps/libm-0.2.8/Cargo.toml
Normal file
59
mikros_std_deps/libm-0.2.8/Cargo.toml
Normal file
@ -0,0 +1,59 @@
|
||||
|
||||
# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
|
||||
#
|
||||
# When uploading crates to the registry Cargo will automatically
|
||||
# "normalize" Cargo.toml files for maximal compatibility
|
||||
# with all versions of Cargo and also rewrite `path` dependencies
|
||||
# to registry (e.g., crates.io) dependencies.
|
||||
#
|
||||
# If you are reading this file be aware that the original Cargo.toml
|
||||
# will likely look very different (and much more reasonable).
|
||||
# See Cargo.toml.orig for the original contents.
|
||||
|
||||
[package]
|
||||
edition = "2018"
|
||||
name = "libm"
|
||||
version = "0.2.8"
|
||||
authors = ["Jorge Aparicio <jorge@japaric.io>"]
|
||||
exclude = [
|
||||
"/ci/",
|
||||
"/.github/workflows/",
|
||||
]
|
||||
description = "libm in pure Rust"
|
||||
documentation = "https://docs.rs/libm"
|
||||
readme = "README.md"
|
||||
keywords = [
|
||||
"libm",
|
||||
"math",
|
||||
]
|
||||
categories = ["no-std"]
|
||||
license = "MIT OR Apache-2.0"
|
||||
repository = "https://github.com/rust-lang/libm"
|
||||
|
||||
[profile.release]
|
||||
lto = "fat"
|
||||
|
||||
[dev-dependencies.no-panic]
|
||||
version = "0.1.8"
|
||||
|
||||
[build-dependencies.rand]
|
||||
version = "0.6.5"
|
||||
optional = true
|
||||
|
||||
[dependencies.core]
|
||||
version = "1.0.0"
|
||||
optional = true
|
||||
package = "rustc-std-workspace-core"
|
||||
|
||||
[dependencies.compiler_builtins]
|
||||
version = "0.1"
|
||||
optional = true
|
||||
|
||||
[features]
|
||||
default = []
|
||||
musl-reference-tests = ["rand"]
|
||||
unstable = []
|
||||
rustc-dep-of-std = [
|
||||
"core",
|
||||
"compiler_builtins",
|
||||
]
|
40
mikros_std_deps/libm-0.2.8/Cargo.toml.orig
Normal file
40
mikros_std_deps/libm-0.2.8/Cargo.toml.orig
Normal file
@ -0,0 +1,40 @@
|
||||
[package]
|
||||
authors = ["Jorge Aparicio <jorge@japaric.io>"]
|
||||
categories = ["no-std"]
|
||||
description = "libm in pure Rust"
|
||||
documentation = "https://docs.rs/libm"
|
||||
keywords = ["libm", "math"]
|
||||
license = "MIT OR Apache-2.0"
|
||||
name = "libm"
|
||||
readme = "README.md"
|
||||
repository = "https://github.com/rust-lang/libm"
|
||||
version = "0.2.8"
|
||||
edition = "2018"
|
||||
exclude = ["/ci/", "/.github/workflows/"]
|
||||
|
||||
[features]
|
||||
default = []
|
||||
|
||||
# This tells the compiler to assume that a Nightly toolchain is being used and
|
||||
# that it should activate any useful Nightly things accordingly.
|
||||
unstable = []
|
||||
|
||||
# Generate tests which are random inputs and the outputs are calculated with
|
||||
# musl libc.
|
||||
musl-reference-tests = ['rand']
|
||||
|
||||
[workspace]
|
||||
members = [
|
||||
"crates/compiler-builtins-smoke-test",
|
||||
"crates/libm-bench",
|
||||
]
|
||||
|
||||
[dev-dependencies]
|
||||
no-panic = "0.1.8"
|
||||
|
||||
[build-dependencies]
|
||||
rand = { version = "0.6.5", optional = true }
|
||||
|
||||
# This is needed for no-panic to correctly detect the lack of panics
|
||||
[profile.release]
|
||||
lto = "fat"
|
201
mikros_std_deps/libm-0.2.8/LICENSE-APACHE
Normal file
201
mikros_std_deps/libm-0.2.8/LICENSE-APACHE
Normal file
@ -0,0 +1,201 @@
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
25
mikros_std_deps/libm-0.2.8/LICENSE-MIT
Normal file
25
mikros_std_deps/libm-0.2.8/LICENSE-MIT
Normal file
@ -0,0 +1,25 @@
|
||||
Copyright (c) 2018 Jorge Aparicio
|
||||
|
||||
Permission is hereby granted, free of charge, to any
|
||||
person obtaining a copy of this software and associated
|
||||
documentation files (the "Software"), to deal in the
|
||||
Software without restriction, including without
|
||||
limitation the rights to use, copy, modify, merge,
|
||||
publish, distribute, sublicense, and/or sell copies of
|
||||
the Software, and to permit persons to whom the Software
|
||||
is furnished to do so, subject to the following
|
||||
conditions:
|
||||
|
||||
The above copyright notice and this permission notice
|
||||
shall be included in all copies or substantial portions
|
||||
of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
|
||||
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
|
||||
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
|
||||
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
|
||||
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
||||
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
|
||||
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
DEALINGS IN THE SOFTWARE.
|
51
mikros_std_deps/libm-0.2.8/README.md
Normal file
51
mikros_std_deps/libm-0.2.8/README.md
Normal file
@ -0,0 +1,51 @@
|
||||
# `libm`
|
||||
|
||||
A port of [MUSL]'s libm to Rust.
|
||||
|
||||
[MUSL]: https://musl.libc.org/
|
||||
|
||||
## Goals
|
||||
|
||||
The short term goal of this library is to [enable math support (e.g. `sin`, `atan2`) for the
|
||||
`wasm32-unknown-unknown` target][wasm] (cf. [rust-lang/compiler-builtins][pr]). The longer
|
||||
term goal is to enable [math support in the `core` crate][core].
|
||||
|
||||
[wasm]: https://github.com/rust-lang/libm/milestone/1
|
||||
[pr]: https://github.com/rust-lang/compiler-builtins/pull/248
|
||||
[core]: https://github.com/rust-lang/libm/milestone/2
|
||||
|
||||
## Already usable
|
||||
|
||||
This crate is [on crates.io] and can be used today in stable `#![no_std]` programs.
|
||||
|
||||
The API documentation can be found [here](https://docs.rs/libm).
|
||||
|
||||
[on crates.io]: https://crates.io/crates/libm
|
||||
|
||||
## Benchmark
|
||||
[benchmark]: #benchmark
|
||||
|
||||
The benchmarks are located in `crates/libm-bench` and require a nightly Rust toolchain.
|
||||
To run all benchmarks:
|
||||
|
||||
> cargo +nightly bench --all
|
||||
|
||||
## Contributing
|
||||
|
||||
Please check [CONTRIBUTING.md](CONTRIBUTING.md)
|
||||
|
||||
## License
|
||||
|
||||
Licensed under either of
|
||||
|
||||
- Apache License, Version 2.0 ([LICENSE-APACHE](LICENSE-APACHE) or
|
||||
http://www.apache.org/licenses/LICENSE-2.0)
|
||||
- MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
|
||||
|
||||
at your option.
|
||||
|
||||
### Contribution
|
||||
|
||||
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the
|
||||
work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any
|
||||
additional terms or conditions.
|
444
mikros_std_deps/libm-0.2.8/build.rs
Normal file
444
mikros_std_deps/libm-0.2.8/build.rs
Normal file
@ -0,0 +1,444 @@
|
||||
//use std::env;
|
||||
|
||||
fn main() {
|
||||
println!("cargo:rerun-if-changed=build.rs");
|
||||
|
||||
#[cfg(feature = "musl-reference-tests")]
|
||||
musl_reference_tests::generate();
|
||||
|
||||
//if !cfg!(feature = "checked") {
|
||||
// let lvl = env::var("OPT_LEVEL").unwrap();
|
||||
// if lvl != "0" {
|
||||
// println!("cargo:rustc-cfg=assert_no_panic");
|
||||
// }
|
||||
//}
|
||||
}
|
||||
|
||||
#[cfg(feature = "musl-reference-tests")]
|
||||
mod musl_reference_tests {
|
||||
use rand::seq::SliceRandom;
|
||||
use rand::Rng;
|
||||
use std::env;
|
||||
use std::fs;
|
||||
use std::process::Command;
|
||||
|
||||
// Number of tests to generate for each function
|
||||
const NTESTS: usize = 500;
|
||||
|
||||
// These files are all internal functions or otherwise miscellaneous, not
|
||||
// defining a function we want to test.
|
||||
const IGNORED_FILES: &[&str] = &[
|
||||
"fenv.rs",
|
||||
// These are giving slightly different results compared to musl
|
||||
"lgamma.rs",
|
||||
"lgammaf.rs",
|
||||
"tgamma.rs",
|
||||
"j0.rs",
|
||||
"j0f.rs",
|
||||
"jn.rs",
|
||||
"jnf.rs",
|
||||
"j1.rs",
|
||||
"j1f.rs",
|
||||
];
|
||||
|
||||
struct Function {
|
||||
name: String,
|
||||
args: Vec<Ty>,
|
||||
ret: Vec<Ty>,
|
||||
tests: Vec<Test>,
|
||||
}
|
||||
|
||||
enum Ty {
|
||||
F32,
|
||||
F64,
|
||||
I32,
|
||||
Bool,
|
||||
}
|
||||
|
||||
struct Test {
|
||||
inputs: Vec<i64>,
|
||||
outputs: Vec<i64>,
|
||||
}
|
||||
|
||||
pub fn generate() {
|
||||
// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520
|
||||
let target_arch = env::var("CARGO_CFG_TARGET_ARCH").unwrap();
|
||||
if target_arch == "powerpc64" {
|
||||
return;
|
||||
}
|
||||
|
||||
let files =
|
||||
fs::read_dir("src/math").unwrap().map(|f| f.unwrap().path()).collect::<Vec<_>>();
|
||||
|
||||
let mut math = Vec::new();
|
||||
for file in files {
|
||||
if IGNORED_FILES.iter().any(|f| file.ends_with(f)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
println!("generating musl reference tests in {:?}", file);
|
||||
|
||||
let contents = fs::read_to_string(file).unwrap();
|
||||
let mut functions = contents.lines().filter(|f| f.starts_with("pub fn"));
|
||||
while let Some(function_to_test) = functions.next() {
|
||||
math.push(parse(function_to_test));
|
||||
}
|
||||
}
|
||||
|
||||
// Generate a bunch of random inputs for each function. This will
|
||||
// attempt to generate a good set of uniform test cases for exercising
|
||||
// all the various functionality.
|
||||
generate_random_tests(&mut math, &mut rand::thread_rng());
|
||||
|
||||
// After we have all our inputs, use the x86_64-unknown-linux-musl
|
||||
// target to generate the expected output.
|
||||
generate_test_outputs(&mut math);
|
||||
//panic!("Boo");
|
||||
// ... and now that we have both inputs and expected outputs, do a bunch
|
||||
// of codegen to create the unit tests which we'll actually execute.
|
||||
generate_unit_tests(&math);
|
||||
}
|
||||
|
||||
/// A "poor man's" parser for the signature of a function
|
||||
fn parse(s: &str) -> Function {
|
||||
let s = eat(s, "pub fn ");
|
||||
let pos = s.find('(').unwrap();
|
||||
let name = &s[..pos];
|
||||
let s = &s[pos + 1..];
|
||||
let end = s.find(')').unwrap();
|
||||
let args = s[..end]
|
||||
.split(',')
|
||||
.map(|arg| {
|
||||
let colon = arg.find(':').unwrap();
|
||||
parse_ty(arg[colon + 1..].trim())
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
let tail = &s[end + 1..];
|
||||
let tail = eat(tail, " -> ");
|
||||
let ret = parse_retty(tail.replace("{", "").trim());
|
||||
|
||||
return Function { name: name.to_string(), args, ret, tests: Vec::new() };
|
||||
|
||||
fn parse_ty(s: &str) -> Ty {
|
||||
match s {
|
||||
"f32" => Ty::F32,
|
||||
"f64" => Ty::F64,
|
||||
"i32" => Ty::I32,
|
||||
"bool" => Ty::Bool,
|
||||
other => panic!("unknown type `{}`", other),
|
||||
}
|
||||
}
|
||||
|
||||
fn parse_retty(s: &str) -> Vec<Ty> {
|
||||
match s {
|
||||
"(f32, f32)" => vec![Ty::F32, Ty::F32],
|
||||
"(f32, i32)" => vec![Ty::F32, Ty::I32],
|
||||
"(f64, f64)" => vec![Ty::F64, Ty::F64],
|
||||
"(f64, i32)" => vec![Ty::F64, Ty::I32],
|
||||
other => vec![parse_ty(other)],
|
||||
}
|
||||
}
|
||||
|
||||
fn eat<'a>(s: &'a str, prefix: &str) -> &'a str {
|
||||
if s.starts_with(prefix) {
|
||||
&s[prefix.len()..]
|
||||
} else {
|
||||
panic!("{:?} didn't start with {:?}", s, prefix)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn generate_random_tests<R: Rng>(functions: &mut [Function], rng: &mut R) {
|
||||
for function in functions {
|
||||
for _ in 0..NTESTS {
|
||||
function.tests.push(generate_test(function, rng));
|
||||
}
|
||||
}
|
||||
|
||||
fn generate_test<R: Rng>(function: &Function, rng: &mut R) -> Test {
|
||||
let mut inputs = function.args.iter().map(|ty| ty.gen_i64(rng)).collect::<Vec<_>>();
|
||||
|
||||
// First argument to this function appears to be a number of
|
||||
// iterations, so passing in massive random numbers causes it to
|
||||
// take forever to execute, so make sure we're not running random
|
||||
// math code until the heat death of the universe.
|
||||
if function.name == "jn" || function.name == "jnf" {
|
||||
inputs[0] &= 0xffff;
|
||||
}
|
||||
|
||||
Test {
|
||||
inputs,
|
||||
// zero output for now since we'll generate it later
|
||||
outputs: vec![],
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Ty {
|
||||
fn gen_i64<R: Rng>(&self, r: &mut R) -> i64 {
|
||||
use std::f32;
|
||||
use std::f64;
|
||||
|
||||
return match self {
|
||||
Ty::F32 => {
|
||||
if r.gen_range(0, 20) < 1 {
|
||||
let i = *[f32::NAN, f32::INFINITY, f32::NEG_INFINITY].choose(r).unwrap();
|
||||
i.to_bits().into()
|
||||
} else {
|
||||
r.gen::<f32>().to_bits().into()
|
||||
}
|
||||
}
|
||||
Ty::F64 => {
|
||||
if r.gen_range(0, 20) < 1 {
|
||||
let i = *[f64::NAN, f64::INFINITY, f64::NEG_INFINITY].choose(r).unwrap();
|
||||
i.to_bits() as i64
|
||||
} else {
|
||||
r.gen::<f64>().to_bits() as i64
|
||||
}
|
||||
}
|
||||
Ty::I32 => {
|
||||
if r.gen_range(0, 10) < 1 {
|
||||
let i = *[i32::max_value(), 0, i32::min_value()].choose(r).unwrap();
|
||||
i.into()
|
||||
} else {
|
||||
r.gen::<i32>().into()
|
||||
}
|
||||
}
|
||||
Ty::Bool => r.gen::<bool>() as i64,
|
||||
};
|
||||
}
|
||||
|
||||
fn libc_ty(&self) -> &'static str {
|
||||
match self {
|
||||
Ty::F32 => "f32",
|
||||
Ty::F64 => "f64",
|
||||
Ty::I32 => "i32",
|
||||
Ty::Bool => "i32",
|
||||
}
|
||||
}
|
||||
|
||||
fn libc_pty(&self) -> &'static str {
|
||||
match self {
|
||||
Ty::F32 => "*mut f32",
|
||||
Ty::F64 => "*mut f64",
|
||||
Ty::I32 => "*mut i32",
|
||||
Ty::Bool => "*mut i32",
|
||||
}
|
||||
}
|
||||
|
||||
fn default(&self) -> &'static str {
|
||||
match self {
|
||||
Ty::F32 => "0_f32",
|
||||
Ty::F64 => "0_f64",
|
||||
Ty::I32 => "0_i32",
|
||||
Ty::Bool => "false",
|
||||
}
|
||||
}
|
||||
|
||||
fn to_i64(&self) -> &'static str {
|
||||
match self {
|
||||
Ty::F32 => ".to_bits() as i64",
|
||||
Ty::F64 => ".to_bits() as i64",
|
||||
Ty::I32 => " as i64",
|
||||
Ty::Bool => " as i64",
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn generate_test_outputs(functions: &mut [Function]) {
|
||||
let mut src = String::new();
|
||||
let dst = std::env::var("OUT_DIR").unwrap();
|
||||
|
||||
// Generate a program which will run all tests with all inputs in
|
||||
// `functions`. This program will write all outputs to stdout (in a
|
||||
// binary format).
|
||||
src.push_str("use std::io::Write;");
|
||||
src.push_str("fn main() {");
|
||||
src.push_str("let mut result = Vec::new();");
|
||||
for function in functions.iter_mut() {
|
||||
src.push_str("unsafe {");
|
||||
src.push_str("extern { fn ");
|
||||
src.push_str(&function.name);
|
||||
src.push_str("(");
|
||||
|
||||
let (ret, retptr) = match function.name.as_str() {
|
||||
"sincos" | "sincosf" => (None, &function.ret[..]),
|
||||
_ => (Some(&function.ret[0]), &function.ret[1..]),
|
||||
};
|
||||
for (i, arg) in function.args.iter().enumerate() {
|
||||
src.push_str(&format!("arg{}: {},", i, arg.libc_ty()));
|
||||
}
|
||||
for (i, ret) in retptr.iter().enumerate() {
|
||||
src.push_str(&format!("argret{}: {},", i, ret.libc_pty()));
|
||||
}
|
||||
src.push_str(")");
|
||||
if let Some(ty) = ret {
|
||||
src.push_str(" -> ");
|
||||
src.push_str(ty.libc_ty());
|
||||
}
|
||||
src.push_str("; }");
|
||||
|
||||
src.push_str(&format!("static TESTS: &[[i64; {}]]", function.args.len()));
|
||||
src.push_str(" = &[");
|
||||
for test in function.tests.iter() {
|
||||
src.push_str("[");
|
||||
for val in test.inputs.iter() {
|
||||
src.push_str(&val.to_string());
|
||||
src.push_str(",");
|
||||
}
|
||||
src.push_str("],");
|
||||
}
|
||||
src.push_str("];");
|
||||
|
||||
src.push_str("for test in TESTS {");
|
||||
for (i, arg) in retptr.iter().enumerate() {
|
||||
src.push_str(&format!("let mut argret{} = {};", i, arg.default()));
|
||||
}
|
||||
src.push_str("let output = ");
|
||||
src.push_str(&function.name);
|
||||
src.push_str("(");
|
||||
for (i, arg) in function.args.iter().enumerate() {
|
||||
src.push_str(&match arg {
|
||||
Ty::F32 => format!("f32::from_bits(test[{}] as u32)", i),
|
||||
Ty::F64 => format!("f64::from_bits(test[{}] as u64)", i),
|
||||
Ty::I32 => format!("test[{}] as i32", i),
|
||||
Ty::Bool => format!("test[{}] as i32", i),
|
||||
});
|
||||
src.push_str(",");
|
||||
}
|
||||
for (i, _) in retptr.iter().enumerate() {
|
||||
src.push_str(&format!("&mut argret{},", i));
|
||||
}
|
||||
src.push_str(");");
|
||||
if let Some(ty) = &ret {
|
||||
src.push_str(&format!("let output = output{};", ty.to_i64()));
|
||||
src.push_str("result.extend_from_slice(&output.to_le_bytes());");
|
||||
}
|
||||
|
||||
for (i, ret) in retptr.iter().enumerate() {
|
||||
src.push_str(&format!(
|
||||
"result.extend_from_slice(&(argret{}{}).to_le_bytes());",
|
||||
i,
|
||||
ret.to_i64(),
|
||||
));
|
||||
}
|
||||
src.push_str("}");
|
||||
|
||||
src.push_str("}");
|
||||
}
|
||||
|
||||
src.push_str("std::io::stdout().write_all(&result).unwrap();");
|
||||
|
||||
src.push_str("}");
|
||||
|
||||
let path = format!("{}/gen.rs", dst);
|
||||
fs::write(&path, src).unwrap();
|
||||
|
||||
// Make it somewhat pretty if something goes wrong
|
||||
drop(Command::new("rustfmt").arg(&path).status());
|
||||
|
||||
// Compile and execute this tests for the musl target, assuming we're an
|
||||
// x86_64 host effectively.
|
||||
let status = Command::new("rustc")
|
||||
.current_dir(&dst)
|
||||
.arg(&path)
|
||||
.arg("--target=x86_64-unknown-linux-musl")
|
||||
.status()
|
||||
.unwrap();
|
||||
assert!(status.success());
|
||||
let output = Command::new("./gen").current_dir(&dst).output().unwrap();
|
||||
assert!(output.status.success());
|
||||
assert!(output.stderr.is_empty());
|
||||
|
||||
// Map all the output bytes back to an `i64` and then shove it all into
|
||||
// the expected results.
|
||||
let mut results = output.stdout.chunks_exact(8).map(|buf| {
|
||||
let mut exact = [0; 8];
|
||||
exact.copy_from_slice(buf);
|
||||
i64::from_le_bytes(exact)
|
||||
});
|
||||
|
||||
for f in functions.iter_mut() {
|
||||
for test in f.tests.iter_mut() {
|
||||
test.outputs = (0..f.ret.len()).map(|_| results.next().unwrap()).collect();
|
||||
}
|
||||
}
|
||||
assert!(results.next().is_none());
|
||||
}
|
||||
|
||||
/// Codegens a file which has a ton of `#[test]` annotations for all the
|
||||
/// tests that we generated above.
|
||||
fn generate_unit_tests(functions: &[Function]) {
|
||||
let mut src = String::new();
|
||||
let dst = std::env::var("OUT_DIR").unwrap();
|
||||
|
||||
for function in functions {
|
||||
src.push_str("#[test]");
|
||||
src.push_str("fn ");
|
||||
src.push_str(&function.name);
|
||||
src.push_str("_matches_musl() {");
|
||||
src.push_str(&format!(
|
||||
"static TESTS: &[([i64; {}], [i64; {}])]",
|
||||
function.args.len(),
|
||||
function.ret.len(),
|
||||
));
|
||||
src.push_str(" = &[");
|
||||
for test in function.tests.iter() {
|
||||
src.push_str("([");
|
||||
for val in test.inputs.iter() {
|
||||
src.push_str(&val.to_string());
|
||||
src.push_str(",");
|
||||
}
|
||||
src.push_str("],");
|
||||
src.push_str("[");
|
||||
for val in test.outputs.iter() {
|
||||
src.push_str(&val.to_string());
|
||||
src.push_str(",");
|
||||
}
|
||||
src.push_str("],");
|
||||
src.push_str("),");
|
||||
}
|
||||
src.push_str("];");
|
||||
|
||||
src.push_str("for (test, expected) in TESTS {");
|
||||
src.push_str("let output = ");
|
||||
src.push_str(&function.name);
|
||||
src.push_str("(");
|
||||
for (i, arg) in function.args.iter().enumerate() {
|
||||
src.push_str(&match arg {
|
||||
Ty::F32 => format!("f32::from_bits(test[{}] as u32)", i),
|
||||
Ty::F64 => format!("f64::from_bits(test[{}] as u64)", i),
|
||||
Ty::I32 => format!("test[{}] as i32", i),
|
||||
Ty::Bool => format!("test[{}] as i32", i),
|
||||
});
|
||||
src.push_str(",");
|
||||
}
|
||||
src.push_str(");");
|
||||
|
||||
for (i, ret) in function.ret.iter().enumerate() {
|
||||
let get = if function.ret.len() == 1 { String::new() } else { format!(".{}", i) };
|
||||
src.push_str(&(match ret {
|
||||
Ty::F32 => format!("if _eqf(output{}, f32::from_bits(expected[{}] as u32)).is_ok() {{ continue }}", get, i),
|
||||
Ty::F64 => format!("if _eq(output{}, f64::from_bits(expected[{}] as u64)).is_ok() {{ continue }}", get, i),
|
||||
Ty::I32 => format!("if output{} as i64 == expected[{}] {{ continue }}", get, i),
|
||||
Ty::Bool => unreachable!(),
|
||||
}));
|
||||
}
|
||||
|
||||
src.push_str(
|
||||
r#"
|
||||
panic!("INPUT: {:?} EXPECTED: {:?} ACTUAL {:?}", test, expected, output);
|
||||
"#,
|
||||
);
|
||||
src.push_str("}");
|
||||
|
||||
src.push_str("}");
|
||||
}
|
||||
|
||||
let path = format!("{}/musl-tests.rs", dst);
|
||||
fs::write(&path, src).unwrap();
|
||||
|
||||
// Try to make it somewhat pretty
|
||||
drop(Command::new("rustfmt").arg(&path).status());
|
||||
}
|
||||
}
|
51
mikros_std_deps/libm-0.2.8/src/lib.rs
Normal file
51
mikros_std_deps/libm-0.2.8/src/lib.rs
Normal file
@ -0,0 +1,51 @@
|
||||
//! libm in pure Rust
|
||||
#![deny(warnings)]
|
||||
#![no_std]
|
||||
#![cfg_attr(all(feature = "unstable"), feature(core_intrinsics))]
|
||||
#![allow(clippy::unreadable_literal)]
|
||||
#![allow(clippy::many_single_char_names)]
|
||||
#![allow(clippy::needless_return)]
|
||||
#![allow(clippy::int_plus_one)]
|
||||
#![allow(clippy::deprecated_cfg_attr)]
|
||||
#![allow(clippy::mixed_case_hex_literals)]
|
||||
#![allow(clippy::float_cmp)]
|
||||
#![allow(clippy::eq_op)]
|
||||
#![allow(clippy::assign_op_pattern)]
|
||||
|
||||
mod libm_helper;
|
||||
mod math;
|
||||
|
||||
use core::{f32, f64};
|
||||
|
||||
pub use self::math::*;
|
||||
pub use libm_helper::*;
|
||||
|
||||
/// Approximate equality with 1 ULP of tolerance
|
||||
#[doc(hidden)]
|
||||
#[inline]
|
||||
pub fn _eqf(a: f32, b: f32) -> Result<(), u32> {
|
||||
if a.is_nan() && b.is_nan() {
|
||||
Ok(())
|
||||
} else {
|
||||
let err = (a.to_bits() as i32).wrapping_sub(b.to_bits() as i32).abs();
|
||||
|
||||
if err <= 1 { Ok(()) } else { Err(err as u32) }
|
||||
}
|
||||
}
|
||||
|
||||
#[doc(hidden)]
|
||||
#[inline]
|
||||
pub fn _eq(a: f64, b: f64) -> Result<(), u64> {
|
||||
if a.is_nan() && b.is_nan() {
|
||||
Ok(())
|
||||
} else {
|
||||
let err = (a.to_bits() as i64).wrapping_sub(b.to_bits() as i64).abs();
|
||||
|
||||
if err <= 1 { Ok(()) } else { Err(err as u64) }
|
||||
}
|
||||
}
|
||||
|
||||
// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520
|
||||
#[cfg(not(target_arch = "powerpc64"))]
|
||||
#[cfg(all(test, feature = "musl-reference-tests"))]
|
||||
include!(concat!(env!("OUT_DIR"), "/musl-tests.rs"));
|
171
mikros_std_deps/libm-0.2.8/src/libm_helper.rs
Normal file
171
mikros_std_deps/libm-0.2.8/src/libm_helper.rs
Normal file
@ -0,0 +1,171 @@
|
||||
use core::marker::PhantomData;
|
||||
|
||||
use crate::*;
|
||||
|
||||
/// Generic helper for libm functions, abstracting over f32 and f64. <br/>
|
||||
/// # Type Parameter:
|
||||
/// - `T`: Either `f32` or `f64`
|
||||
///
|
||||
/// # Examples
|
||||
/// ```rust
|
||||
/// use libm::{self, Libm};
|
||||
///
|
||||
/// const PI_F32: f32 = 3.1415927410e+00;
|
||||
/// const PI_F64: f64 = 3.1415926535897931160e+00;
|
||||
///
|
||||
/// assert!(Libm::<f32>::cos(0.0f32) == libm::cosf(0.0));
|
||||
/// assert!(Libm::<f32>::sin(PI_F32) == libm::sinf(PI_F32));
|
||||
///
|
||||
/// assert!(Libm::<f64>::cos(0.0f64) == libm::cos(0.0));
|
||||
/// assert!(Libm::<f64>::sin(PI_F64) == libm::sin(PI_F64));
|
||||
/// ```
|
||||
pub struct Libm<T>(PhantomData<T>);
|
||||
|
||||
macro_rules! libm_helper {
|
||||
($t:ident, funcs: $funcs:tt) => {
|
||||
impl Libm<$t> {
|
||||
#![allow(unused_parens)]
|
||||
|
||||
libm_helper! { $funcs }
|
||||
}
|
||||
};
|
||||
|
||||
({$($func:tt);*}) => {
|
||||
$(
|
||||
libm_helper! { $func }
|
||||
)*
|
||||
};
|
||||
|
||||
((fn $func:ident($($arg:ident: $arg_typ:ty),*) -> ($($ret_typ:ty),*); => $libm_fn:ident)) => {
|
||||
#[inline(always)]
|
||||
pub fn $func($($arg: $arg_typ),*) -> ($($ret_typ),*) {
|
||||
$libm_fn($($arg),*)
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
libm_helper! {
|
||||
f32,
|
||||
funcs: {
|
||||
(fn acos(x: f32) -> (f32); => acosf);
|
||||
(fn acosh(x: f32) -> (f32); => acoshf);
|
||||
(fn asin(x: f32) -> (f32); => asinf);
|
||||
(fn asinh(x: f32) -> (f32); => asinhf);
|
||||
(fn atan(x: f32) -> (f32); => atanf);
|
||||
(fn atan2(y: f32, x: f32) -> (f32); => atan2f);
|
||||
(fn atanh(x: f32) -> (f32); => atanhf);
|
||||
(fn cbrt(x: f32) -> (f32); => cbrtf);
|
||||
(fn ceil(x: f32) -> (f32); => ceilf);
|
||||
(fn copysign(x: f32, y: f32) -> (f32); => copysignf);
|
||||
(fn cos(x: f32) -> (f32); => cosf);
|
||||
(fn cosh(x: f32) -> (f32); => coshf);
|
||||
(fn erf(x: f32) -> (f32); => erff);
|
||||
(fn erfc(x: f32) -> (f32); => erfcf);
|
||||
(fn exp(x: f32) -> (f32); => expf);
|
||||
(fn exp2(x: f32) -> (f32); => exp2f);
|
||||
(fn exp10(x: f32) -> (f32); => exp10f);
|
||||
(fn expm1(x: f32) -> (f32); => expm1f);
|
||||
(fn fabs(x: f32) -> (f32); => fabsf);
|
||||
(fn fdim(x: f32, y: f32) -> (f32); => fdimf);
|
||||
(fn floor(x: f32) -> (f32); => floorf);
|
||||
(fn fma(x: f32, y: f32, z: f32) -> (f32); => fmaf);
|
||||
(fn fmax(x: f32, y: f32) -> (f32); => fmaxf);
|
||||
(fn fmin(x: f32, y: f32) -> (f32); => fminf);
|
||||
(fn fmod(x: f32, y: f32) -> (f32); => fmodf);
|
||||
(fn frexp(x: f32) -> (f32, i32); => frexpf);
|
||||
(fn hypot(x: f32, y: f32) -> (f32); => hypotf);
|
||||
(fn ilogb(x: f32) -> (i32); => ilogbf);
|
||||
(fn j0(x: f32) -> (f32); => j0f);
|
||||
(fn j1(x: f32) -> (f32); => j1f);
|
||||
(fn jn(n: i32, x: f32) -> (f32); => jnf);
|
||||
(fn ldexp(x: f32, n: i32) -> (f32); => ldexpf);
|
||||
(fn lgamma_r(x: f32) -> (f32, i32); => lgammaf_r);
|
||||
(fn lgamma(x: f32) -> (f32); => lgammaf);
|
||||
(fn log(x: f32) -> (f32); => logf);
|
||||
(fn log1p(x: f32) -> (f32); => log1pf);
|
||||
(fn log2(x: f32) -> (f32); => log2f);
|
||||
(fn log10(x: f32) -> (f32); => log10f);
|
||||
(fn modf(x: f32) -> (f32, f32); => modff);
|
||||
(fn nextafter(x: f32, y: f32) -> (f32); => nextafterf);
|
||||
(fn pow(x: f32, y: f32) -> (f32); => powf);
|
||||
(fn remainder(x: f32, y: f32) -> (f32); => remainderf);
|
||||
(fn remquo(x: f32, y: f32) -> (f32, i32); => remquof);
|
||||
(fn rint(x: f32) -> (f32); => rintf);
|
||||
(fn round(x: f32) -> (f32); => roundf);
|
||||
(fn scalbn(x: f32, n: i32) -> (f32); => scalbnf);
|
||||
(fn sin(x: f32) -> (f32); => sinf);
|
||||
(fn sincos(x: f32) -> (f32, f32); => sincosf);
|
||||
(fn sinh(x: f32) -> (f32); => sinhf);
|
||||
(fn sqrt(x: f32) -> (f32); => sqrtf);
|
||||
(fn tan(x: f32) -> (f32); => tanf);
|
||||
(fn tanh(x: f32) -> (f32); => tanhf);
|
||||
(fn tgamma(x: f32) -> (f32); => tgammaf);
|
||||
(fn trunc(x: f32) -> (f32); => truncf);
|
||||
(fn y0(x: f32) -> (f32); => y0f);
|
||||
(fn y1(x: f32) -> (f32); => y1f);
|
||||
(fn yn(n: i32, x: f32) -> (f32); => ynf)
|
||||
}
|
||||
}
|
||||
|
||||
libm_helper! {
|
||||
f64,
|
||||
funcs: {
|
||||
(fn acos(x: f64) -> (f64); => acos);
|
||||
(fn acosh(x: f64) -> (f64); => acosh);
|
||||
(fn asin(x: f64) -> (f64); => asin);
|
||||
(fn asinh(x: f64) -> (f64); => asinh);
|
||||
(fn atan(x: f64) -> (f64); => atan);
|
||||
(fn atan2(y: f64, x: f64) -> (f64); => atan2);
|
||||
(fn atanh(x: f64) -> (f64); => atanh);
|
||||
(fn cbrt(x: f64) -> (f64); => cbrt);
|
||||
(fn ceil(x: f64) -> (f64); => ceil);
|
||||
(fn copysign(x: f64, y: f64) -> (f64); => copysign);
|
||||
(fn cos(x: f64) -> (f64); => cos);
|
||||
(fn cosh(x: f64) -> (f64); => cosh);
|
||||
(fn erf(x: f64) -> (f64); => erf);
|
||||
(fn erfc(x: f64) -> (f64); => erfc);
|
||||
(fn exp(x: f64) -> (f64); => exp);
|
||||
(fn exp2(x: f64) -> (f64); => exp2);
|
||||
(fn exp10(x: f64) -> (f64); => exp10);
|
||||
(fn expm1(x: f64) -> (f64); => expm1);
|
||||
(fn fabs(x: f64) -> (f64); => fabs);
|
||||
(fn fdim(x: f64, y: f64) -> (f64); => fdim);
|
||||
(fn floor(x: f64) -> (f64); => floor);
|
||||
(fn fma(x: f64, y: f64, z: f64) -> (f64); => fma);
|
||||
(fn fmax(x: f64, y: f64) -> (f64); => fmax);
|
||||
(fn fmin(x: f64, y: f64) -> (f64); => fmin);
|
||||
(fn fmod(x: f64, y: f64) -> (f64); => fmod);
|
||||
(fn frexp(x: f64) -> (f64, i32); => frexp);
|
||||
(fn hypot(x: f64, y: f64) -> (f64); => hypot);
|
||||
(fn ilogb(x: f64) -> (i32); => ilogb);
|
||||
(fn j0(x: f64) -> (f64); => j0);
|
||||
(fn j1(x: f64) -> (f64); => j1);
|
||||
(fn jn(n: i32, x: f64) -> (f64); => jn);
|
||||
(fn ldexp(x: f64, n: i32) -> (f64); => ldexp);
|
||||
(fn lgamma_r(x: f64) -> (f64, i32); => lgamma_r);
|
||||
(fn lgamma(x: f64) -> (f64); => lgamma);
|
||||
(fn log(x: f64) -> (f64); => log);
|
||||
(fn log1p(x: f64) -> (f64); => log1p);
|
||||
(fn log2(x: f64) -> (f64); => log2);
|
||||
(fn log10(x: f64) -> (f64); => log10);
|
||||
(fn modf(x: f64) -> (f64, f64); => modf);
|
||||
(fn nextafter(x: f64, y: f64) -> (f64); => nextafter);
|
||||
(fn pow(x: f64, y: f64) -> (f64); => pow);
|
||||
(fn remainder(x: f64, y: f64) -> (f64); => remainder);
|
||||
(fn remquo(x: f64, y: f64) -> (f64, i32); => remquo);
|
||||
(fn rint(x: f64) -> (f64); => rint);
|
||||
(fn round(x: f64) -> (f64); => round);
|
||||
(fn scalbn(x: f64, n: i32) -> (f64); => scalbn);
|
||||
(fn sin(x: f64) -> (f64); => sin);
|
||||
(fn sincos(x: f64) -> (f64, f64); => sincos);
|
||||
(fn sinh(x: f64) -> (f64); => sinh);
|
||||
(fn sqrt(x: f64) -> (f64); => sqrt);
|
||||
(fn tan(x: f64) -> (f64); => tan);
|
||||
(fn tanh(x: f64) -> (f64); => tanh);
|
||||
(fn tgamma(x: f64) -> (f64); => tgamma);
|
||||
(fn trunc(x: f64) -> (f64); => trunc);
|
||||
(fn y0(x: f64) -> (f64); => y0);
|
||||
(fn y1(x: f64) -> (f64); => y1);
|
||||
(fn yn(n: i32, x: f64) -> (f64); => yn)
|
||||
}
|
||||
}
|
112
mikros_std_deps/libm-0.2.8/src/math/acos.rs
Normal file
112
mikros_std_deps/libm-0.2.8/src/math/acos.rs
Normal file
@ -0,0 +1,112 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_acos.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* acos(x)
|
||||
* Method :
|
||||
* acos(x) = pi/2 - asin(x)
|
||||
* acos(-x) = pi/2 + asin(x)
|
||||
* For |x|<=0.5
|
||||
* acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
|
||||
* For x>0.5
|
||||
* acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
|
||||
* = 2asin(sqrt((1-x)/2))
|
||||
* = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
|
||||
* = 2f + (2c + 2s*z*R(z))
|
||||
* where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
|
||||
* for f so that f+c ~ sqrt(z).
|
||||
* For x<-0.5
|
||||
* acos(x) = pi - 2asin(sqrt((1-|x|)/2))
|
||||
* = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
|
||||
*
|
||||
* Special cases:
|
||||
* if x is NaN, return x itself;
|
||||
* if |x|>1, return NaN with invalid signal.
|
||||
*
|
||||
* Function needed: sqrt
|
||||
*/
|
||||
|
||||
use super::sqrt;
|
||||
|
||||
const PIO2_HI: f64 = 1.57079632679489655800e+00; /* 0x3FF921FB, 0x54442D18 */
|
||||
const PIO2_LO: f64 = 6.12323399573676603587e-17; /* 0x3C91A626, 0x33145C07 */
|
||||
const PS0: f64 = 1.66666666666666657415e-01; /* 0x3FC55555, 0x55555555 */
|
||||
const PS1: f64 = -3.25565818622400915405e-01; /* 0xBFD4D612, 0x03EB6F7D */
|
||||
const PS2: f64 = 2.01212532134862925881e-01; /* 0x3FC9C155, 0x0E884455 */
|
||||
const PS3: f64 = -4.00555345006794114027e-02; /* 0xBFA48228, 0xB5688F3B */
|
||||
const PS4: f64 = 7.91534994289814532176e-04; /* 0x3F49EFE0, 0x7501B288 */
|
||||
const PS5: f64 = 3.47933107596021167570e-05; /* 0x3F023DE1, 0x0DFDF709 */
|
||||
const QS1: f64 = -2.40339491173441421878e+00; /* 0xC0033A27, 0x1C8A2D4B */
|
||||
const QS2: f64 = 2.02094576023350569471e+00; /* 0x40002AE5, 0x9C598AC8 */
|
||||
const QS3: f64 = -6.88283971605453293030e-01; /* 0xBFE6066C, 0x1B8D0159 */
|
||||
const QS4: f64 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
|
||||
|
||||
fn r(z: f64) -> f64 {
|
||||
let p: f64 = z * (PS0 + z * (PS1 + z * (PS2 + z * (PS3 + z * (PS4 + z * PS5)))));
|
||||
let q: f64 = 1.0 + z * (QS1 + z * (QS2 + z * (QS3 + z * QS4)));
|
||||
p / q
|
||||
}
|
||||
|
||||
/// Arccosine (f64)
|
||||
///
|
||||
/// Computes the inverse cosine (arc cosine) of the input value.
|
||||
/// Arguments must be in the range -1 to 1.
|
||||
/// Returns values in radians, in the range of 0 to pi.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn acos(x: f64) -> f64 {
|
||||
let x1p_120f = f64::from_bits(0x3870000000000000); // 0x1p-120 === 2 ^ -120
|
||||
let z: f64;
|
||||
let w: f64;
|
||||
let s: f64;
|
||||
let c: f64;
|
||||
let df: f64;
|
||||
let hx: u32;
|
||||
let ix: u32;
|
||||
|
||||
hx = (x.to_bits() >> 32) as u32;
|
||||
ix = hx & 0x7fffffff;
|
||||
/* |x| >= 1 or nan */
|
||||
if ix >= 0x3ff00000 {
|
||||
let lx: u32 = x.to_bits() as u32;
|
||||
|
||||
if ((ix - 0x3ff00000) | lx) == 0 {
|
||||
/* acos(1)=0, acos(-1)=pi */
|
||||
if (hx >> 31) != 0 {
|
||||
return 2. * PIO2_HI + x1p_120f;
|
||||
}
|
||||
return 0.;
|
||||
}
|
||||
return 0. / (x - x);
|
||||
}
|
||||
/* |x| < 0.5 */
|
||||
if ix < 0x3fe00000 {
|
||||
if ix <= 0x3c600000 {
|
||||
/* |x| < 2**-57 */
|
||||
return PIO2_HI + x1p_120f;
|
||||
}
|
||||
return PIO2_HI - (x - (PIO2_LO - x * r(x * x)));
|
||||
}
|
||||
/* x < -0.5 */
|
||||
if (hx >> 31) != 0 {
|
||||
z = (1.0 + x) * 0.5;
|
||||
s = sqrt(z);
|
||||
w = r(z) * s - PIO2_LO;
|
||||
return 2. * (PIO2_HI - (s + w));
|
||||
}
|
||||
/* x > 0.5 */
|
||||
z = (1.0 - x) * 0.5;
|
||||
s = sqrt(z);
|
||||
// Set the low 4 bytes to zero
|
||||
df = f64::from_bits(s.to_bits() & 0xff_ff_ff_ff_00_00_00_00);
|
||||
|
||||
c = (z - df * df) / (s + df);
|
||||
w = r(z) * s + c;
|
||||
2. * (df + w)
|
||||
}
|
79
mikros_std_deps/libm-0.2.8/src/math/acosf.rs
Normal file
79
mikros_std_deps/libm-0.2.8/src/math/acosf.rs
Normal file
@ -0,0 +1,79 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_acosf.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
use super::sqrtf::sqrtf;
|
||||
|
||||
const PIO2_HI: f32 = 1.5707962513e+00; /* 0x3fc90fda */
|
||||
const PIO2_LO: f32 = 7.5497894159e-08; /* 0x33a22168 */
|
||||
const P_S0: f32 = 1.6666586697e-01;
|
||||
const P_S1: f32 = -4.2743422091e-02;
|
||||
const P_S2: f32 = -8.6563630030e-03;
|
||||
const Q_S1: f32 = -7.0662963390e-01;
|
||||
|
||||
fn r(z: f32) -> f32 {
|
||||
let p = z * (P_S0 + z * (P_S1 + z * P_S2));
|
||||
let q = 1. + z * Q_S1;
|
||||
p / q
|
||||
}
|
||||
|
||||
/// Arccosine (f32)
|
||||
///
|
||||
/// Computes the inverse cosine (arc cosine) of the input value.
|
||||
/// Arguments must be in the range -1 to 1.
|
||||
/// Returns values in radians, in the range of 0 to pi.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn acosf(x: f32) -> f32 {
|
||||
let x1p_120 = f32::from_bits(0x03800000); // 0x1p-120 === 2 ^ (-120)
|
||||
|
||||
let z: f32;
|
||||
let w: f32;
|
||||
let s: f32;
|
||||
|
||||
let mut hx = x.to_bits();
|
||||
let ix = hx & 0x7fffffff;
|
||||
/* |x| >= 1 or nan */
|
||||
if ix >= 0x3f800000 {
|
||||
if ix == 0x3f800000 {
|
||||
if (hx >> 31) != 0 {
|
||||
return 2. * PIO2_HI + x1p_120;
|
||||
}
|
||||
return 0.;
|
||||
}
|
||||
return 0. / (x - x);
|
||||
}
|
||||
/* |x| < 0.5 */
|
||||
if ix < 0x3f000000 {
|
||||
if ix <= 0x32800000 {
|
||||
/* |x| < 2**-26 */
|
||||
return PIO2_HI + x1p_120;
|
||||
}
|
||||
return PIO2_HI - (x - (PIO2_LO - x * r(x * x)));
|
||||
}
|
||||
/* x < -0.5 */
|
||||
if (hx >> 31) != 0 {
|
||||
z = (1. + x) * 0.5;
|
||||
s = sqrtf(z);
|
||||
w = r(z) * s - PIO2_LO;
|
||||
return 2. * (PIO2_HI - (s + w));
|
||||
}
|
||||
/* x > 0.5 */
|
||||
z = (1. - x) * 0.5;
|
||||
s = sqrtf(z);
|
||||
hx = s.to_bits();
|
||||
let df = f32::from_bits(hx & 0xfffff000);
|
||||
let c = (z - df * df) / (s + df);
|
||||
w = r(z) * s + c;
|
||||
2. * (df + w)
|
||||
}
|
27
mikros_std_deps/libm-0.2.8/src/math/acosh.rs
Normal file
27
mikros_std_deps/libm-0.2.8/src/math/acosh.rs
Normal file
@ -0,0 +1,27 @@
|
||||
use super::{log, log1p, sqrt};
|
||||
|
||||
const LN2: f64 = 0.693147180559945309417232121458176568; /* 0x3fe62e42, 0xfefa39ef*/
|
||||
|
||||
/// Inverse hyperbolic cosine (f64)
|
||||
///
|
||||
/// Calculates the inverse hyperbolic cosine of `x`.
|
||||
/// Is defined as `log(x + sqrt(x*x-1))`.
|
||||
/// `x` must be a number greater than or equal to 1.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn acosh(x: f64) -> f64 {
|
||||
let u = x.to_bits();
|
||||
let e = ((u >> 52) as usize) & 0x7ff;
|
||||
|
||||
/* x < 1 domain error is handled in the called functions */
|
||||
|
||||
if e < 0x3ff + 1 {
|
||||
/* |x| < 2, up to 2ulp error in [1,1.125] */
|
||||
return log1p(x - 1.0 + sqrt((x - 1.0) * (x - 1.0) + 2.0 * (x - 1.0)));
|
||||
}
|
||||
if e < 0x3ff + 26 {
|
||||
/* |x| < 0x1p26 */
|
||||
return log(2.0 * x - 1.0 / (x + sqrt(x * x - 1.0)));
|
||||
}
|
||||
/* |x| >= 0x1p26 or nan */
|
||||
return log(x) + LN2;
|
||||
}
|
26
mikros_std_deps/libm-0.2.8/src/math/acoshf.rs
Normal file
26
mikros_std_deps/libm-0.2.8/src/math/acoshf.rs
Normal file
@ -0,0 +1,26 @@
|
||||
use super::{log1pf, logf, sqrtf};
|
||||
|
||||
const LN2: f32 = 0.693147180559945309417232121458176568;
|
||||
|
||||
/// Inverse hyperbolic cosine (f32)
|
||||
///
|
||||
/// Calculates the inverse hyperbolic cosine of `x`.
|
||||
/// Is defined as `log(x + sqrt(x*x-1))`.
|
||||
/// `x` must be a number greater than or equal to 1.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn acoshf(x: f32) -> f32 {
|
||||
let u = x.to_bits();
|
||||
let a = u & 0x7fffffff;
|
||||
|
||||
if a < 0x3f800000 + (1 << 23) {
|
||||
/* |x| < 2, invalid if x < 1 or nan */
|
||||
/* up to 2ulp error in [1,1.125] */
|
||||
return log1pf(x - 1.0 + sqrtf((x - 1.0) * (x - 1.0) + 2.0 * (x - 1.0)));
|
||||
}
|
||||
if a < 0x3f800000 + (12 << 23) {
|
||||
/* |x| < 0x1p12 */
|
||||
return logf(2.0 * x - 1.0 / (x + sqrtf(x * x - 1.0)));
|
||||
}
|
||||
/* x >= 0x1p12 */
|
||||
return logf(x) + LN2;
|
||||
}
|
115
mikros_std_deps/libm-0.2.8/src/math/asin.rs
Normal file
115
mikros_std_deps/libm-0.2.8/src/math/asin.rs
Normal file
@ -0,0 +1,115 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_asin.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* asin(x)
|
||||
* Method :
|
||||
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
|
||||
* we approximate asin(x) on [0,0.5] by
|
||||
* asin(x) = x + x*x^2*R(x^2)
|
||||
* where
|
||||
* R(x^2) is a rational approximation of (asin(x)-x)/x^3
|
||||
* and its remez error is bounded by
|
||||
* |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
|
||||
*
|
||||
* For x in [0.5,1]
|
||||
* asin(x) = pi/2-2*asin(sqrt((1-x)/2))
|
||||
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
|
||||
* then for x>0.98
|
||||
* asin(x) = pi/2 - 2*(s+s*z*R(z))
|
||||
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
|
||||
* For x<=0.98, let pio4_hi = pio2_hi/2, then
|
||||
* f = hi part of s;
|
||||
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
|
||||
* and
|
||||
* asin(x) = pi/2 - 2*(s+s*z*R(z))
|
||||
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
|
||||
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
|
||||
*
|
||||
* Special cases:
|
||||
* if x is NaN, return x itself;
|
||||
* if |x|>1, return NaN with invalid signal.
|
||||
*
|
||||
*/
|
||||
|
||||
use super::{fabs, get_high_word, get_low_word, sqrt, with_set_low_word};
|
||||
|
||||
const PIO2_HI: f64 = 1.57079632679489655800e+00; /* 0x3FF921FB, 0x54442D18 */
|
||||
const PIO2_LO: f64 = 6.12323399573676603587e-17; /* 0x3C91A626, 0x33145C07 */
|
||||
/* coefficients for R(x^2) */
|
||||
const P_S0: f64 = 1.66666666666666657415e-01; /* 0x3FC55555, 0x55555555 */
|
||||
const P_S1: f64 = -3.25565818622400915405e-01; /* 0xBFD4D612, 0x03EB6F7D */
|
||||
const P_S2: f64 = 2.01212532134862925881e-01; /* 0x3FC9C155, 0x0E884455 */
|
||||
const P_S3: f64 = -4.00555345006794114027e-02; /* 0xBFA48228, 0xB5688F3B */
|
||||
const P_S4: f64 = 7.91534994289814532176e-04; /* 0x3F49EFE0, 0x7501B288 */
|
||||
const P_S5: f64 = 3.47933107596021167570e-05; /* 0x3F023DE1, 0x0DFDF709 */
|
||||
const Q_S1: f64 = -2.40339491173441421878e+00; /* 0xC0033A27, 0x1C8A2D4B */
|
||||
const Q_S2: f64 = 2.02094576023350569471e+00; /* 0x40002AE5, 0x9C598AC8 */
|
||||
const Q_S3: f64 = -6.88283971605453293030e-01; /* 0xBFE6066C, 0x1B8D0159 */
|
||||
const Q_S4: f64 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
|
||||
|
||||
fn comp_r(z: f64) -> f64 {
|
||||
let p = z * (P_S0 + z * (P_S1 + z * (P_S2 + z * (P_S3 + z * (P_S4 + z * P_S5)))));
|
||||
let q = 1.0 + z * (Q_S1 + z * (Q_S2 + z * (Q_S3 + z * Q_S4)));
|
||||
p / q
|
||||
}
|
||||
|
||||
/// Arcsine (f64)
|
||||
///
|
||||
/// Computes the inverse sine (arc sine) of the argument `x`.
|
||||
/// Arguments to asin must be in the range -1 to 1.
|
||||
/// Returns values in radians, in the range of -pi/2 to pi/2.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn asin(mut x: f64) -> f64 {
|
||||
let z: f64;
|
||||
let r: f64;
|
||||
let s: f64;
|
||||
let hx: u32;
|
||||
let ix: u32;
|
||||
|
||||
hx = get_high_word(x);
|
||||
ix = hx & 0x7fffffff;
|
||||
/* |x| >= 1 or nan */
|
||||
if ix >= 0x3ff00000 {
|
||||
let lx: u32;
|
||||
lx = get_low_word(x);
|
||||
if ((ix - 0x3ff00000) | lx) == 0 {
|
||||
/* asin(1) = +-pi/2 with inexact */
|
||||
return x * PIO2_HI + f64::from_bits(0x3870000000000000);
|
||||
} else {
|
||||
return 0.0 / (x - x);
|
||||
}
|
||||
}
|
||||
/* |x| < 0.5 */
|
||||
if ix < 0x3fe00000 {
|
||||
/* if 0x1p-1022 <= |x| < 0x1p-26, avoid raising underflow */
|
||||
if ix < 0x3e500000 && ix >= 0x00100000 {
|
||||
return x;
|
||||
} else {
|
||||
return x + x * comp_r(x * x);
|
||||
}
|
||||
}
|
||||
/* 1 > |x| >= 0.5 */
|
||||
z = (1.0 - fabs(x)) * 0.5;
|
||||
s = sqrt(z);
|
||||
r = comp_r(z);
|
||||
if ix >= 0x3fef3333 {
|
||||
/* if |x| > 0.975 */
|
||||
x = PIO2_HI - (2. * (s + s * r) - PIO2_LO);
|
||||
} else {
|
||||
let f: f64;
|
||||
let c: f64;
|
||||
/* f+c = sqrt(z) */
|
||||
f = with_set_low_word(s, 0);
|
||||
c = (z - f * f) / (s + f);
|
||||
x = 0.5 * PIO2_HI - (2.0 * s * r - (PIO2_LO - 2.0 * c) - (0.5 * PIO2_HI - 2.0 * f));
|
||||
}
|
||||
if hx >> 31 != 0 { -x } else { x }
|
||||
}
|
68
mikros_std_deps/libm-0.2.8/src/math/asinf.rs
Normal file
68
mikros_std_deps/libm-0.2.8/src/math/asinf.rs
Normal file
@ -0,0 +1,68 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_asinf.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
use super::fabsf::fabsf;
|
||||
use super::sqrt::sqrt;
|
||||
|
||||
const PIO2: f64 = 1.570796326794896558e+00;
|
||||
|
||||
/* coefficients for R(x^2) */
|
||||
const P_S0: f32 = 1.6666586697e-01;
|
||||
const P_S1: f32 = -4.2743422091e-02;
|
||||
const P_S2: f32 = -8.6563630030e-03;
|
||||
const Q_S1: f32 = -7.0662963390e-01;
|
||||
|
||||
fn r(z: f32) -> f32 {
|
||||
let p = z * (P_S0 + z * (P_S1 + z * P_S2));
|
||||
let q = 1. + z * Q_S1;
|
||||
p / q
|
||||
}
|
||||
|
||||
/// Arcsine (f32)
|
||||
///
|
||||
/// Computes the inverse sine (arc sine) of the argument `x`.
|
||||
/// Arguments to asin must be in the range -1 to 1.
|
||||
/// Returns values in radians, in the range of -pi/2 to pi/2.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn asinf(mut x: f32) -> f32 {
|
||||
let x1p_120 = f64::from_bits(0x3870000000000000); // 0x1p-120 === 2 ^ (-120)
|
||||
|
||||
let hx = x.to_bits();
|
||||
let ix = hx & 0x7fffffff;
|
||||
|
||||
if ix >= 0x3f800000 {
|
||||
/* |x| >= 1 */
|
||||
if ix == 0x3f800000 {
|
||||
/* |x| == 1 */
|
||||
return ((x as f64) * PIO2 + x1p_120) as f32; /* asin(+-1) = +-pi/2 with inexact */
|
||||
}
|
||||
return 0. / (x - x); /* asin(|x|>1) is NaN */
|
||||
}
|
||||
|
||||
if ix < 0x3f000000 {
|
||||
/* |x| < 0.5 */
|
||||
/* if 0x1p-126 <= |x| < 0x1p-12, avoid raising underflow */
|
||||
if (ix < 0x39800000) && (ix >= 0x00800000) {
|
||||
return x;
|
||||
}
|
||||
return x + x * r(x * x);
|
||||
}
|
||||
|
||||
/* 1 > |x| >= 0.5 */
|
||||
let z = (1. - fabsf(x)) * 0.5;
|
||||
let s = sqrt(z as f64);
|
||||
x = (PIO2 - 2. * (s + s * (r(z) as f64))) as f32;
|
||||
if (hx >> 31) != 0 { -x } else { x }
|
||||
}
|
36
mikros_std_deps/libm-0.2.8/src/math/asinh.rs
Normal file
36
mikros_std_deps/libm-0.2.8/src/math/asinh.rs
Normal file
@ -0,0 +1,36 @@
|
||||
use super::{log, log1p, sqrt};
|
||||
|
||||
const LN2: f64 = 0.693147180559945309417232121458176568; /* 0x3fe62e42, 0xfefa39ef*/
|
||||
|
||||
/* asinh(x) = sign(x)*log(|x|+sqrt(x*x+1)) ~= x - x^3/6 + o(x^5) */
|
||||
/// Inverse hyperbolic sine (f64)
|
||||
///
|
||||
/// Calculates the inverse hyperbolic sine of `x`.
|
||||
/// Is defined as `sgn(x)*log(|x|+sqrt(x*x+1))`.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn asinh(mut x: f64) -> f64 {
|
||||
let mut u = x.to_bits();
|
||||
let e = ((u >> 52) as usize) & 0x7ff;
|
||||
let sign = (u >> 63) != 0;
|
||||
|
||||
/* |x| */
|
||||
u &= (!0) >> 1;
|
||||
x = f64::from_bits(u);
|
||||
|
||||
if e >= 0x3ff + 26 {
|
||||
/* |x| >= 0x1p26 or inf or nan */
|
||||
x = log(x) + LN2;
|
||||
} else if e >= 0x3ff + 1 {
|
||||
/* |x| >= 2 */
|
||||
x = log(2.0 * x + 1.0 / (sqrt(x * x + 1.0) + x));
|
||||
} else if e >= 0x3ff - 26 {
|
||||
/* |x| >= 0x1p-26, up to 1.6ulp error in [0.125,0.5] */
|
||||
x = log1p(x + x * x / (sqrt(x * x + 1.0) + 1.0));
|
||||
} else {
|
||||
/* |x| < 0x1p-26, raise inexact if x != 0 */
|
||||
let x1p120 = f64::from_bits(0x4770000000000000);
|
||||
force_eval!(x + x1p120);
|
||||
}
|
||||
|
||||
if sign { -x } else { x }
|
||||
}
|
35
mikros_std_deps/libm-0.2.8/src/math/asinhf.rs
Normal file
35
mikros_std_deps/libm-0.2.8/src/math/asinhf.rs
Normal file
@ -0,0 +1,35 @@
|
||||
use super::{log1pf, logf, sqrtf};
|
||||
|
||||
const LN2: f32 = 0.693147180559945309417232121458176568;
|
||||
|
||||
/* asinh(x) = sign(x)*log(|x|+sqrt(x*x+1)) ~= x - x^3/6 + o(x^5) */
|
||||
/// Inverse hyperbolic sine (f32)
|
||||
///
|
||||
/// Calculates the inverse hyperbolic sine of `x`.
|
||||
/// Is defined as `sgn(x)*log(|x|+sqrt(x*x+1))`.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn asinhf(mut x: f32) -> f32 {
|
||||
let u = x.to_bits();
|
||||
let i = u & 0x7fffffff;
|
||||
let sign = (u >> 31) != 0;
|
||||
|
||||
/* |x| */
|
||||
x = f32::from_bits(i);
|
||||
|
||||
if i >= 0x3f800000 + (12 << 23) {
|
||||
/* |x| >= 0x1p12 or inf or nan */
|
||||
x = logf(x) + LN2;
|
||||
} else if i >= 0x3f800000 + (1 << 23) {
|
||||
/* |x| >= 2 */
|
||||
x = logf(2.0 * x + 1.0 / (sqrtf(x * x + 1.0) + x));
|
||||
} else if i >= 0x3f800000 - (12 << 23) {
|
||||
/* |x| >= 0x1p-12, up to 1.6ulp error in [0.125,0.5] */
|
||||
x = log1pf(x + x * x / (sqrtf(x * x + 1.0) + 1.0));
|
||||
} else {
|
||||
/* |x| < 0x1p-12, raise inexact if x!=0 */
|
||||
let x1p120 = f32::from_bits(0x7b800000);
|
||||
force_eval!(x + x1p120);
|
||||
}
|
||||
|
||||
if sign { -x } else { x }
|
||||
}
|
180
mikros_std_deps/libm-0.2.8/src/math/atan.rs
Normal file
180
mikros_std_deps/libm-0.2.8/src/math/atan.rs
Normal file
@ -0,0 +1,180 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/s_atan.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* atan(x)
|
||||
* Method
|
||||
* 1. Reduce x to positive by atan(x) = -atan(-x).
|
||||
* 2. According to the integer k=4t+0.25 chopped, t=x, the argument
|
||||
* is further reduced to one of the following intervals and the
|
||||
* arctangent of t is evaluated by the corresponding formula:
|
||||
*
|
||||
* [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
|
||||
* [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
|
||||
* [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
|
||||
* [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
|
||||
* [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
use super::fabs;
|
||||
use core::f64;
|
||||
|
||||
const ATANHI: [f64; 4] = [
|
||||
4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
|
||||
7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
|
||||
9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
|
||||
1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
|
||||
];
|
||||
|
||||
const ATANLO: [f64; 4] = [
|
||||
2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
|
||||
3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
|
||||
1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
|
||||
6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
|
||||
];
|
||||
|
||||
const AT: [f64; 11] = [
|
||||
3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
|
||||
-1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
|
||||
1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
|
||||
-1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
|
||||
9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
|
||||
-7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
|
||||
6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
|
||||
-5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
|
||||
4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
|
||||
-3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
|
||||
1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
|
||||
];
|
||||
|
||||
/// Arctangent (f64)
|
||||
///
|
||||
/// Computes the inverse tangent (arc tangent) of the input value.
|
||||
/// Returns a value in radians, in the range of -pi/2 to pi/2.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn atan(x: f64) -> f64 {
|
||||
let mut x = x;
|
||||
let mut ix = (x.to_bits() >> 32) as u32;
|
||||
let sign = ix >> 31;
|
||||
ix &= 0x7fff_ffff;
|
||||
if ix >= 0x4410_0000 {
|
||||
if x.is_nan() {
|
||||
return x;
|
||||
}
|
||||
|
||||
let z = ATANHI[3] + f64::from_bits(0x0380_0000); // 0x1p-120f
|
||||
return if sign != 0 { -z } else { z };
|
||||
}
|
||||
|
||||
let id = if ix < 0x3fdc_0000 {
|
||||
/* |x| < 0.4375 */
|
||||
if ix < 0x3e40_0000 {
|
||||
/* |x| < 2^-27 */
|
||||
if ix < 0x0010_0000 {
|
||||
/* raise underflow for subnormal x */
|
||||
force_eval!(x as f32);
|
||||
}
|
||||
|
||||
return x;
|
||||
}
|
||||
|
||||
-1
|
||||
} else {
|
||||
x = fabs(x);
|
||||
if ix < 0x3ff30000 {
|
||||
/* |x| < 1.1875 */
|
||||
if ix < 0x3fe60000 {
|
||||
/* 7/16 <= |x| < 11/16 */
|
||||
x = (2. * x - 1.) / (2. + x);
|
||||
0
|
||||
} else {
|
||||
/* 11/16 <= |x| < 19/16 */
|
||||
x = (x - 1.) / (x + 1.);
|
||||
1
|
||||
}
|
||||
} else if ix < 0x40038000 {
|
||||
/* |x| < 2.4375 */
|
||||
x = (x - 1.5) / (1. + 1.5 * x);
|
||||
2
|
||||
} else {
|
||||
/* 2.4375 <= |x| < 2^66 */
|
||||
x = -1. / x;
|
||||
3
|
||||
}
|
||||
};
|
||||
|
||||
let z = x * x;
|
||||
let w = z * z;
|
||||
/* break sum from i=0 to 10 AT[i]z**(i+1) into odd and even poly */
|
||||
let s1 = z * (AT[0] + w * (AT[2] + w * (AT[4] + w * (AT[6] + w * (AT[8] + w * AT[10])))));
|
||||
let s2 = w * (AT[1] + w * (AT[3] + w * (AT[5] + w * (AT[7] + w * AT[9]))));
|
||||
|
||||
if id < 0 {
|
||||
return x - x * (s1 + s2);
|
||||
}
|
||||
|
||||
let z = i!(ATANHI, id as usize) - (x * (s1 + s2) - i!(ATANLO, id as usize) - x);
|
||||
|
||||
if sign != 0 { -z } else { z }
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::atan;
|
||||
use core::f64;
|
||||
|
||||
#[test]
|
||||
fn sanity_check() {
|
||||
for (input, answer) in [
|
||||
(3.0_f64.sqrt() / 3.0, f64::consts::FRAC_PI_6),
|
||||
(1.0, f64::consts::FRAC_PI_4),
|
||||
(3.0_f64.sqrt(), f64::consts::FRAC_PI_3),
|
||||
(-3.0_f64.sqrt() / 3.0, -f64::consts::FRAC_PI_6),
|
||||
(-1.0, -f64::consts::FRAC_PI_4),
|
||||
(-3.0_f64.sqrt(), -f64::consts::FRAC_PI_3),
|
||||
]
|
||||
.iter()
|
||||
{
|
||||
assert!(
|
||||
(atan(*input) - answer) / answer < 1e-5,
|
||||
"\natan({:.4}/16) = {:.4}, actual: {}",
|
||||
input * 16.0,
|
||||
answer,
|
||||
atan(*input)
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn zero() {
|
||||
assert_eq!(atan(0.0), 0.0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn infinity() {
|
||||
assert_eq!(atan(f64::INFINITY), f64::consts::FRAC_PI_2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn minus_infinity() {
|
||||
assert_eq!(atan(f64::NEG_INFINITY), -f64::consts::FRAC_PI_2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn nan() {
|
||||
assert!(atan(f64::NAN).is_nan());
|
||||
}
|
||||
}
|
126
mikros_std_deps/libm-0.2.8/src/math/atan2.rs
Normal file
126
mikros_std_deps/libm-0.2.8/src/math/atan2.rs
Normal file
@ -0,0 +1,126 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_atan2.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
/* atan2(y,x)
|
||||
* Method :
|
||||
* 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
|
||||
* 2. Reduce x to positive by (if x and y are unexceptional):
|
||||
* ARG (x+iy) = arctan(y/x) ... if x > 0,
|
||||
* ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
|
||||
*
|
||||
* Special cases:
|
||||
*
|
||||
* ATAN2((anything), NaN ) is NaN;
|
||||
* ATAN2(NAN , (anything) ) is NaN;
|
||||
* ATAN2(+-0, +(anything but NaN)) is +-0 ;
|
||||
* ATAN2(+-0, -(anything but NaN)) is +-pi ;
|
||||
* ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
|
||||
* ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
|
||||
* ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
|
||||
* ATAN2(+-INF,+INF ) is +-pi/4 ;
|
||||
* ATAN2(+-INF,-INF ) is +-3pi/4;
|
||||
* ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
use super::atan;
|
||||
use super::fabs;
|
||||
|
||||
const PI: f64 = 3.1415926535897931160E+00; /* 0x400921FB, 0x54442D18 */
|
||||
const PI_LO: f64 = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
|
||||
|
||||
/// Arctangent of y/x (f64)
|
||||
///
|
||||
/// Computes the inverse tangent (arc tangent) of `y/x`.
|
||||
/// Produces the correct result even for angles near pi/2 or -pi/2 (that is, when `x` is near 0).
|
||||
/// Returns a value in radians, in the range of -pi to pi.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn atan2(y: f64, x: f64) -> f64 {
|
||||
if x.is_nan() || y.is_nan() {
|
||||
return x + y;
|
||||
}
|
||||
let mut ix = (x.to_bits() >> 32) as u32;
|
||||
let lx = x.to_bits() as u32;
|
||||
let mut iy = (y.to_bits() >> 32) as u32;
|
||||
let ly = y.to_bits() as u32;
|
||||
if ((ix.wrapping_sub(0x3ff00000)) | lx) == 0 {
|
||||
/* x = 1.0 */
|
||||
return atan(y);
|
||||
}
|
||||
let m = ((iy >> 31) & 1) | ((ix >> 30) & 2); /* 2*sign(x)+sign(y) */
|
||||
ix &= 0x7fffffff;
|
||||
iy &= 0x7fffffff;
|
||||
|
||||
/* when y = 0 */
|
||||
if (iy | ly) == 0 {
|
||||
return match m {
|
||||
0 | 1 => y, /* atan(+-0,+anything)=+-0 */
|
||||
2 => PI, /* atan(+0,-anything) = PI */
|
||||
_ => -PI, /* atan(-0,-anything) =-PI */
|
||||
};
|
||||
}
|
||||
/* when x = 0 */
|
||||
if (ix | lx) == 0 {
|
||||
return if m & 1 != 0 { -PI / 2.0 } else { PI / 2.0 };
|
||||
}
|
||||
/* when x is INF */
|
||||
if ix == 0x7ff00000 {
|
||||
if iy == 0x7ff00000 {
|
||||
return match m {
|
||||
0 => PI / 4.0, /* atan(+INF,+INF) */
|
||||
1 => -PI / 4.0, /* atan(-INF,+INF) */
|
||||
2 => 3.0 * PI / 4.0, /* atan(+INF,-INF) */
|
||||
_ => -3.0 * PI / 4.0, /* atan(-INF,-INF) */
|
||||
};
|
||||
} else {
|
||||
return match m {
|
||||
0 => 0.0, /* atan(+...,+INF) */
|
||||
1 => -0.0, /* atan(-...,+INF) */
|
||||
2 => PI, /* atan(+...,-INF) */
|
||||
_ => -PI, /* atan(-...,-INF) */
|
||||
};
|
||||
}
|
||||
}
|
||||
/* |y/x| > 0x1p64 */
|
||||
if ix.wrapping_add(64 << 20) < iy || iy == 0x7ff00000 {
|
||||
return if m & 1 != 0 { -PI / 2.0 } else { PI / 2.0 };
|
||||
}
|
||||
|
||||
/* z = atan(|y/x|) without spurious underflow */
|
||||
let z = if (m & 2 != 0) && iy.wrapping_add(64 << 20) < ix {
|
||||
/* |y/x| < 0x1p-64, x<0 */
|
||||
0.0
|
||||
} else {
|
||||
atan(fabs(y / x))
|
||||
};
|
||||
match m {
|
||||
0 => z, /* atan(+,+) */
|
||||
1 => -z, /* atan(-,+) */
|
||||
2 => PI - (z - PI_LO), /* atan(+,-) */
|
||||
_ => (z - PI_LO) - PI, /* atan(-,-) */
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sanity_check() {
|
||||
assert_eq!(atan2(0.0, 1.0), 0.0);
|
||||
assert_eq!(atan2(0.0, -1.0), PI);
|
||||
assert_eq!(atan2(-0.0, -1.0), -PI);
|
||||
assert_eq!(atan2(3.0, 2.0), atan(3.0 / 2.0));
|
||||
assert_eq!(atan2(2.0, -1.0), atan(2.0 / -1.0) + PI);
|
||||
assert_eq!(atan2(-2.0, -1.0), atan(-2.0 / -1.0) - PI);
|
||||
}
|
91
mikros_std_deps/libm-0.2.8/src/math/atan2f.rs
Normal file
91
mikros_std_deps/libm-0.2.8/src/math/atan2f.rs
Normal file
@ -0,0 +1,91 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_atan2f.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
use super::atanf;
|
||||
use super::fabsf;
|
||||
|
||||
const PI: f32 = 3.1415927410e+00; /* 0x40490fdb */
|
||||
const PI_LO: f32 = -8.7422776573e-08; /* 0xb3bbbd2e */
|
||||
|
||||
/// Arctangent of y/x (f32)
|
||||
///
|
||||
/// Computes the inverse tangent (arc tangent) of `y/x`.
|
||||
/// Produces the correct result even for angles near pi/2 or -pi/2 (that is, when `x` is near 0).
|
||||
/// Returns a value in radians, in the range of -pi to pi.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn atan2f(y: f32, x: f32) -> f32 {
|
||||
if x.is_nan() || y.is_nan() {
|
||||
return x + y;
|
||||
}
|
||||
let mut ix = x.to_bits();
|
||||
let mut iy = y.to_bits();
|
||||
|
||||
if ix == 0x3f800000 {
|
||||
/* x=1.0 */
|
||||
return atanf(y);
|
||||
}
|
||||
let m = ((iy >> 31) & 1) | ((ix >> 30) & 2); /* 2*sign(x)+sign(y) */
|
||||
ix &= 0x7fffffff;
|
||||
iy &= 0x7fffffff;
|
||||
|
||||
/* when y = 0 */
|
||||
if iy == 0 {
|
||||
return match m {
|
||||
0 | 1 => y, /* atan(+-0,+anything)=+-0 */
|
||||
2 => PI, /* atan(+0,-anything) = pi */
|
||||
3 | _ => -PI, /* atan(-0,-anything) =-pi */
|
||||
};
|
||||
}
|
||||
/* when x = 0 */
|
||||
if ix == 0 {
|
||||
return if m & 1 != 0 { -PI / 2. } else { PI / 2. };
|
||||
}
|
||||
/* when x is INF */
|
||||
if ix == 0x7f800000 {
|
||||
return if iy == 0x7f800000 {
|
||||
match m {
|
||||
0 => PI / 4., /* atan(+INF,+INF) */
|
||||
1 => -PI / 4., /* atan(-INF,+INF) */
|
||||
2 => 3. * PI / 4., /* atan(+INF,-INF)*/
|
||||
3 | _ => -3. * PI / 4., /* atan(-INF,-INF)*/
|
||||
}
|
||||
} else {
|
||||
match m {
|
||||
0 => 0., /* atan(+...,+INF) */
|
||||
1 => -0., /* atan(-...,+INF) */
|
||||
2 => PI, /* atan(+...,-INF) */
|
||||
3 | _ => -PI, /* atan(-...,-INF) */
|
||||
}
|
||||
};
|
||||
}
|
||||
/* |y/x| > 0x1p26 */
|
||||
if (ix + (26 << 23) < iy) || (iy == 0x7f800000) {
|
||||
return if m & 1 != 0 { -PI / 2. } else { PI / 2. };
|
||||
}
|
||||
|
||||
/* z = atan(|y/x|) with correct underflow */
|
||||
let z = if (m & 2 != 0) && (iy + (26 << 23) < ix) {
|
||||
/*|y/x| < 0x1p-26, x < 0 */
|
||||
0.
|
||||
} else {
|
||||
atanf(fabsf(y / x))
|
||||
};
|
||||
match m {
|
||||
0 => z, /* atan(+,+) */
|
||||
1 => -z, /* atan(-,+) */
|
||||
2 => PI - (z - PI_LO), /* atan(+,-) */
|
||||
_ => (z - PI_LO) - PI, /* case 3 */ /* atan(-,-) */
|
||||
}
|
||||
}
|
103
mikros_std_deps/libm-0.2.8/src/math/atanf.rs
Normal file
103
mikros_std_deps/libm-0.2.8/src/math/atanf.rs
Normal file
@ -0,0 +1,103 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/s_atanf.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
use super::fabsf;
|
||||
|
||||
const ATAN_HI: [f32; 4] = [
|
||||
4.6364760399e-01, /* atan(0.5)hi 0x3eed6338 */
|
||||
7.8539812565e-01, /* atan(1.0)hi 0x3f490fda */
|
||||
9.8279368877e-01, /* atan(1.5)hi 0x3f7b985e */
|
||||
1.5707962513e+00, /* atan(inf)hi 0x3fc90fda */
|
||||
];
|
||||
|
||||
const ATAN_LO: [f32; 4] = [
|
||||
5.0121582440e-09, /* atan(0.5)lo 0x31ac3769 */
|
||||
3.7748947079e-08, /* atan(1.0)lo 0x33222168 */
|
||||
3.4473217170e-08, /* atan(1.5)lo 0x33140fb4 */
|
||||
7.5497894159e-08, /* atan(inf)lo 0x33a22168 */
|
||||
];
|
||||
|
||||
const A_T: [f32; 5] =
|
||||
[3.3333328366e-01, -1.9999158382e-01, 1.4253635705e-01, -1.0648017377e-01, 6.1687607318e-02];
|
||||
|
||||
/// Arctangent (f32)
|
||||
///
|
||||
/// Computes the inverse tangent (arc tangent) of the input value.
|
||||
/// Returns a value in radians, in the range of -pi/2 to pi/2.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn atanf(mut x: f32) -> f32 {
|
||||
let x1p_120 = f32::from_bits(0x03800000); // 0x1p-120 === 2 ^ (-120)
|
||||
|
||||
let z: f32;
|
||||
|
||||
let mut ix = x.to_bits();
|
||||
let sign = (ix >> 31) != 0;
|
||||
ix &= 0x7fffffff;
|
||||
|
||||
if ix >= 0x4c800000 {
|
||||
/* if |x| >= 2**26 */
|
||||
if x.is_nan() {
|
||||
return x;
|
||||
}
|
||||
z = i!(ATAN_HI, 3) + x1p_120;
|
||||
return if sign { -z } else { z };
|
||||
}
|
||||
let id = if ix < 0x3ee00000 {
|
||||
/* |x| < 0.4375 */
|
||||
if ix < 0x39800000 {
|
||||
/* |x| < 2**-12 */
|
||||
if ix < 0x00800000 {
|
||||
/* raise underflow for subnormal x */
|
||||
force_eval!(x * x);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
-1
|
||||
} else {
|
||||
x = fabsf(x);
|
||||
if ix < 0x3f980000 {
|
||||
/* |x| < 1.1875 */
|
||||
if ix < 0x3f300000 {
|
||||
/* 7/16 <= |x| < 11/16 */
|
||||
x = (2. * x - 1.) / (2. + x);
|
||||
0
|
||||
} else {
|
||||
/* 11/16 <= |x| < 19/16 */
|
||||
x = (x - 1.) / (x + 1.);
|
||||
1
|
||||
}
|
||||
} else if ix < 0x401c0000 {
|
||||
/* |x| < 2.4375 */
|
||||
x = (x - 1.5) / (1. + 1.5 * x);
|
||||
2
|
||||
} else {
|
||||
/* 2.4375 <= |x| < 2**26 */
|
||||
x = -1. / x;
|
||||
3
|
||||
}
|
||||
};
|
||||
/* end of argument reduction */
|
||||
z = x * x;
|
||||
let w = z * z;
|
||||
/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
|
||||
let s1 = z * (i!(A_T, 0) + w * (i!(A_T, 2) + w * i!(A_T, 4)));
|
||||
let s2 = w * (i!(A_T, 1) + w * i!(A_T, 3));
|
||||
if id < 0 {
|
||||
return x - x * (s1 + s2);
|
||||
}
|
||||
let id = id as usize;
|
||||
let z = i!(ATAN_HI, id) - ((x * (s1 + s2) - i!(ATAN_LO, id)) - x);
|
||||
if sign { -z } else { z }
|
||||
}
|
33
mikros_std_deps/libm-0.2.8/src/math/atanh.rs
Normal file
33
mikros_std_deps/libm-0.2.8/src/math/atanh.rs
Normal file
@ -0,0 +1,33 @@
|
||||
use super::log1p;
|
||||
|
||||
/* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */
|
||||
/// Inverse hyperbolic tangent (f64)
|
||||
///
|
||||
/// Calculates the inverse hyperbolic tangent of `x`.
|
||||
/// Is defined as `log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2`.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn atanh(x: f64) -> f64 {
|
||||
let u = x.to_bits();
|
||||
let e = ((u >> 52) as usize) & 0x7ff;
|
||||
let sign = (u >> 63) != 0;
|
||||
|
||||
/* |x| */
|
||||
let mut y = f64::from_bits(u & 0x7fff_ffff_ffff_ffff);
|
||||
|
||||
if e < 0x3ff - 1 {
|
||||
if e < 0x3ff - 32 {
|
||||
/* handle underflow */
|
||||
if e == 0 {
|
||||
force_eval!(y as f32);
|
||||
}
|
||||
} else {
|
||||
/* |x| < 0.5, up to 1.7ulp error */
|
||||
y = 0.5 * log1p(2.0 * y + 2.0 * y * y / (1.0 - y));
|
||||
}
|
||||
} else {
|
||||
/* avoid overflow */
|
||||
y = 0.5 * log1p(2.0 * (y / (1.0 - y)));
|
||||
}
|
||||
|
||||
if sign { -y } else { y }
|
||||
}
|
33
mikros_std_deps/libm-0.2.8/src/math/atanhf.rs
Normal file
33
mikros_std_deps/libm-0.2.8/src/math/atanhf.rs
Normal file
@ -0,0 +1,33 @@
|
||||
use super::log1pf;
|
||||
|
||||
/* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */
|
||||
/// Inverse hyperbolic tangent (f32)
|
||||
///
|
||||
/// Calculates the inverse hyperbolic tangent of `x`.
|
||||
/// Is defined as `log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2`.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn atanhf(mut x: f32) -> f32 {
|
||||
let mut u = x.to_bits();
|
||||
let sign = (u >> 31) != 0;
|
||||
|
||||
/* |x| */
|
||||
u &= 0x7fffffff;
|
||||
x = f32::from_bits(u);
|
||||
|
||||
if u < 0x3f800000 - (1 << 23) {
|
||||
if u < 0x3f800000 - (32 << 23) {
|
||||
/* handle underflow */
|
||||
if u < (1 << 23) {
|
||||
force_eval!((x * x) as f32);
|
||||
}
|
||||
} else {
|
||||
/* |x| < 0.5, up to 1.7ulp error */
|
||||
x = 0.5 * log1pf(2.0 * x + 2.0 * x * x / (1.0 - x));
|
||||
}
|
||||
} else {
|
||||
/* avoid overflow */
|
||||
x = 0.5 * log1pf(2.0 * (x / (1.0 - x)));
|
||||
}
|
||||
|
||||
if sign { -x } else { x }
|
||||
}
|
113
mikros_std_deps/libm-0.2.8/src/math/cbrt.rs
Normal file
113
mikros_std_deps/libm-0.2.8/src/math/cbrt.rs
Normal file
@ -0,0 +1,113 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrt.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
* Optimized by Bruce D. Evans.
|
||||
*/
|
||||
/* cbrt(x)
|
||||
* Return cube root of x
|
||||
*/
|
||||
|
||||
use core::f64;
|
||||
|
||||
const B1: u32 = 715094163; /* B1 = (1023-1023/3-0.03306235651)*2**20 */
|
||||
const B2: u32 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
|
||||
|
||||
/* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */
|
||||
const P0: f64 = 1.87595182427177009643; /* 0x3ffe03e6, 0x0f61e692 */
|
||||
const P1: f64 = -1.88497979543377169875; /* 0xbffe28e0, 0x92f02420 */
|
||||
const P2: f64 = 1.621429720105354466140; /* 0x3ff9f160, 0x4a49d6c2 */
|
||||
const P3: f64 = -0.758397934778766047437; /* 0xbfe844cb, 0xbee751d9 */
|
||||
const P4: f64 = 0.145996192886612446982; /* 0x3fc2b000, 0xd4e4edd7 */
|
||||
|
||||
// Cube root (f64)
|
||||
///
|
||||
/// Computes the cube root of the argument.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn cbrt(x: f64) -> f64 {
|
||||
let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54
|
||||
|
||||
let mut ui: u64 = x.to_bits();
|
||||
let mut r: f64;
|
||||
let s: f64;
|
||||
let mut t: f64;
|
||||
let w: f64;
|
||||
let mut hx: u32 = (ui >> 32) as u32 & 0x7fffffff;
|
||||
|
||||
if hx >= 0x7ff00000 {
|
||||
/* cbrt(NaN,INF) is itself */
|
||||
return x + x;
|
||||
}
|
||||
|
||||
/*
|
||||
* Rough cbrt to 5 bits:
|
||||
* cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3)
|
||||
* where e is integral and >= 0, m is real and in [0, 1), and "/" and
|
||||
* "%" are integer division and modulus with rounding towards minus
|
||||
* infinity. The RHS is always >= the LHS and has a maximum relative
|
||||
* error of about 1 in 16. Adding a bias of -0.03306235651 to the
|
||||
* (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE
|
||||
* floating point representation, for finite positive normal values,
|
||||
* ordinary integer divison of the value in bits magically gives
|
||||
* almost exactly the RHS of the above provided we first subtract the
|
||||
* exponent bias (1023 for doubles) and later add it back. We do the
|
||||
* subtraction virtually to keep e >= 0 so that ordinary integer
|
||||
* division rounds towards minus infinity; this is also efficient.
|
||||
*/
|
||||
if hx < 0x00100000 {
|
||||
/* zero or subnormal? */
|
||||
ui = (x * x1p54).to_bits();
|
||||
hx = (ui >> 32) as u32 & 0x7fffffff;
|
||||
if hx == 0 {
|
||||
return x; /* cbrt(0) is itself */
|
||||
}
|
||||
hx = hx / 3 + B2;
|
||||
} else {
|
||||
hx = hx / 3 + B1;
|
||||
}
|
||||
ui &= 1 << 63;
|
||||
ui |= (hx as u64) << 32;
|
||||
t = f64::from_bits(ui);
|
||||
|
||||
/*
|
||||
* New cbrt to 23 bits:
|
||||
* cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x)
|
||||
* where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r)
|
||||
* to within 2**-23.5 when |r - 1| < 1/10. The rough approximation
|
||||
* has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this
|
||||
* gives us bounds for r = t**3/x.
|
||||
*
|
||||
* Try to optimize for parallel evaluation as in __tanf.c.
|
||||
*/
|
||||
r = (t * t) * (t / x);
|
||||
t = t * ((P0 + r * (P1 + r * P2)) + ((r * r) * r) * (P3 + r * P4));
|
||||
|
||||
/*
|
||||
* Round t away from zero to 23 bits (sloppily except for ensuring that
|
||||
* the result is larger in magnitude than cbrt(x) but not much more than
|
||||
* 2 23-bit ulps larger). With rounding towards zero, the error bound
|
||||
* would be ~5/6 instead of ~4/6. With a maximum error of 2 23-bit ulps
|
||||
* in the rounded t, the infinite-precision error in the Newton
|
||||
* approximation barely affects third digit in the final error
|
||||
* 0.667; the error in the rounded t can be up to about 3 23-bit ulps
|
||||
* before the final error is larger than 0.667 ulps.
|
||||
*/
|
||||
ui = t.to_bits();
|
||||
ui = (ui + 0x80000000) & 0xffffffffc0000000;
|
||||
t = f64::from_bits(ui);
|
||||
|
||||
/* one step Newton iteration to 53 bits with error < 0.667 ulps */
|
||||
s = t * t; /* t*t is exact */
|
||||
r = x / s; /* error <= 0.5 ulps; |r| < |t| */
|
||||
w = t + t; /* t+t is exact */
|
||||
r = (r - t) / (w + r); /* r-t is exact; w+r ~= 3*t */
|
||||
t = t + t * r; /* error <= 0.5 + 0.5/3 + epsilon */
|
||||
t
|
||||
}
|
75
mikros_std_deps/libm-0.2.8/src/math/cbrtf.rs
Normal file
75
mikros_std_deps/libm-0.2.8/src/math/cbrtf.rs
Normal file
@ -0,0 +1,75 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrtf.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
* Debugged and optimized by Bruce D. Evans.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* cbrtf(x)
|
||||
* Return cube root of x
|
||||
*/
|
||||
|
||||
use core::f32;
|
||||
|
||||
const B1: u32 = 709958130; /* B1 = (127-127.0/3-0.03306235651)*2**23 */
|
||||
const B2: u32 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */
|
||||
|
||||
/// Cube root (f32)
|
||||
///
|
||||
/// Computes the cube root of the argument.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn cbrtf(x: f32) -> f32 {
|
||||
let x1p24 = f32::from_bits(0x4b800000); // 0x1p24f === 2 ^ 24
|
||||
|
||||
let mut r: f64;
|
||||
let mut t: f64;
|
||||
let mut ui: u32 = x.to_bits();
|
||||
let mut hx: u32 = ui & 0x7fffffff;
|
||||
|
||||
if hx >= 0x7f800000 {
|
||||
/* cbrt(NaN,INF) is itself */
|
||||
return x + x;
|
||||
}
|
||||
|
||||
/* rough cbrt to 5 bits */
|
||||
if hx < 0x00800000 {
|
||||
/* zero or subnormal? */
|
||||
if hx == 0 {
|
||||
return x; /* cbrt(+-0) is itself */
|
||||
}
|
||||
ui = (x * x1p24).to_bits();
|
||||
hx = ui & 0x7fffffff;
|
||||
hx = hx / 3 + B2;
|
||||
} else {
|
||||
hx = hx / 3 + B1;
|
||||
}
|
||||
ui &= 0x80000000;
|
||||
ui |= hx;
|
||||
|
||||
/*
|
||||
* First step Newton iteration (solving t*t-x/t == 0) to 16 bits. In
|
||||
* double precision so that its terms can be arranged for efficiency
|
||||
* without causing overflow or underflow.
|
||||
*/
|
||||
t = f32::from_bits(ui) as f64;
|
||||
r = t * t * t;
|
||||
t = t * (x as f64 + x as f64 + r) / (x as f64 + r + r);
|
||||
|
||||
/*
|
||||
* Second step Newton iteration to 47 bits. In double precision for
|
||||
* efficiency and accuracy.
|
||||
*/
|
||||
r = t * t * t;
|
||||
t = t * (x as f64 + x as f64 + r) / (x as f64 + r + r);
|
||||
|
||||
/* rounding to 24 bits is perfect in round-to-nearest mode */
|
||||
t as f32
|
||||
}
|
74
mikros_std_deps/libm-0.2.8/src/math/ceil.rs
Normal file
74
mikros_std_deps/libm-0.2.8/src/math/ceil.rs
Normal file
@ -0,0 +1,74 @@
|
||||
#![allow(unreachable_code)]
|
||||
use core::f64;
|
||||
|
||||
const TOINT: f64 = 1. / f64::EPSILON;
|
||||
|
||||
/// Ceil (f64)
|
||||
///
|
||||
/// Finds the nearest integer greater than or equal to `x`.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn ceil(x: f64) -> f64 {
|
||||
// On wasm32 we know that LLVM's intrinsic will compile to an optimized
|
||||
// `f64.ceil` native instruction, so we can leverage this for both code size
|
||||
// and speed.
|
||||
llvm_intrinsically_optimized! {
|
||||
#[cfg(target_arch = "wasm32")] {
|
||||
return unsafe { ::core::intrinsics::ceilf64(x) }
|
||||
}
|
||||
}
|
||||
#[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
|
||||
{
|
||||
//use an alternative implementation on x86, because the
|
||||
//main implementation fails with the x87 FPU used by
|
||||
//debian i386, probablly due to excess precision issues.
|
||||
//basic implementation taken from https://github.com/rust-lang/libm/issues/219
|
||||
use super::fabs;
|
||||
if fabs(x).to_bits() < 4503599627370496.0_f64.to_bits() {
|
||||
let truncated = x as i64 as f64;
|
||||
if truncated < x {
|
||||
return truncated + 1.0;
|
||||
} else {
|
||||
return truncated;
|
||||
}
|
||||
} else {
|
||||
return x;
|
||||
}
|
||||
}
|
||||
let u: u64 = x.to_bits();
|
||||
let e: i64 = (u >> 52 & 0x7ff) as i64;
|
||||
let y: f64;
|
||||
|
||||
if e >= 0x3ff + 52 || x == 0. {
|
||||
return x;
|
||||
}
|
||||
// y = int(x) - x, where int(x) is an integer neighbor of x
|
||||
y = if (u >> 63) != 0 { x - TOINT + TOINT - x } else { x + TOINT - TOINT - x };
|
||||
// special case because of non-nearest rounding modes
|
||||
if e < 0x3ff {
|
||||
force_eval!(y);
|
||||
return if (u >> 63) != 0 { -0. } else { 1. };
|
||||
}
|
||||
if y < 0. { x + y + 1. } else { x + y }
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use core::f64::*;
|
||||
|
||||
#[test]
|
||||
fn sanity_check() {
|
||||
assert_eq!(ceil(1.1), 2.0);
|
||||
assert_eq!(ceil(2.9), 3.0);
|
||||
}
|
||||
|
||||
/// The spec: https://en.cppreference.com/w/cpp/numeric/math/ceil
|
||||
#[test]
|
||||
fn spec_tests() {
|
||||
// Not Asserted: that the current rounding mode has no effect.
|
||||
assert!(ceil(NAN).is_nan());
|
||||
for f in [0.0, -0.0, INFINITY, NEG_INFINITY].iter().copied() {
|
||||
assert_eq!(ceil(f), f);
|
||||
}
|
||||
}
|
||||
}
|
65
mikros_std_deps/libm-0.2.8/src/math/ceilf.rs
Normal file
65
mikros_std_deps/libm-0.2.8/src/math/ceilf.rs
Normal file
@ -0,0 +1,65 @@
|
||||
use core::f32;
|
||||
|
||||
/// Ceil (f32)
|
||||
///
|
||||
/// Finds the nearest integer greater than or equal to `x`.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn ceilf(x: f32) -> f32 {
|
||||
// On wasm32 we know that LLVM's intrinsic will compile to an optimized
|
||||
// `f32.ceil` native instruction, so we can leverage this for both code size
|
||||
// and speed.
|
||||
llvm_intrinsically_optimized! {
|
||||
#[cfg(target_arch = "wasm32")] {
|
||||
return unsafe { ::core::intrinsics::ceilf32(x) }
|
||||
}
|
||||
}
|
||||
let mut ui = x.to_bits();
|
||||
let e = (((ui >> 23) & 0xff).wrapping_sub(0x7f)) as i32;
|
||||
|
||||
if e >= 23 {
|
||||
return x;
|
||||
}
|
||||
if e >= 0 {
|
||||
let m = 0x007fffff >> e;
|
||||
if (ui & m) == 0 {
|
||||
return x;
|
||||
}
|
||||
force_eval!(x + f32::from_bits(0x7b800000));
|
||||
if ui >> 31 == 0 {
|
||||
ui += m;
|
||||
}
|
||||
ui &= !m;
|
||||
} else {
|
||||
force_eval!(x + f32::from_bits(0x7b800000));
|
||||
if ui >> 31 != 0 {
|
||||
return -0.0;
|
||||
} else if ui << 1 != 0 {
|
||||
return 1.0;
|
||||
}
|
||||
}
|
||||
f32::from_bits(ui)
|
||||
}
|
||||
|
||||
// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520
|
||||
#[cfg(not(target_arch = "powerpc64"))]
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use core::f32::*;
|
||||
|
||||
#[test]
|
||||
fn sanity_check() {
|
||||
assert_eq!(ceilf(1.1), 2.0);
|
||||
assert_eq!(ceilf(2.9), 3.0);
|
||||
}
|
||||
|
||||
/// The spec: https://en.cppreference.com/w/cpp/numeric/math/ceil
|
||||
#[test]
|
||||
fn spec_tests() {
|
||||
// Not Asserted: that the current rounding mode has no effect.
|
||||
assert!(ceilf(NAN).is_nan());
|
||||
for f in [0.0, -0.0, INFINITY, NEG_INFINITY].iter().copied() {
|
||||
assert_eq!(ceilf(f), f);
|
||||
}
|
||||
}
|
||||
}
|
12
mikros_std_deps/libm-0.2.8/src/math/copysign.rs
Normal file
12
mikros_std_deps/libm-0.2.8/src/math/copysign.rs
Normal file
@ -0,0 +1,12 @@
|
||||
/// Sign of Y, magnitude of X (f64)
|
||||
///
|
||||
/// Constructs a number with the magnitude (absolute value) of its
|
||||
/// first argument, `x`, and the sign of its second argument, `y`.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn copysign(x: f64, y: f64) -> f64 {
|
||||
let mut ux = x.to_bits();
|
||||
let uy = y.to_bits();
|
||||
ux &= (!0) >> 1;
|
||||
ux |= uy & (1 << 63);
|
||||
f64::from_bits(ux)
|
||||
}
|
12
mikros_std_deps/libm-0.2.8/src/math/copysignf.rs
Normal file
12
mikros_std_deps/libm-0.2.8/src/math/copysignf.rs
Normal file
@ -0,0 +1,12 @@
|
||||
/// Sign of Y, magnitude of X (f32)
|
||||
///
|
||||
/// Constructs a number with the magnitude (absolute value) of its
|
||||
/// first argument, `x`, and the sign of its second argument, `y`.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn copysignf(x: f32, y: f32) -> f32 {
|
||||
let mut ux = x.to_bits();
|
||||
let uy = y.to_bits();
|
||||
ux &= 0x7fffffff;
|
||||
ux |= uy & 0x80000000;
|
||||
f32::from_bits(ux)
|
||||
}
|
73
mikros_std_deps/libm-0.2.8/src/math/cos.rs
Normal file
73
mikros_std_deps/libm-0.2.8/src/math/cos.rs
Normal file
@ -0,0 +1,73 @@
|
||||
// origin: FreeBSD /usr/src/lib/msun/src/s_cos.c */
|
||||
//
|
||||
// ====================================================
|
||||
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
//
|
||||
// Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
// Permission to use, copy, modify, and distribute this
|
||||
// software is freely granted, provided that this notice
|
||||
// is preserved.
|
||||
// ====================================================
|
||||
|
||||
use super::{k_cos, k_sin, rem_pio2};
|
||||
|
||||
// cos(x)
|
||||
// Return cosine function of x.
|
||||
//
|
||||
// kernel function:
|
||||
// k_sin ... sine function on [-pi/4,pi/4]
|
||||
// k_cos ... cosine function on [-pi/4,pi/4]
|
||||
// rem_pio2 ... argument reduction routine
|
||||
//
|
||||
// Method.
|
||||
// Let S,C and T denote the sin, cos and tan respectively on
|
||||
// [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
||||
// in [-pi/4 , +pi/4], and let n = k mod 4.
|
||||
// We have
|
||||
//
|
||||
// n sin(x) cos(x) tan(x)
|
||||
// ----------------------------------------------------------
|
||||
// 0 S C T
|
||||
// 1 C -S -1/T
|
||||
// 2 -S -C T
|
||||
// 3 -C S -1/T
|
||||
// ----------------------------------------------------------
|
||||
//
|
||||
// Special cases:
|
||||
// Let trig be any of sin, cos, or tan.
|
||||
// trig(+-INF) is NaN, with signals;
|
||||
// trig(NaN) is that NaN;
|
||||
//
|
||||
// Accuracy:
|
||||
// TRIG(x) returns trig(x) nearly rounded
|
||||
//
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn cos(x: f64) -> f64 {
|
||||
let ix = (f64::to_bits(x) >> 32) as u32 & 0x7fffffff;
|
||||
|
||||
/* |x| ~< pi/4 */
|
||||
if ix <= 0x3fe921fb {
|
||||
if ix < 0x3e46a09e {
|
||||
/* if x < 2**-27 * sqrt(2) */
|
||||
/* raise inexact if x != 0 */
|
||||
if x as i32 == 0 {
|
||||
return 1.0;
|
||||
}
|
||||
}
|
||||
return k_cos(x, 0.0);
|
||||
}
|
||||
|
||||
/* cos(Inf or NaN) is NaN */
|
||||
if ix >= 0x7ff00000 {
|
||||
return x - x;
|
||||
}
|
||||
|
||||
/* argument reduction needed */
|
||||
let (n, y0, y1) = rem_pio2(x);
|
||||
match n & 3 {
|
||||
0 => k_cos(y0, y1),
|
||||
1 => -k_sin(y0, y1, 1),
|
||||
2 => -k_cos(y0, y1),
|
||||
_ => k_sin(y0, y1, 1),
|
||||
}
|
||||
}
|
83
mikros_std_deps/libm-0.2.8/src/math/cosf.rs
Normal file
83
mikros_std_deps/libm-0.2.8/src/math/cosf.rs
Normal file
@ -0,0 +1,83 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/s_cosf.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
* Optimized by Bruce D. Evans.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
use super::{k_cosf, k_sinf, rem_pio2f};
|
||||
|
||||
use core::f64::consts::FRAC_PI_2;
|
||||
|
||||
/* Small multiples of pi/2 rounded to double precision. */
|
||||
const C1_PIO2: f64 = 1. * FRAC_PI_2; /* 0x3FF921FB, 0x54442D18 */
|
||||
const C2_PIO2: f64 = 2. * FRAC_PI_2; /* 0x400921FB, 0x54442D18 */
|
||||
const C3_PIO2: f64 = 3. * FRAC_PI_2; /* 0x4012D97C, 0x7F3321D2 */
|
||||
const C4_PIO2: f64 = 4. * FRAC_PI_2; /* 0x401921FB, 0x54442D18 */
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn cosf(x: f32) -> f32 {
|
||||
let x64 = x as f64;
|
||||
|
||||
let x1p120 = f32::from_bits(0x7b800000); // 0x1p120f === 2 ^ 120
|
||||
|
||||
let mut ix = x.to_bits();
|
||||
let sign = (ix >> 31) != 0;
|
||||
ix &= 0x7fffffff;
|
||||
|
||||
if ix <= 0x3f490fda {
|
||||
/* |x| ~<= pi/4 */
|
||||
if ix < 0x39800000 {
|
||||
/* |x| < 2**-12 */
|
||||
/* raise inexact if x != 0 */
|
||||
force_eval!(x + x1p120);
|
||||
return 1.;
|
||||
}
|
||||
return k_cosf(x64);
|
||||
}
|
||||
if ix <= 0x407b53d1 {
|
||||
/* |x| ~<= 5*pi/4 */
|
||||
if ix > 0x4016cbe3 {
|
||||
/* |x| ~> 3*pi/4 */
|
||||
return -k_cosf(if sign { x64 + C2_PIO2 } else { x64 - C2_PIO2 });
|
||||
} else if sign {
|
||||
return k_sinf(x64 + C1_PIO2);
|
||||
} else {
|
||||
return k_sinf(C1_PIO2 - x64);
|
||||
}
|
||||
}
|
||||
if ix <= 0x40e231d5 {
|
||||
/* |x| ~<= 9*pi/4 */
|
||||
if ix > 0x40afeddf {
|
||||
/* |x| ~> 7*pi/4 */
|
||||
return k_cosf(if sign { x64 + C4_PIO2 } else { x64 - C4_PIO2 });
|
||||
} else if sign {
|
||||
return k_sinf(-x64 - C3_PIO2);
|
||||
} else {
|
||||
return k_sinf(x64 - C3_PIO2);
|
||||
}
|
||||
}
|
||||
|
||||
/* cos(Inf or NaN) is NaN */
|
||||
if ix >= 0x7f800000 {
|
||||
return x - x;
|
||||
}
|
||||
|
||||
/* general argument reduction needed */
|
||||
let (n, y) = rem_pio2f(x);
|
||||
match n & 3 {
|
||||
0 => k_cosf(y),
|
||||
1 => k_sinf(-y),
|
||||
2 => -k_cosf(y),
|
||||
_ => k_sinf(y),
|
||||
}
|
||||
}
|
38
mikros_std_deps/libm-0.2.8/src/math/cosh.rs
Normal file
38
mikros_std_deps/libm-0.2.8/src/math/cosh.rs
Normal file
@ -0,0 +1,38 @@
|
||||
use super::exp;
|
||||
use super::expm1;
|
||||
use super::k_expo2;
|
||||
|
||||
/// Hyperbolic cosine (f64)
|
||||
///
|
||||
/// Computes the hyperbolic cosine of the argument x.
|
||||
/// Is defined as `(exp(x) + exp(-x))/2`
|
||||
/// Angles are specified in radians.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn cosh(mut x: f64) -> f64 {
|
||||
/* |x| */
|
||||
let mut ix = x.to_bits();
|
||||
ix &= 0x7fffffffffffffff;
|
||||
x = f64::from_bits(ix);
|
||||
let w = ix >> 32;
|
||||
|
||||
/* |x| < log(2) */
|
||||
if w < 0x3fe62e42 {
|
||||
if w < 0x3ff00000 - (26 << 20) {
|
||||
let x1p120 = f64::from_bits(0x4770000000000000);
|
||||
force_eval!(x + x1p120);
|
||||
return 1.;
|
||||
}
|
||||
let t = expm1(x); // exponential minus 1
|
||||
return 1. + t * t / (2. * (1. + t));
|
||||
}
|
||||
|
||||
/* |x| < log(DBL_MAX) */
|
||||
if w < 0x40862e42 {
|
||||
let t = exp(x);
|
||||
/* note: if x>log(0x1p26) then the 1/t is not needed */
|
||||
return 0.5 * (t + 1. / t);
|
||||
}
|
||||
|
||||
/* |x| > log(DBL_MAX) or nan */
|
||||
k_expo2(x)
|
||||
}
|
38
mikros_std_deps/libm-0.2.8/src/math/coshf.rs
Normal file
38
mikros_std_deps/libm-0.2.8/src/math/coshf.rs
Normal file
@ -0,0 +1,38 @@
|
||||
use super::expf;
|
||||
use super::expm1f;
|
||||
use super::k_expo2f;
|
||||
|
||||
/// Hyperbolic cosine (f64)
|
||||
///
|
||||
/// Computes the hyperbolic cosine of the argument x.
|
||||
/// Is defined as `(exp(x) + exp(-x))/2`
|
||||
/// Angles are specified in radians.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn coshf(mut x: f32) -> f32 {
|
||||
let x1p120 = f32::from_bits(0x7b800000); // 0x1p120f === 2 ^ 120
|
||||
|
||||
/* |x| */
|
||||
let mut ix = x.to_bits();
|
||||
ix &= 0x7fffffff;
|
||||
x = f32::from_bits(ix);
|
||||
let w = ix;
|
||||
|
||||
/* |x| < log(2) */
|
||||
if w < 0x3f317217 {
|
||||
if w < (0x3f800000 - (12 << 23)) {
|
||||
force_eval!(x + x1p120);
|
||||
return 1.;
|
||||
}
|
||||
let t = expm1f(x);
|
||||
return 1. + t * t / (2. * (1. + t));
|
||||
}
|
||||
|
||||
/* |x| < log(FLT_MAX) */
|
||||
if w < 0x42b17217 {
|
||||
let t = expf(x);
|
||||
return 0.5 * (t + 1. / t);
|
||||
}
|
||||
|
||||
/* |x| > log(FLT_MAX) or nan */
|
||||
k_expo2f(x)
|
||||
}
|
310
mikros_std_deps/libm-0.2.8/src/math/erf.rs
Normal file
310
mikros_std_deps/libm-0.2.8/src/math/erf.rs
Normal file
@ -0,0 +1,310 @@
|
||||
use super::{exp, fabs, get_high_word, with_set_low_word};
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/s_erf.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* double erf(double x)
|
||||
* double erfc(double x)
|
||||
* x
|
||||
* 2 |\
|
||||
* erf(x) = --------- | exp(-t*t)dt
|
||||
* sqrt(pi) \|
|
||||
* 0
|
||||
*
|
||||
* erfc(x) = 1-erf(x)
|
||||
* Note that
|
||||
* erf(-x) = -erf(x)
|
||||
* erfc(-x) = 2 - erfc(x)
|
||||
*
|
||||
* Method:
|
||||
* 1. For |x| in [0, 0.84375]
|
||||
* erf(x) = x + x*R(x^2)
|
||||
* erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
|
||||
* = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
|
||||
* where R = P/Q where P is an odd poly of degree 8 and
|
||||
* Q is an odd poly of degree 10.
|
||||
* -57.90
|
||||
* | R - (erf(x)-x)/x | <= 2
|
||||
*
|
||||
*
|
||||
* Remark. The formula is derived by noting
|
||||
* erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
|
||||
* and that
|
||||
* 2/sqrt(pi) = 1.128379167095512573896158903121545171688
|
||||
* is close to one. The interval is chosen because the fix
|
||||
* point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
|
||||
* near 0.6174), and by some experiment, 0.84375 is chosen to
|
||||
* guarantee the error is less than one ulp for erf.
|
||||
*
|
||||
* 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
|
||||
* c = 0.84506291151 rounded to single (24 bits)
|
||||
* erf(x) = sign(x) * (c + P1(s)/Q1(s))
|
||||
* erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
|
||||
* 1+(c+P1(s)/Q1(s)) if x < 0
|
||||
* |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
|
||||
* Remark: here we use the taylor series expansion at x=1.
|
||||
* erf(1+s) = erf(1) + s*Poly(s)
|
||||
* = 0.845.. + P1(s)/Q1(s)
|
||||
* That is, we use rational approximation to approximate
|
||||
* erf(1+s) - (c = (single)0.84506291151)
|
||||
* Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
|
||||
* where
|
||||
* P1(s) = degree 6 poly in s
|
||||
* Q1(s) = degree 6 poly in s
|
||||
*
|
||||
* 3. For x in [1.25,1/0.35(~2.857143)],
|
||||
* erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
|
||||
* erf(x) = 1 - erfc(x)
|
||||
* where
|
||||
* R1(z) = degree 7 poly in z, (z=1/x^2)
|
||||
* S1(z) = degree 8 poly in z
|
||||
*
|
||||
* 4. For x in [1/0.35,28]
|
||||
* erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
|
||||
* = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
|
||||
* = 2.0 - tiny (if x <= -6)
|
||||
* erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
|
||||
* erf(x) = sign(x)*(1.0 - tiny)
|
||||
* where
|
||||
* R2(z) = degree 6 poly in z, (z=1/x^2)
|
||||
* S2(z) = degree 7 poly in z
|
||||
*
|
||||
* Note1:
|
||||
* To compute exp(-x*x-0.5625+R/S), let s be a single
|
||||
* precision number and s := x; then
|
||||
* -x*x = -s*s + (s-x)*(s+x)
|
||||
* exp(-x*x-0.5626+R/S) =
|
||||
* exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
|
||||
* Note2:
|
||||
* Here 4 and 5 make use of the asymptotic series
|
||||
* exp(-x*x)
|
||||
* erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
|
||||
* x*sqrt(pi)
|
||||
* We use rational approximation to approximate
|
||||
* g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
|
||||
* Here is the error bound for R1/S1 and R2/S2
|
||||
* |R1/S1 - f(x)| < 2**(-62.57)
|
||||
* |R2/S2 - f(x)| < 2**(-61.52)
|
||||
*
|
||||
* 5. For inf > x >= 28
|
||||
* erf(x) = sign(x) *(1 - tiny) (raise inexact)
|
||||
* erfc(x) = tiny*tiny (raise underflow) if x > 0
|
||||
* = 2 - tiny if x<0
|
||||
*
|
||||
* 7. Special case:
|
||||
* erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
|
||||
* erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
|
||||
* erfc/erf(NaN) is NaN
|
||||
*/
|
||||
|
||||
const ERX: f64 = 8.45062911510467529297e-01; /* 0x3FEB0AC1, 0x60000000 */
|
||||
/*
|
||||
* Coefficients for approximation to erf on [0,0.84375]
|
||||
*/
|
||||
const EFX8: f64 = 1.02703333676410069053e+00; /* 0x3FF06EBA, 0x8214DB69 */
|
||||
const PP0: f64 = 1.28379167095512558561e-01; /* 0x3FC06EBA, 0x8214DB68 */
|
||||
const PP1: f64 = -3.25042107247001499370e-01; /* 0xBFD4CD7D, 0x691CB913 */
|
||||
const PP2: f64 = -2.84817495755985104766e-02; /* 0xBF9D2A51, 0xDBD7194F */
|
||||
const PP3: f64 = -5.77027029648944159157e-03; /* 0xBF77A291, 0x236668E4 */
|
||||
const PP4: f64 = -2.37630166566501626084e-05; /* 0xBEF8EAD6, 0x120016AC */
|
||||
const QQ1: f64 = 3.97917223959155352819e-01; /* 0x3FD97779, 0xCDDADC09 */
|
||||
const QQ2: f64 = 6.50222499887672944485e-02; /* 0x3FB0A54C, 0x5536CEBA */
|
||||
const QQ3: f64 = 5.08130628187576562776e-03; /* 0x3F74D022, 0xC4D36B0F */
|
||||
const QQ4: f64 = 1.32494738004321644526e-04; /* 0x3F215DC9, 0x221C1A10 */
|
||||
const QQ5: f64 = -3.96022827877536812320e-06; /* 0xBED09C43, 0x42A26120 */
|
||||
/*
|
||||
* Coefficients for approximation to erf in [0.84375,1.25]
|
||||
*/
|
||||
const PA0: f64 = -2.36211856075265944077e-03; /* 0xBF6359B8, 0xBEF77538 */
|
||||
const PA1: f64 = 4.14856118683748331666e-01; /* 0x3FDA8D00, 0xAD92B34D */
|
||||
const PA2: f64 = -3.72207876035701323847e-01; /* 0xBFD7D240, 0xFBB8C3F1 */
|
||||
const PA3: f64 = 3.18346619901161753674e-01; /* 0x3FD45FCA, 0x805120E4 */
|
||||
const PA4: f64 = -1.10894694282396677476e-01; /* 0xBFBC6398, 0x3D3E28EC */
|
||||
const PA5: f64 = 3.54783043256182359371e-02; /* 0x3FA22A36, 0x599795EB */
|
||||
const PA6: f64 = -2.16637559486879084300e-03; /* 0xBF61BF38, 0x0A96073F */
|
||||
const QA1: f64 = 1.06420880400844228286e-01; /* 0x3FBB3E66, 0x18EEE323 */
|
||||
const QA2: f64 = 5.40397917702171048937e-01; /* 0x3FE14AF0, 0x92EB6F33 */
|
||||
const QA3: f64 = 7.18286544141962662868e-02; /* 0x3FB2635C, 0xD99FE9A7 */
|
||||
const QA4: f64 = 1.26171219808761642112e-01; /* 0x3FC02660, 0xE763351F */
|
||||
const QA5: f64 = 1.36370839120290507362e-02; /* 0x3F8BEDC2, 0x6B51DD1C */
|
||||
const QA6: f64 = 1.19844998467991074170e-02; /* 0x3F888B54, 0x5735151D */
|
||||
/*
|
||||
* Coefficients for approximation to erfc in [1.25,1/0.35]
|
||||
*/
|
||||
const RA0: f64 = -9.86494403484714822705e-03; /* 0xBF843412, 0x600D6435 */
|
||||
const RA1: f64 = -6.93858572707181764372e-01; /* 0xBFE63416, 0xE4BA7360 */
|
||||
const RA2: f64 = -1.05586262253232909814e+01; /* 0xC0251E04, 0x41B0E726 */
|
||||
const RA3: f64 = -6.23753324503260060396e+01; /* 0xC04F300A, 0xE4CBA38D */
|
||||
const RA4: f64 = -1.62396669462573470355e+02; /* 0xC0644CB1, 0x84282266 */
|
||||
const RA5: f64 = -1.84605092906711035994e+02; /* 0xC067135C, 0xEBCCABB2 */
|
||||
const RA6: f64 = -8.12874355063065934246e+01; /* 0xC0545265, 0x57E4D2F2 */
|
||||
const RA7: f64 = -9.81432934416914548592e+00; /* 0xC023A0EF, 0xC69AC25C */
|
||||
const SA1: f64 = 1.96512716674392571292e+01; /* 0x4033A6B9, 0xBD707687 */
|
||||
const SA2: f64 = 1.37657754143519042600e+02; /* 0x4061350C, 0x526AE721 */
|
||||
const SA3: f64 = 4.34565877475229228821e+02; /* 0x407B290D, 0xD58A1A71 */
|
||||
const SA4: f64 = 6.45387271733267880336e+02; /* 0x40842B19, 0x21EC2868 */
|
||||
const SA5: f64 = 4.29008140027567833386e+02; /* 0x407AD021, 0x57700314 */
|
||||
const SA6: f64 = 1.08635005541779435134e+02; /* 0x405B28A3, 0xEE48AE2C */
|
||||
const SA7: f64 = 6.57024977031928170135e+00; /* 0x401A47EF, 0x8E484A93 */
|
||||
const SA8: f64 = -6.04244152148580987438e-02; /* 0xBFAEEFF2, 0xEE749A62 */
|
||||
/*
|
||||
* Coefficients for approximation to erfc in [1/.35,28]
|
||||
*/
|
||||
const RB0: f64 = -9.86494292470009928597e-03; /* 0xBF843412, 0x39E86F4A */
|
||||
const RB1: f64 = -7.99283237680523006574e-01; /* 0xBFE993BA, 0x70C285DE */
|
||||
const RB2: f64 = -1.77579549177547519889e+01; /* 0xC031C209, 0x555F995A */
|
||||
const RB3: f64 = -1.60636384855821916062e+02; /* 0xC064145D, 0x43C5ED98 */
|
||||
const RB4: f64 = -6.37566443368389627722e+02; /* 0xC083EC88, 0x1375F228 */
|
||||
const RB5: f64 = -1.02509513161107724954e+03; /* 0xC0900461, 0x6A2E5992 */
|
||||
const RB6: f64 = -4.83519191608651397019e+02; /* 0xC07E384E, 0x9BDC383F */
|
||||
const SB1: f64 = 3.03380607434824582924e+01; /* 0x403E568B, 0x261D5190 */
|
||||
const SB2: f64 = 3.25792512996573918826e+02; /* 0x40745CAE, 0x221B9F0A */
|
||||
const SB3: f64 = 1.53672958608443695994e+03; /* 0x409802EB, 0x189D5118 */
|
||||
const SB4: f64 = 3.19985821950859553908e+03; /* 0x40A8FFB7, 0x688C246A */
|
||||
const SB5: f64 = 2.55305040643316442583e+03; /* 0x40A3F219, 0xCEDF3BE6 */
|
||||
const SB6: f64 = 4.74528541206955367215e+02; /* 0x407DA874, 0xE79FE763 */
|
||||
const SB7: f64 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
|
||||
|
||||
fn erfc1(x: f64) -> f64 {
|
||||
let s: f64;
|
||||
let p: f64;
|
||||
let q: f64;
|
||||
|
||||
s = fabs(x) - 1.0;
|
||||
p = PA0 + s * (PA1 + s * (PA2 + s * (PA3 + s * (PA4 + s * (PA5 + s * PA6)))));
|
||||
q = 1.0 + s * (QA1 + s * (QA2 + s * (QA3 + s * (QA4 + s * (QA5 + s * QA6)))));
|
||||
|
||||
1.0 - ERX - p / q
|
||||
}
|
||||
|
||||
fn erfc2(ix: u32, mut x: f64) -> f64 {
|
||||
let s: f64;
|
||||
let r: f64;
|
||||
let big_s: f64;
|
||||
let z: f64;
|
||||
|
||||
if ix < 0x3ff40000 {
|
||||
/* |x| < 1.25 */
|
||||
return erfc1(x);
|
||||
}
|
||||
|
||||
x = fabs(x);
|
||||
s = 1.0 / (x * x);
|
||||
if ix < 0x4006db6d {
|
||||
/* |x| < 1/.35 ~ 2.85714 */
|
||||
r = RA0 + s * (RA1 + s * (RA2 + s * (RA3 + s * (RA4 + s * (RA5 + s * (RA6 + s * RA7))))));
|
||||
big_s = 1.0
|
||||
+ s * (SA1
|
||||
+ s * (SA2 + s * (SA3 + s * (SA4 + s * (SA5 + s * (SA6 + s * (SA7 + s * SA8)))))));
|
||||
} else {
|
||||
/* |x| > 1/.35 */
|
||||
r = RB0 + s * (RB1 + s * (RB2 + s * (RB3 + s * (RB4 + s * (RB5 + s * RB6)))));
|
||||
big_s =
|
||||
1.0 + s * (SB1 + s * (SB2 + s * (SB3 + s * (SB4 + s * (SB5 + s * (SB6 + s * SB7))))));
|
||||
}
|
||||
z = with_set_low_word(x, 0);
|
||||
|
||||
exp(-z * z - 0.5625) * exp((z - x) * (z + x) + r / big_s) / x
|
||||
}
|
||||
|
||||
/// Error function (f64)
|
||||
///
|
||||
/// Calculates an approximation to the “error function”, which estimates
|
||||
/// the probability that an observation will fall within x standard
|
||||
/// deviations of the mean (assuming a normal distribution).
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn erf(x: f64) -> f64 {
|
||||
let r: f64;
|
||||
let s: f64;
|
||||
let z: f64;
|
||||
let y: f64;
|
||||
let mut ix: u32;
|
||||
let sign: usize;
|
||||
|
||||
ix = get_high_word(x);
|
||||
sign = (ix >> 31) as usize;
|
||||
ix &= 0x7fffffff;
|
||||
if ix >= 0x7ff00000 {
|
||||
/* erf(nan)=nan, erf(+-inf)=+-1 */
|
||||
return 1.0 - 2.0 * (sign as f64) + 1.0 / x;
|
||||
}
|
||||
if ix < 0x3feb0000 {
|
||||
/* |x| < 0.84375 */
|
||||
if ix < 0x3e300000 {
|
||||
/* |x| < 2**-28 */
|
||||
/* avoid underflow */
|
||||
return 0.125 * (8.0 * x + EFX8 * x);
|
||||
}
|
||||
z = x * x;
|
||||
r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4)));
|
||||
s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5))));
|
||||
y = r / s;
|
||||
return x + x * y;
|
||||
}
|
||||
if ix < 0x40180000 {
|
||||
/* 0.84375 <= |x| < 6 */
|
||||
y = 1.0 - erfc2(ix, x);
|
||||
} else {
|
||||
let x1p_1022 = f64::from_bits(0x0010000000000000);
|
||||
y = 1.0 - x1p_1022;
|
||||
}
|
||||
|
||||
if sign != 0 { -y } else { y }
|
||||
}
|
||||
|
||||
/// Complementary error function (f64)
|
||||
///
|
||||
/// Calculates the complementary probability.
|
||||
/// Is `1 - erf(x)`. Is computed directly, so that you can use it to avoid
|
||||
/// the loss of precision that would result from subtracting
|
||||
/// large probabilities (on large `x`) from 1.
|
||||
pub fn erfc(x: f64) -> f64 {
|
||||
let r: f64;
|
||||
let s: f64;
|
||||
let z: f64;
|
||||
let y: f64;
|
||||
let mut ix: u32;
|
||||
let sign: usize;
|
||||
|
||||
ix = get_high_word(x);
|
||||
sign = (ix >> 31) as usize;
|
||||
ix &= 0x7fffffff;
|
||||
if ix >= 0x7ff00000 {
|
||||
/* erfc(nan)=nan, erfc(+-inf)=0,2 */
|
||||
return 2.0 * (sign as f64) + 1.0 / x;
|
||||
}
|
||||
if ix < 0x3feb0000 {
|
||||
/* |x| < 0.84375 */
|
||||
if ix < 0x3c700000 {
|
||||
/* |x| < 2**-56 */
|
||||
return 1.0 - x;
|
||||
}
|
||||
z = x * x;
|
||||
r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4)));
|
||||
s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5))));
|
||||
y = r / s;
|
||||
if sign != 0 || ix < 0x3fd00000 {
|
||||
/* x < 1/4 */
|
||||
return 1.0 - (x + x * y);
|
||||
}
|
||||
return 0.5 - (x - 0.5 + x * y);
|
||||
}
|
||||
if ix < 0x403c0000 {
|
||||
/* 0.84375 <= |x| < 28 */
|
||||
if sign != 0 {
|
||||
return 2.0 - erfc2(ix, x);
|
||||
} else {
|
||||
return erfc2(ix, x);
|
||||
}
|
||||
}
|
||||
|
||||
let x1p_1022 = f64::from_bits(0x0010000000000000);
|
||||
if sign != 0 { 2.0 - x1p_1022 } else { x1p_1022 * x1p_1022 }
|
||||
}
|
222
mikros_std_deps/libm-0.2.8/src/math/erff.rs
Normal file
222
mikros_std_deps/libm-0.2.8/src/math/erff.rs
Normal file
@ -0,0 +1,222 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/s_erff.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
use super::{expf, fabsf};
|
||||
|
||||
const ERX: f32 = 8.4506291151e-01; /* 0x3f58560b */
|
||||
/*
|
||||
* Coefficients for approximation to erf on [0,0.84375]
|
||||
*/
|
||||
const EFX8: f32 = 1.0270333290e+00; /* 0x3f8375d4 */
|
||||
const PP0: f32 = 1.2837916613e-01; /* 0x3e0375d4 */
|
||||
const PP1: f32 = -3.2504209876e-01; /* 0xbea66beb */
|
||||
const PP2: f32 = -2.8481749818e-02; /* 0xbce9528f */
|
||||
const PP3: f32 = -5.7702702470e-03; /* 0xbbbd1489 */
|
||||
const PP4: f32 = -2.3763017452e-05; /* 0xb7c756b1 */
|
||||
const QQ1: f32 = 3.9791721106e-01; /* 0x3ecbbbce */
|
||||
const QQ2: f32 = 6.5022252500e-02; /* 0x3d852a63 */
|
||||
const QQ3: f32 = 5.0813062117e-03; /* 0x3ba68116 */
|
||||
const QQ4: f32 = 1.3249473704e-04; /* 0x390aee49 */
|
||||
const QQ5: f32 = -3.9602282413e-06; /* 0xb684e21a */
|
||||
/*
|
||||
* Coefficients for approximation to erf in [0.84375,1.25]
|
||||
*/
|
||||
const PA0: f32 = -2.3621185683e-03; /* 0xbb1acdc6 */
|
||||
const PA1: f32 = 4.1485610604e-01; /* 0x3ed46805 */
|
||||
const PA2: f32 = -3.7220788002e-01; /* 0xbebe9208 */
|
||||
const PA3: f32 = 3.1834661961e-01; /* 0x3ea2fe54 */
|
||||
const PA4: f32 = -1.1089469492e-01; /* 0xbde31cc2 */
|
||||
const PA5: f32 = 3.5478305072e-02; /* 0x3d1151b3 */
|
||||
const PA6: f32 = -2.1663755178e-03; /* 0xbb0df9c0 */
|
||||
const QA1: f32 = 1.0642088205e-01; /* 0x3dd9f331 */
|
||||
const QA2: f32 = 5.4039794207e-01; /* 0x3f0a5785 */
|
||||
const QA3: f32 = 7.1828655899e-02; /* 0x3d931ae7 */
|
||||
const QA4: f32 = 1.2617121637e-01; /* 0x3e013307 */
|
||||
const QA5: f32 = 1.3637083583e-02; /* 0x3c5f6e13 */
|
||||
const QA6: f32 = 1.1984500103e-02; /* 0x3c445aa3 */
|
||||
/*
|
||||
* Coefficients for approximation to erfc in [1.25,1/0.35]
|
||||
*/
|
||||
const RA0: f32 = -9.8649440333e-03; /* 0xbc21a093 */
|
||||
const RA1: f32 = -6.9385856390e-01; /* 0xbf31a0b7 */
|
||||
const RA2: f32 = -1.0558626175e+01; /* 0xc128f022 */
|
||||
const RA3: f32 = -6.2375331879e+01; /* 0xc2798057 */
|
||||
const RA4: f32 = -1.6239666748e+02; /* 0xc322658c */
|
||||
const RA5: f32 = -1.8460508728e+02; /* 0xc3389ae7 */
|
||||
const RA6: f32 = -8.1287437439e+01; /* 0xc2a2932b */
|
||||
const RA7: f32 = -9.8143291473e+00; /* 0xc11d077e */
|
||||
const SA1: f32 = 1.9651271820e+01; /* 0x419d35ce */
|
||||
const SA2: f32 = 1.3765776062e+02; /* 0x4309a863 */
|
||||
const SA3: f32 = 4.3456588745e+02; /* 0x43d9486f */
|
||||
const SA4: f32 = 6.4538726807e+02; /* 0x442158c9 */
|
||||
const SA5: f32 = 4.2900814819e+02; /* 0x43d6810b */
|
||||
const SA6: f32 = 1.0863500214e+02; /* 0x42d9451f */
|
||||
const SA7: f32 = 6.5702495575e+00; /* 0x40d23f7c */
|
||||
const SA8: f32 = -6.0424413532e-02; /* 0xbd777f97 */
|
||||
/*
|
||||
* Coefficients for approximation to erfc in [1/.35,28]
|
||||
*/
|
||||
const RB0: f32 = -9.8649431020e-03; /* 0xbc21a092 */
|
||||
const RB1: f32 = -7.9928326607e-01; /* 0xbf4c9dd4 */
|
||||
const RB2: f32 = -1.7757955551e+01; /* 0xc18e104b */
|
||||
const RB3: f32 = -1.6063638306e+02; /* 0xc320a2ea */
|
||||
const RB4: f32 = -6.3756646729e+02; /* 0xc41f6441 */
|
||||
const RB5: f32 = -1.0250950928e+03; /* 0xc480230b */
|
||||
const RB6: f32 = -4.8351919556e+02; /* 0xc3f1c275 */
|
||||
const SB1: f32 = 3.0338060379e+01; /* 0x41f2b459 */
|
||||
const SB2: f32 = 3.2579251099e+02; /* 0x43a2e571 */
|
||||
const SB3: f32 = 1.5367296143e+03; /* 0x44c01759 */
|
||||
const SB4: f32 = 3.1998581543e+03; /* 0x4547fdbb */
|
||||
const SB5: f32 = 2.5530502930e+03; /* 0x451f90ce */
|
||||
const SB6: f32 = 4.7452853394e+02; /* 0x43ed43a7 */
|
||||
const SB7: f32 = -2.2440952301e+01; /* 0xc1b38712 */
|
||||
|
||||
fn erfc1(x: f32) -> f32 {
|
||||
let s: f32;
|
||||
let p: f32;
|
||||
let q: f32;
|
||||
|
||||
s = fabsf(x) - 1.0;
|
||||
p = PA0 + s * (PA1 + s * (PA2 + s * (PA3 + s * (PA4 + s * (PA5 + s * PA6)))));
|
||||
q = 1.0 + s * (QA1 + s * (QA2 + s * (QA3 + s * (QA4 + s * (QA5 + s * QA6)))));
|
||||
return 1.0 - ERX - p / q;
|
||||
}
|
||||
|
||||
fn erfc2(mut ix: u32, mut x: f32) -> f32 {
|
||||
let s: f32;
|
||||
let r: f32;
|
||||
let big_s: f32;
|
||||
let z: f32;
|
||||
|
||||
if ix < 0x3fa00000 {
|
||||
/* |x| < 1.25 */
|
||||
return erfc1(x);
|
||||
}
|
||||
|
||||
x = fabsf(x);
|
||||
s = 1.0 / (x * x);
|
||||
if ix < 0x4036db6d {
|
||||
/* |x| < 1/0.35 */
|
||||
r = RA0 + s * (RA1 + s * (RA2 + s * (RA3 + s * (RA4 + s * (RA5 + s * (RA6 + s * RA7))))));
|
||||
big_s = 1.0
|
||||
+ s * (SA1
|
||||
+ s * (SA2 + s * (SA3 + s * (SA4 + s * (SA5 + s * (SA6 + s * (SA7 + s * SA8)))))));
|
||||
} else {
|
||||
/* |x| >= 1/0.35 */
|
||||
r = RB0 + s * (RB1 + s * (RB2 + s * (RB3 + s * (RB4 + s * (RB5 + s * RB6)))));
|
||||
big_s =
|
||||
1.0 + s * (SB1 + s * (SB2 + s * (SB3 + s * (SB4 + s * (SB5 + s * (SB6 + s * SB7))))));
|
||||
}
|
||||
ix = x.to_bits();
|
||||
z = f32::from_bits(ix & 0xffffe000);
|
||||
|
||||
expf(-z * z - 0.5625) * expf((z - x) * (z + x) + r / big_s) / x
|
||||
}
|
||||
|
||||
/// Error function (f32)
|
||||
///
|
||||
/// Calculates an approximation to the “error function”, which estimates
|
||||
/// the probability that an observation will fall within x standard
|
||||
/// deviations of the mean (assuming a normal distribution).
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn erff(x: f32) -> f32 {
|
||||
let r: f32;
|
||||
let s: f32;
|
||||
let z: f32;
|
||||
let y: f32;
|
||||
let mut ix: u32;
|
||||
let sign: usize;
|
||||
|
||||
ix = x.to_bits();
|
||||
sign = (ix >> 31) as usize;
|
||||
ix &= 0x7fffffff;
|
||||
if ix >= 0x7f800000 {
|
||||
/* erf(nan)=nan, erf(+-inf)=+-1 */
|
||||
return 1.0 - 2.0 * (sign as f32) + 1.0 / x;
|
||||
}
|
||||
if ix < 0x3f580000 {
|
||||
/* |x| < 0.84375 */
|
||||
if ix < 0x31800000 {
|
||||
/* |x| < 2**-28 */
|
||||
/*avoid underflow */
|
||||
return 0.125 * (8.0 * x + EFX8 * x);
|
||||
}
|
||||
z = x * x;
|
||||
r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4)));
|
||||
s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5))));
|
||||
y = r / s;
|
||||
return x + x * y;
|
||||
}
|
||||
if ix < 0x40c00000 {
|
||||
/* |x| < 6 */
|
||||
y = 1.0 - erfc2(ix, x);
|
||||
} else {
|
||||
let x1p_120 = f32::from_bits(0x03800000);
|
||||
y = 1.0 - x1p_120;
|
||||
}
|
||||
|
||||
if sign != 0 { -y } else { y }
|
||||
}
|
||||
|
||||
/// Complementary error function (f32)
|
||||
///
|
||||
/// Calculates the complementary probability.
|
||||
/// Is `1 - erf(x)`. Is computed directly, so that you can use it to avoid
|
||||
/// the loss of precision that would result from subtracting
|
||||
/// large probabilities (on large `x`) from 1.
|
||||
pub fn erfcf(x: f32) -> f32 {
|
||||
let r: f32;
|
||||
let s: f32;
|
||||
let z: f32;
|
||||
let y: f32;
|
||||
let mut ix: u32;
|
||||
let sign: usize;
|
||||
|
||||
ix = x.to_bits();
|
||||
sign = (ix >> 31) as usize;
|
||||
ix &= 0x7fffffff;
|
||||
if ix >= 0x7f800000 {
|
||||
/* erfc(nan)=nan, erfc(+-inf)=0,2 */
|
||||
return 2.0 * (sign as f32) + 1.0 / x;
|
||||
}
|
||||
|
||||
if ix < 0x3f580000 {
|
||||
/* |x| < 0.84375 */
|
||||
if ix < 0x23800000 {
|
||||
/* |x| < 2**-56 */
|
||||
return 1.0 - x;
|
||||
}
|
||||
z = x * x;
|
||||
r = PP0 + z * (PP1 + z * (PP2 + z * (PP3 + z * PP4)));
|
||||
s = 1.0 + z * (QQ1 + z * (QQ2 + z * (QQ3 + z * (QQ4 + z * QQ5))));
|
||||
y = r / s;
|
||||
if sign != 0 || ix < 0x3e800000 {
|
||||
/* x < 1/4 */
|
||||
return 1.0 - (x + x * y);
|
||||
}
|
||||
return 0.5 - (x - 0.5 + x * y);
|
||||
}
|
||||
if ix < 0x41e00000 {
|
||||
/* |x| < 28 */
|
||||
if sign != 0 {
|
||||
return 2.0 - erfc2(ix, x);
|
||||
} else {
|
||||
return erfc2(ix, x);
|
||||
}
|
||||
}
|
||||
|
||||
let x1p_120 = f32::from_bits(0x03800000);
|
||||
if sign != 0 { 2.0 - x1p_120 } else { x1p_120 * x1p_120 }
|
||||
}
|
150
mikros_std_deps/libm-0.2.8/src/math/exp.rs
Normal file
150
mikros_std_deps/libm-0.2.8/src/math/exp.rs
Normal file
@ -0,0 +1,150 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_exp.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* exp(x)
|
||||
* Returns the exponential of x.
|
||||
*
|
||||
* Method
|
||||
* 1. Argument reduction:
|
||||
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
|
||||
* Given x, find r and integer k such that
|
||||
*
|
||||
* x = k*ln2 + r, |r| <= 0.5*ln2.
|
||||
*
|
||||
* Here r will be represented as r = hi-lo for better
|
||||
* accuracy.
|
||||
*
|
||||
* 2. Approximation of exp(r) by a special rational function on
|
||||
* the interval [0,0.34658]:
|
||||
* Write
|
||||
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
|
||||
* We use a special Remez algorithm on [0,0.34658] to generate
|
||||
* a polynomial of degree 5 to approximate R. The maximum error
|
||||
* of this polynomial approximation is bounded by 2**-59. In
|
||||
* other words,
|
||||
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
|
||||
* (where z=r*r, and the values of P1 to P5 are listed below)
|
||||
* and
|
||||
* | 5 | -59
|
||||
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
|
||||
* | |
|
||||
* The computation of exp(r) thus becomes
|
||||
* 2*r
|
||||
* exp(r) = 1 + ----------
|
||||
* R(r) - r
|
||||
* r*c(r)
|
||||
* = 1 + r + ----------- (for better accuracy)
|
||||
* 2 - c(r)
|
||||
* where
|
||||
* 2 4 10
|
||||
* c(r) = r - (P1*r + P2*r + ... + P5*r ).
|
||||
*
|
||||
* 3. Scale back to obtain exp(x):
|
||||
* From step 1, we have
|
||||
* exp(x) = 2^k * exp(r)
|
||||
*
|
||||
* Special cases:
|
||||
* exp(INF) is INF, exp(NaN) is NaN;
|
||||
* exp(-INF) is 0, and
|
||||
* for finite argument, only exp(0)=1 is exact.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Misc. info.
|
||||
* For IEEE double
|
||||
* if x > 709.782712893383973096 then exp(x) overflows
|
||||
* if x < -745.133219101941108420 then exp(x) underflows
|
||||
*/
|
||||
|
||||
use super::scalbn;
|
||||
|
||||
const HALF: [f64; 2] = [0.5, -0.5];
|
||||
const LN2HI: f64 = 6.93147180369123816490e-01; /* 0x3fe62e42, 0xfee00000 */
|
||||
const LN2LO: f64 = 1.90821492927058770002e-10; /* 0x3dea39ef, 0x35793c76 */
|
||||
const INVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */
|
||||
const P1: f64 = 1.66666666666666019037e-01; /* 0x3FC55555, 0x5555553E */
|
||||
const P2: f64 = -2.77777777770155933842e-03; /* 0xBF66C16C, 0x16BEBD93 */
|
||||
const P3: f64 = 6.61375632143793436117e-05; /* 0x3F11566A, 0xAF25DE2C */
|
||||
const P4: f64 = -1.65339022054652515390e-06; /* 0xBEBBBD41, 0xC5D26BF1 */
|
||||
const P5: f64 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
|
||||
|
||||
/// Exponential, base *e* (f64)
|
||||
///
|
||||
/// Calculate the exponential of `x`, that is, *e* raised to the power `x`
|
||||
/// (where *e* is the base of the natural system of logarithms, approximately 2.71828).
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn exp(mut x: f64) -> f64 {
|
||||
let x1p1023 = f64::from_bits(0x7fe0000000000000); // 0x1p1023 === 2 ^ 1023
|
||||
let x1p_149 = f64::from_bits(0x36a0000000000000); // 0x1p-149 === 2 ^ -149
|
||||
|
||||
let hi: f64;
|
||||
let lo: f64;
|
||||
let c: f64;
|
||||
let xx: f64;
|
||||
let y: f64;
|
||||
let k: i32;
|
||||
let sign: i32;
|
||||
let mut hx: u32;
|
||||
|
||||
hx = (x.to_bits() >> 32) as u32;
|
||||
sign = (hx >> 31) as i32;
|
||||
hx &= 0x7fffffff; /* high word of |x| */
|
||||
|
||||
/* special cases */
|
||||
if hx >= 0x4086232b {
|
||||
/* if |x| >= 708.39... */
|
||||
if x.is_nan() {
|
||||
return x;
|
||||
}
|
||||
if x > 709.782712893383973096 {
|
||||
/* overflow if x!=inf */
|
||||
x *= x1p1023;
|
||||
return x;
|
||||
}
|
||||
if x < -708.39641853226410622 {
|
||||
/* underflow if x!=-inf */
|
||||
force_eval!((-x1p_149 / x) as f32);
|
||||
if x < -745.13321910194110842 {
|
||||
return 0.;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* argument reduction */
|
||||
if hx > 0x3fd62e42 {
|
||||
/* if |x| > 0.5 ln2 */
|
||||
if hx >= 0x3ff0a2b2 {
|
||||
/* if |x| >= 1.5 ln2 */
|
||||
k = (INVLN2 * x + i!(HALF, sign as usize)) as i32;
|
||||
} else {
|
||||
k = 1 - sign - sign;
|
||||
}
|
||||
hi = x - k as f64 * LN2HI; /* k*ln2hi is exact here */
|
||||
lo = k as f64 * LN2LO;
|
||||
x = hi - lo;
|
||||
} else if hx > 0x3e300000 {
|
||||
/* if |x| > 2**-28 */
|
||||
k = 0;
|
||||
hi = x;
|
||||
lo = 0.;
|
||||
} else {
|
||||
/* inexact if x!=0 */
|
||||
force_eval!(x1p1023 + x);
|
||||
return 1. + x;
|
||||
}
|
||||
|
||||
/* x is now in primary range */
|
||||
xx = x * x;
|
||||
c = x - xx * (P1 + xx * (P2 + xx * (P3 + xx * (P4 + xx * P5))));
|
||||
y = 1. + (x * c / (2. - c) - lo + hi);
|
||||
if k == 0 { y } else { scalbn(y, k) }
|
||||
}
|
22
mikros_std_deps/libm-0.2.8/src/math/exp10.rs
Normal file
22
mikros_std_deps/libm-0.2.8/src/math/exp10.rs
Normal file
@ -0,0 +1,22 @@
|
||||
use super::{exp2, modf, pow};
|
||||
|
||||
const LN10: f64 = 3.32192809488736234787031942948939;
|
||||
const P10: &[f64] = &[
|
||||
1e-15, 1e-14, 1e-13, 1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1,
|
||||
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15,
|
||||
];
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn exp10(x: f64) -> f64 {
|
||||
let (mut y, n) = modf(x);
|
||||
let u: u64 = n.to_bits();
|
||||
/* fabs(n) < 16 without raising invalid on nan */
|
||||
if (u >> 52 & 0x7ff) < 0x3ff + 4 {
|
||||
if y == 0.0 {
|
||||
return i!(P10, ((n as isize) + 15) as usize);
|
||||
}
|
||||
y = exp2(LN10 * y);
|
||||
return y * i!(P10, ((n as isize) + 15) as usize);
|
||||
}
|
||||
return pow(10.0, x);
|
||||
}
|
21
mikros_std_deps/libm-0.2.8/src/math/exp10f.rs
Normal file
21
mikros_std_deps/libm-0.2.8/src/math/exp10f.rs
Normal file
@ -0,0 +1,21 @@
|
||||
use super::{exp2, exp2f, modff};
|
||||
|
||||
const LN10_F32: f32 = 3.32192809488736234787031942948939;
|
||||
const LN10_F64: f64 = 3.32192809488736234787031942948939;
|
||||
const P10: &[f32] =
|
||||
&[1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7];
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn exp10f(x: f32) -> f32 {
|
||||
let (mut y, n) = modff(x);
|
||||
let u = n.to_bits();
|
||||
/* fabsf(n) < 8 without raising invalid on nan */
|
||||
if (u >> 23 & 0xff) < 0x7f + 3 {
|
||||
if y == 0.0 {
|
||||
return i!(P10, ((n as isize) + 7) as usize);
|
||||
}
|
||||
y = exp2f(LN10_F32 * y);
|
||||
return y * i!(P10, ((n as isize) + 7) as usize);
|
||||
}
|
||||
return exp2(LN10_F64 * (x as f64)) as f32;
|
||||
}
|
394
mikros_std_deps/libm-0.2.8/src/math/exp2.rs
Normal file
394
mikros_std_deps/libm-0.2.8/src/math/exp2.rs
Normal file
@ -0,0 +1,394 @@
|
||||
// origin: FreeBSD /usr/src/lib/msun/src/s_exp2.c */
|
||||
//-
|
||||
// Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
|
||||
// All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions
|
||||
// are met:
|
||||
// 1. Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// 2. Redistributions in binary form must reproduce the above copyright
|
||||
// notice, this list of conditions and the following disclaimer in the
|
||||
// documentation and/or other materials provided with the distribution.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
// OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
// SUCH DAMAGE.
|
||||
|
||||
use super::scalbn;
|
||||
|
||||
const TBLSIZE: usize = 256;
|
||||
|
||||
#[cfg_attr(rustfmt, rustfmt_skip)]
|
||||
static TBL: [u64; TBLSIZE * 2] = [
|
||||
// exp2(z + eps) eps
|
||||
0x3fe6a09e667f3d5d, 0x3d39880000000000,
|
||||
0x3fe6b052fa751744, 0x3cd8000000000000,
|
||||
0x3fe6c012750bd9fe, 0xbd28780000000000,
|
||||
0x3fe6cfdcddd476bf, 0x3d1ec00000000000,
|
||||
0x3fe6dfb23c651a29, 0xbcd8000000000000,
|
||||
0x3fe6ef9298593ae3, 0xbcbc000000000000,
|
||||
0x3fe6ff7df9519386, 0xbd2fd80000000000,
|
||||
0x3fe70f7466f42da3, 0xbd2c880000000000,
|
||||
0x3fe71f75e8ec5fc3, 0x3d13c00000000000,
|
||||
0x3fe72f8286eacf05, 0xbd38300000000000,
|
||||
0x3fe73f9a48a58152, 0xbd00c00000000000,
|
||||
0x3fe74fbd35d7ccfc, 0x3d2f880000000000,
|
||||
0x3fe75feb564267f1, 0x3d03e00000000000,
|
||||
0x3fe77024b1ab6d48, 0xbd27d00000000000,
|
||||
0x3fe780694fde5d38, 0xbcdd000000000000,
|
||||
0x3fe790b938ac1d00, 0x3ce3000000000000,
|
||||
0x3fe7a11473eb0178, 0xbced000000000000,
|
||||
0x3fe7b17b0976d060, 0x3d20400000000000,
|
||||
0x3fe7c1ed0130c133, 0x3ca0000000000000,
|
||||
0x3fe7d26a62ff8636, 0xbd26900000000000,
|
||||
0x3fe7e2f336cf4e3b, 0xbd02e00000000000,
|
||||
0x3fe7f3878491c3e8, 0xbd24580000000000,
|
||||
0x3fe80427543e1b4e, 0x3d33000000000000,
|
||||
0x3fe814d2add1071a, 0x3d0f000000000000,
|
||||
0x3fe82589994ccd7e, 0xbd21c00000000000,
|
||||
0x3fe8364c1eb942d0, 0x3d29d00000000000,
|
||||
0x3fe8471a4623cab5, 0x3d47100000000000,
|
||||
0x3fe857f4179f5bbc, 0x3d22600000000000,
|
||||
0x3fe868d99b4491af, 0xbd32c40000000000,
|
||||
0x3fe879cad931a395, 0xbd23000000000000,
|
||||
0x3fe88ac7d98a65b8, 0xbd2a800000000000,
|
||||
0x3fe89bd0a4785800, 0xbced000000000000,
|
||||
0x3fe8ace5422aa223, 0x3d33280000000000,
|
||||
0x3fe8be05bad619fa, 0x3d42b40000000000,
|
||||
0x3fe8cf3216b54383, 0xbd2ed00000000000,
|
||||
0x3fe8e06a5e08664c, 0xbd20500000000000,
|
||||
0x3fe8f1ae99157807, 0x3d28280000000000,
|
||||
0x3fe902fed0282c0e, 0xbd1cb00000000000,
|
||||
0x3fe9145b0b91ff96, 0xbd05e00000000000,
|
||||
0x3fe925c353aa2ff9, 0x3cf5400000000000,
|
||||
0x3fe93737b0cdc64a, 0x3d17200000000000,
|
||||
0x3fe948b82b5f98ae, 0xbd09000000000000,
|
||||
0x3fe95a44cbc852cb, 0x3d25680000000000,
|
||||
0x3fe96bdd9a766f21, 0xbd36d00000000000,
|
||||
0x3fe97d829fde4e2a, 0xbd01000000000000,
|
||||
0x3fe98f33e47a23a3, 0x3d2d000000000000,
|
||||
0x3fe9a0f170ca0604, 0xbd38a40000000000,
|
||||
0x3fe9b2bb4d53ff89, 0x3d355c0000000000,
|
||||
0x3fe9c49182a3f15b, 0x3d26b80000000000,
|
||||
0x3fe9d674194bb8c5, 0xbcec000000000000,
|
||||
0x3fe9e86319e3238e, 0x3d17d00000000000,
|
||||
0x3fe9fa5e8d07f302, 0x3d16400000000000,
|
||||
0x3fea0c667b5de54d, 0xbcf5000000000000,
|
||||
0x3fea1e7aed8eb8f6, 0x3d09e00000000000,
|
||||
0x3fea309bec4a2e27, 0x3d2ad80000000000,
|
||||
0x3fea42c980460a5d, 0xbd1af00000000000,
|
||||
0x3fea5503b23e259b, 0x3d0b600000000000,
|
||||
0x3fea674a8af46213, 0x3d38880000000000,
|
||||
0x3fea799e1330b3a7, 0x3d11200000000000,
|
||||
0x3fea8bfe53c12e8d, 0x3d06c00000000000,
|
||||
0x3fea9e6b5579fcd2, 0xbd29b80000000000,
|
||||
0x3feab0e521356fb8, 0x3d2b700000000000,
|
||||
0x3feac36bbfd3f381, 0x3cd9000000000000,
|
||||
0x3fead5ff3a3c2780, 0x3ce4000000000000,
|
||||
0x3feae89f995ad2a3, 0xbd2c900000000000,
|
||||
0x3feafb4ce622f367, 0x3d16500000000000,
|
||||
0x3feb0e07298db790, 0x3d2fd40000000000,
|
||||
0x3feb20ce6c9a89a9, 0x3d12700000000000,
|
||||
0x3feb33a2b84f1a4b, 0x3d4d470000000000,
|
||||
0x3feb468415b747e7, 0xbd38380000000000,
|
||||
0x3feb59728de5593a, 0x3c98000000000000,
|
||||
0x3feb6c6e29f1c56a, 0x3d0ad00000000000,
|
||||
0x3feb7f76f2fb5e50, 0x3cde800000000000,
|
||||
0x3feb928cf22749b2, 0xbd04c00000000000,
|
||||
0x3feba5b030a10603, 0xbd0d700000000000,
|
||||
0x3febb8e0b79a6f66, 0x3d0d900000000000,
|
||||
0x3febcc1e904bc1ff, 0x3d02a00000000000,
|
||||
0x3febdf69c3f3a16f, 0xbd1f780000000000,
|
||||
0x3febf2c25bd71db8, 0xbd10a00000000000,
|
||||
0x3fec06286141b2e9, 0xbd11400000000000,
|
||||
0x3fec199bdd8552e0, 0x3d0be00000000000,
|
||||
0x3fec2d1cd9fa64ee, 0xbd09400000000000,
|
||||
0x3fec40ab5fffd02f, 0xbd0ed00000000000,
|
||||
0x3fec544778fafd15, 0x3d39660000000000,
|
||||
0x3fec67f12e57d0cb, 0xbd1a100000000000,
|
||||
0x3fec7ba88988c1b6, 0xbd58458000000000,
|
||||
0x3fec8f6d9406e733, 0xbd1a480000000000,
|
||||
0x3feca3405751c4df, 0x3ccb000000000000,
|
||||
0x3fecb720dcef9094, 0x3d01400000000000,
|
||||
0x3feccb0f2e6d1689, 0x3cf0200000000000,
|
||||
0x3fecdf0b555dc412, 0x3cf3600000000000,
|
||||
0x3fecf3155b5bab3b, 0xbd06900000000000,
|
||||
0x3fed072d4a0789bc, 0x3d09a00000000000,
|
||||
0x3fed1b532b08c8fa, 0xbd15e00000000000,
|
||||
0x3fed2f87080d8a85, 0x3d1d280000000000,
|
||||
0x3fed43c8eacaa203, 0x3d01a00000000000,
|
||||
0x3fed5818dcfba491, 0x3cdf000000000000,
|
||||
0x3fed6c76e862e6a1, 0xbd03a00000000000,
|
||||
0x3fed80e316c9834e, 0xbd0cd80000000000,
|
||||
0x3fed955d71ff6090, 0x3cf4c00000000000,
|
||||
0x3feda9e603db32ae, 0x3cff900000000000,
|
||||
0x3fedbe7cd63a8325, 0x3ce9800000000000,
|
||||
0x3fedd321f301b445, 0xbcf5200000000000,
|
||||
0x3fede7d5641c05bf, 0xbd1d700000000000,
|
||||
0x3fedfc97337b9aec, 0xbd16140000000000,
|
||||
0x3fee11676b197d5e, 0x3d0b480000000000,
|
||||
0x3fee264614f5a3e7, 0x3d40ce0000000000,
|
||||
0x3fee3b333b16ee5c, 0x3d0c680000000000,
|
||||
0x3fee502ee78b3fb4, 0xbd09300000000000,
|
||||
0x3fee653924676d68, 0xbce5000000000000,
|
||||
0x3fee7a51fbc74c44, 0xbd07f80000000000,
|
||||
0x3fee8f7977cdb726, 0xbcf3700000000000,
|
||||
0x3feea4afa2a490e8, 0x3ce5d00000000000,
|
||||
0x3feeb9f4867ccae4, 0x3d161a0000000000,
|
||||
0x3feecf482d8e680d, 0x3cf5500000000000,
|
||||
0x3feee4aaa2188514, 0x3cc6400000000000,
|
||||
0x3feefa1bee615a13, 0xbcee800000000000,
|
||||
0x3fef0f9c1cb64106, 0xbcfa880000000000,
|
||||
0x3fef252b376bb963, 0xbd2c900000000000,
|
||||
0x3fef3ac948dd7275, 0x3caa000000000000,
|
||||
0x3fef50765b6e4524, 0xbcf4f00000000000,
|
||||
0x3fef6632798844fd, 0x3cca800000000000,
|
||||
0x3fef7bfdad9cbe38, 0x3cfabc0000000000,
|
||||
0x3fef91d802243c82, 0xbcd4600000000000,
|
||||
0x3fefa7c1819e908e, 0xbd0b0c0000000000,
|
||||
0x3fefbdba3692d511, 0xbcc0e00000000000,
|
||||
0x3fefd3c22b8f7194, 0xbd10de8000000000,
|
||||
0x3fefe9d96b2a23ee, 0x3cee430000000000,
|
||||
0x3ff0000000000000, 0x0,
|
||||
0x3ff00b1afa5abcbe, 0xbcb3400000000000,
|
||||
0x3ff0163da9fb3303, 0xbd12170000000000,
|
||||
0x3ff02168143b0282, 0x3cba400000000000,
|
||||
0x3ff02c9a3e77806c, 0x3cef980000000000,
|
||||
0x3ff037d42e11bbca, 0xbcc7400000000000,
|
||||
0x3ff04315e86e7f89, 0x3cd8300000000000,
|
||||
0x3ff04e5f72f65467, 0xbd1a3f0000000000,
|
||||
0x3ff059b0d315855a, 0xbd02840000000000,
|
||||
0x3ff0650a0e3c1f95, 0x3cf1600000000000,
|
||||
0x3ff0706b29ddf71a, 0x3d15240000000000,
|
||||
0x3ff07bd42b72a82d, 0xbce9a00000000000,
|
||||
0x3ff0874518759bd0, 0x3ce6400000000000,
|
||||
0x3ff092bdf66607c8, 0xbd00780000000000,
|
||||
0x3ff09e3ecac6f383, 0xbc98000000000000,
|
||||
0x3ff0a9c79b1f3930, 0x3cffa00000000000,
|
||||
0x3ff0b5586cf988fc, 0xbcfac80000000000,
|
||||
0x3ff0c0f145e46c8a, 0x3cd9c00000000000,
|
||||
0x3ff0cc922b724816, 0x3d05200000000000,
|
||||
0x3ff0d83b23395dd8, 0xbcfad00000000000,
|
||||
0x3ff0e3ec32d3d1f3, 0x3d1bac0000000000,
|
||||
0x3ff0efa55fdfa9a6, 0xbd04e80000000000,
|
||||
0x3ff0fb66affed2f0, 0xbd0d300000000000,
|
||||
0x3ff1073028d7234b, 0x3cf1500000000000,
|
||||
0x3ff11301d0125b5b, 0x3cec000000000000,
|
||||
0x3ff11edbab5e2af9, 0x3d16bc0000000000,
|
||||
0x3ff12abdc06c31d5, 0x3ce8400000000000,
|
||||
0x3ff136a814f2047d, 0xbd0ed00000000000,
|
||||
0x3ff1429aaea92de9, 0x3ce8e00000000000,
|
||||
0x3ff14e95934f3138, 0x3ceb400000000000,
|
||||
0x3ff15a98c8a58e71, 0x3d05300000000000,
|
||||
0x3ff166a45471c3df, 0x3d03380000000000,
|
||||
0x3ff172b83c7d5211, 0x3d28d40000000000,
|
||||
0x3ff17ed48695bb9f, 0xbd05d00000000000,
|
||||
0x3ff18af9388c8d93, 0xbd1c880000000000,
|
||||
0x3ff1972658375d66, 0x3d11f00000000000,
|
||||
0x3ff1a35beb6fcba7, 0x3d10480000000000,
|
||||
0x3ff1af99f81387e3, 0xbd47390000000000,
|
||||
0x3ff1bbe084045d54, 0x3d24e40000000000,
|
||||
0x3ff1c82f95281c43, 0xbd0a200000000000,
|
||||
0x3ff1d4873168b9b2, 0x3ce3800000000000,
|
||||
0x3ff1e0e75eb44031, 0x3ceac00000000000,
|
||||
0x3ff1ed5022fcd938, 0x3d01900000000000,
|
||||
0x3ff1f9c18438cdf7, 0xbd1b780000000000,
|
||||
0x3ff2063b88628d8f, 0x3d2d940000000000,
|
||||
0x3ff212be3578a81e, 0x3cd8000000000000,
|
||||
0x3ff21f49917ddd41, 0x3d2b340000000000,
|
||||
0x3ff22bdda2791323, 0x3d19f80000000000,
|
||||
0x3ff2387a6e7561e7, 0xbd19c80000000000,
|
||||
0x3ff2451ffb821427, 0x3d02300000000000,
|
||||
0x3ff251ce4fb2a602, 0xbd13480000000000,
|
||||
0x3ff25e85711eceb0, 0x3d12700000000000,
|
||||
0x3ff26b4565e27d16, 0x3d11d00000000000,
|
||||
0x3ff2780e341de00f, 0x3d31ee0000000000,
|
||||
0x3ff284dfe1f5633e, 0xbd14c00000000000,
|
||||
0x3ff291ba7591bb30, 0xbd13d80000000000,
|
||||
0x3ff29e9df51fdf09, 0x3d08b00000000000,
|
||||
0x3ff2ab8a66d10e9b, 0xbd227c0000000000,
|
||||
0x3ff2b87fd0dada3a, 0x3d2a340000000000,
|
||||
0x3ff2c57e39771af9, 0xbd10800000000000,
|
||||
0x3ff2d285a6e402d9, 0xbd0ed00000000000,
|
||||
0x3ff2df961f641579, 0xbcf4200000000000,
|
||||
0x3ff2ecafa93e2ecf, 0xbd24980000000000,
|
||||
0x3ff2f9d24abd8822, 0xbd16300000000000,
|
||||
0x3ff306fe0a31b625, 0xbd32360000000000,
|
||||
0x3ff31432edeea50b, 0xbd70df8000000000,
|
||||
0x3ff32170fc4cd7b8, 0xbd22480000000000,
|
||||
0x3ff32eb83ba8e9a2, 0xbd25980000000000,
|
||||
0x3ff33c08b2641766, 0x3d1ed00000000000,
|
||||
0x3ff3496266e3fa27, 0xbcdc000000000000,
|
||||
0x3ff356c55f929f0f, 0xbd30d80000000000,
|
||||
0x3ff36431a2de88b9, 0x3d22c80000000000,
|
||||
0x3ff371a7373aaa39, 0x3d20600000000000,
|
||||
0x3ff37f26231e74fe, 0xbd16600000000000,
|
||||
0x3ff38cae6d05d838, 0xbd0ae00000000000,
|
||||
0x3ff39a401b713ec3, 0xbd44720000000000,
|
||||
0x3ff3a7db34e5a020, 0x3d08200000000000,
|
||||
0x3ff3b57fbfec6e95, 0x3d3e800000000000,
|
||||
0x3ff3c32dc313a8f2, 0x3cef800000000000,
|
||||
0x3ff3d0e544ede122, 0xbd17a00000000000,
|
||||
0x3ff3dea64c1234bb, 0x3d26300000000000,
|
||||
0x3ff3ec70df1c4ecc, 0xbd48a60000000000,
|
||||
0x3ff3fa4504ac7e8c, 0xbd3cdc0000000000,
|
||||
0x3ff40822c367a0bb, 0x3d25b80000000000,
|
||||
0x3ff4160a21f72e95, 0x3d1ec00000000000,
|
||||
0x3ff423fb27094646, 0xbd13600000000000,
|
||||
0x3ff431f5d950a920, 0x3d23980000000000,
|
||||
0x3ff43ffa3f84b9eb, 0x3cfa000000000000,
|
||||
0x3ff44e0860618919, 0xbcf6c00000000000,
|
||||
0x3ff45c2042a7d201, 0xbd0bc00000000000,
|
||||
0x3ff46a41ed1d0016, 0xbd12800000000000,
|
||||
0x3ff4786d668b3326, 0x3d30e00000000000,
|
||||
0x3ff486a2b5c13c00, 0xbd2d400000000000,
|
||||
0x3ff494e1e192af04, 0x3d0c200000000000,
|
||||
0x3ff4a32af0d7d372, 0xbd1e500000000000,
|
||||
0x3ff4b17dea6db801, 0x3d07800000000000,
|
||||
0x3ff4bfdad53629e1, 0xbd13800000000000,
|
||||
0x3ff4ce41b817c132, 0x3d00800000000000,
|
||||
0x3ff4dcb299fddddb, 0x3d2c700000000000,
|
||||
0x3ff4eb2d81d8ab96, 0xbd1ce00000000000,
|
||||
0x3ff4f9b2769d2d02, 0x3d19200000000000,
|
||||
0x3ff508417f4531c1, 0xbd08c00000000000,
|
||||
0x3ff516daa2cf662a, 0xbcfa000000000000,
|
||||
0x3ff5257de83f51ea, 0x3d4a080000000000,
|
||||
0x3ff5342b569d4eda, 0xbd26d80000000000,
|
||||
0x3ff542e2f4f6ac1a, 0xbd32440000000000,
|
||||
0x3ff551a4ca5d94db, 0x3d483c0000000000,
|
||||
0x3ff56070dde9116b, 0x3d24b00000000000,
|
||||
0x3ff56f4736b529de, 0x3d415a0000000000,
|
||||
0x3ff57e27dbe2c40e, 0xbd29e00000000000,
|
||||
0x3ff58d12d497c76f, 0xbd23080000000000,
|
||||
0x3ff59c0827ff0b4c, 0x3d4dec0000000000,
|
||||
0x3ff5ab07dd485427, 0xbcc4000000000000,
|
||||
0x3ff5ba11fba87af4, 0x3d30080000000000,
|
||||
0x3ff5c9268a59460b, 0xbd26c80000000000,
|
||||
0x3ff5d84590998e3f, 0x3d469a0000000000,
|
||||
0x3ff5e76f15ad20e1, 0xbd1b400000000000,
|
||||
0x3ff5f6a320dcebca, 0x3d17700000000000,
|
||||
0x3ff605e1b976dcb8, 0x3d26f80000000000,
|
||||
0x3ff6152ae6cdf715, 0x3d01000000000000,
|
||||
0x3ff6247eb03a5531, 0xbd15d00000000000,
|
||||
0x3ff633dd1d1929b5, 0xbd12d00000000000,
|
||||
0x3ff6434634ccc313, 0xbcea800000000000,
|
||||
0x3ff652b9febc8efa, 0xbd28600000000000,
|
||||
0x3ff6623882553397, 0x3d71fe0000000000,
|
||||
0x3ff671c1c708328e, 0xbd37200000000000,
|
||||
0x3ff68155d44ca97e, 0x3ce6800000000000,
|
||||
0x3ff690f4b19e9471, 0xbd29780000000000,
|
||||
];
|
||||
|
||||
// exp2(x): compute the base 2 exponential of x
|
||||
//
|
||||
// Accuracy: Peak error < 0.503 ulp for normalized results.
|
||||
//
|
||||
// Method: (accurate tables)
|
||||
//
|
||||
// Reduce x:
|
||||
// x = k + y, for integer k and |y| <= 1/2.
|
||||
// Thus we have exp2(x) = 2**k * exp2(y).
|
||||
//
|
||||
// Reduce y:
|
||||
// y = i/TBLSIZE + z - eps[i] for integer i near y * TBLSIZE.
|
||||
// Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z - eps[i]),
|
||||
// with |z - eps[i]| <= 2**-9 + 2**-39 for the table used.
|
||||
//
|
||||
// We compute exp2(i/TBLSIZE) via table lookup and exp2(z - eps[i]) via
|
||||
// a degree-5 minimax polynomial with maximum error under 1.3 * 2**-61.
|
||||
// The values in exp2t[] and eps[] are chosen such that
|
||||
// exp2t[i] = exp2(i/TBLSIZE + eps[i]), and eps[i] is a small offset such
|
||||
// that exp2t[i] is accurate to 2**-64.
|
||||
//
|
||||
// Note that the range of i is +-TBLSIZE/2, so we actually index the tables
|
||||
// by i0 = i + TBLSIZE/2. For cache efficiency, exp2t[] and eps[] are
|
||||
// virtual tables, interleaved in the real table tbl[].
|
||||
//
|
||||
// This method is due to Gal, with many details due to Gal and Bachelis:
|
||||
//
|
||||
// Gal, S. and Bachelis, B. An Accurate Elementary Mathematical Library
|
||||
// for the IEEE Floating Point Standard. TOMS 17(1), 26-46 (1991).
|
||||
|
||||
/// Exponential, base 2 (f64)
|
||||
///
|
||||
/// Calculate `2^x`, that is, 2 raised to the power `x`.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn exp2(mut x: f64) -> f64 {
|
||||
let redux = f64::from_bits(0x4338000000000000) / TBLSIZE as f64;
|
||||
let p1 = f64::from_bits(0x3fe62e42fefa39ef);
|
||||
let p2 = f64::from_bits(0x3fcebfbdff82c575);
|
||||
let p3 = f64::from_bits(0x3fac6b08d704a0a6);
|
||||
let p4 = f64::from_bits(0x3f83b2ab88f70400);
|
||||
let p5 = f64::from_bits(0x3f55d88003875c74);
|
||||
|
||||
// double_t r, t, z;
|
||||
// uint32_t ix, i0;
|
||||
// union {double f; uint64_t i;} u = {x};
|
||||
// union {uint32_t u; int32_t i;} k;
|
||||
let x1p1023 = f64::from_bits(0x7fe0000000000000);
|
||||
let x1p52 = f64::from_bits(0x4330000000000000);
|
||||
let _0x1p_149 = f64::from_bits(0xb6a0000000000000);
|
||||
|
||||
/* Filter out exceptional cases. */
|
||||
let ui = f64::to_bits(x);
|
||||
let ix = ui >> 32 & 0x7fffffff;
|
||||
if ix >= 0x408ff000 {
|
||||
/* |x| >= 1022 or nan */
|
||||
if ix >= 0x40900000 && ui >> 63 == 0 {
|
||||
/* x >= 1024 or nan */
|
||||
/* overflow */
|
||||
x *= x1p1023;
|
||||
return x;
|
||||
}
|
||||
if ix >= 0x7ff00000 {
|
||||
/* -inf or -nan */
|
||||
return -1.0 / x;
|
||||
}
|
||||
if ui >> 63 != 0 {
|
||||
/* x <= -1022 */
|
||||
/* underflow */
|
||||
if x <= -1075.0 || x - x1p52 + x1p52 != x {
|
||||
force_eval!((_0x1p_149 / x) as f32);
|
||||
}
|
||||
if x <= -1075.0 {
|
||||
return 0.0;
|
||||
}
|
||||
}
|
||||
} else if ix < 0x3c900000 {
|
||||
/* |x| < 0x1p-54 */
|
||||
return 1.0 + x;
|
||||
}
|
||||
|
||||
/* Reduce x, computing z, i0, and k. */
|
||||
let ui = f64::to_bits(x + redux);
|
||||
let mut i0 = ui as u32;
|
||||
i0 = i0.wrapping_add(TBLSIZE as u32 / 2);
|
||||
let ku = i0 / TBLSIZE as u32 * TBLSIZE as u32;
|
||||
let ki = div!(ku as i32, TBLSIZE as i32);
|
||||
i0 %= TBLSIZE as u32;
|
||||
let uf = f64::from_bits(ui) - redux;
|
||||
let mut z = x - uf;
|
||||
|
||||
/* Compute r = exp2(y) = exp2t[i0] * p(z - eps[i]). */
|
||||
let t = f64::from_bits(i!(TBL, 2 * i0 as usize)); /* exp2t[i0] */
|
||||
z -= f64::from_bits(i!(TBL, 2 * i0 as usize + 1)); /* eps[i0] */
|
||||
let r = t + t * z * (p1 + z * (p2 + z * (p3 + z * (p4 + z * p5))));
|
||||
|
||||
scalbn(r, ki)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn i0_wrap_test() {
|
||||
let x = -3.0 / 256.0;
|
||||
assert_eq!(exp2(x), f64::from_bits(0x3fefbdba3692d514));
|
||||
}
|
135
mikros_std_deps/libm-0.2.8/src/math/exp2f.rs
Normal file
135
mikros_std_deps/libm-0.2.8/src/math/exp2f.rs
Normal file
@ -0,0 +1,135 @@
|
||||
// origin: FreeBSD /usr/src/lib/msun/src/s_exp2f.c
|
||||
//-
|
||||
// Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
|
||||
// All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions
|
||||
// are met:
|
||||
// 1. Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// 2. Redistributions in binary form must reproduce the above copyright
|
||||
// notice, this list of conditions and the following disclaimer in the
|
||||
// documentation and/or other materials provided with the distribution.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
// OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
// SUCH DAMAGE.
|
||||
|
||||
const TBLSIZE: usize = 16;
|
||||
|
||||
static EXP2FT: [u64; TBLSIZE] = [
|
||||
0x3fe6a09e667f3bcd,
|
||||
0x3fe7a11473eb0187,
|
||||
0x3fe8ace5422aa0db,
|
||||
0x3fe9c49182a3f090,
|
||||
0x3feae89f995ad3ad,
|
||||
0x3fec199bdd85529c,
|
||||
0x3fed5818dcfba487,
|
||||
0x3feea4afa2a490da,
|
||||
0x3ff0000000000000,
|
||||
0x3ff0b5586cf9890f,
|
||||
0x3ff172b83c7d517b,
|
||||
0x3ff2387a6e756238,
|
||||
0x3ff306fe0a31b715,
|
||||
0x3ff3dea64c123422,
|
||||
0x3ff4bfdad5362a27,
|
||||
0x3ff5ab07dd485429,
|
||||
];
|
||||
|
||||
// exp2f(x): compute the base 2 exponential of x
|
||||
//
|
||||
// Accuracy: Peak error < 0.501 ulp; location of peak: -0.030110927.
|
||||
//
|
||||
// Method: (equally-spaced tables)
|
||||
//
|
||||
// Reduce x:
|
||||
// x = k + y, for integer k and |y| <= 1/2.
|
||||
// Thus we have exp2f(x) = 2**k * exp2(y).
|
||||
//
|
||||
// Reduce y:
|
||||
// y = i/TBLSIZE + z for integer i near y * TBLSIZE.
|
||||
// Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z),
|
||||
// with |z| <= 2**-(TBLSIZE+1).
|
||||
//
|
||||
// We compute exp2(i/TBLSIZE) via table lookup and exp2(z) via a
|
||||
// degree-4 minimax polynomial with maximum error under 1.4 * 2**-33.
|
||||
// Using double precision for everything except the reduction makes
|
||||
// roundoff error insignificant and simplifies the scaling step.
|
||||
//
|
||||
// This method is due to Tang, but I do not use his suggested parameters:
|
||||
//
|
||||
// Tang, P. Table-driven Implementation of the Exponential Function
|
||||
// in IEEE Floating-Point Arithmetic. TOMS 15(2), 144-157 (1989).
|
||||
|
||||
/// Exponential, base 2 (f32)
|
||||
///
|
||||
/// Calculate `2^x`, that is, 2 raised to the power `x`.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn exp2f(mut x: f32) -> f32 {
|
||||
let redux = f32::from_bits(0x4b400000) / TBLSIZE as f32;
|
||||
let p1 = f32::from_bits(0x3f317218);
|
||||
let p2 = f32::from_bits(0x3e75fdf0);
|
||||
let p3 = f32::from_bits(0x3d6359a4);
|
||||
let p4 = f32::from_bits(0x3c1d964e);
|
||||
|
||||
// double_t t, r, z;
|
||||
// uint32_t ix, i0, k;
|
||||
|
||||
let x1p127 = f32::from_bits(0x7f000000);
|
||||
|
||||
/* Filter out exceptional cases. */
|
||||
let ui = f32::to_bits(x);
|
||||
let ix = ui & 0x7fffffff;
|
||||
if ix > 0x42fc0000 {
|
||||
/* |x| > 126 */
|
||||
if ix > 0x7f800000 {
|
||||
/* NaN */
|
||||
return x;
|
||||
}
|
||||
if ui >= 0x43000000 && ui < 0x80000000 {
|
||||
/* x >= 128 */
|
||||
x *= x1p127;
|
||||
return x;
|
||||
}
|
||||
if ui >= 0x80000000 {
|
||||
/* x < -126 */
|
||||
if ui >= 0xc3160000 || (ui & 0x0000ffff != 0) {
|
||||
force_eval!(f32::from_bits(0x80000001) / x);
|
||||
}
|
||||
if ui >= 0xc3160000 {
|
||||
/* x <= -150 */
|
||||
return 0.0;
|
||||
}
|
||||
}
|
||||
} else if ix <= 0x33000000 {
|
||||
/* |x| <= 0x1p-25 */
|
||||
return 1.0 + x;
|
||||
}
|
||||
|
||||
/* Reduce x, computing z, i0, and k. */
|
||||
let ui = f32::to_bits(x + redux);
|
||||
let mut i0 = ui;
|
||||
i0 += TBLSIZE as u32 / 2;
|
||||
let k = i0 / TBLSIZE as u32;
|
||||
let ukf = f64::from_bits(((0x3ff + k) as u64) << 52);
|
||||
i0 &= TBLSIZE as u32 - 1;
|
||||
let mut uf = f32::from_bits(ui);
|
||||
uf -= redux;
|
||||
let z: f64 = (x - uf) as f64;
|
||||
/* Compute r = exp2(y) = exp2ft[i0] * p(z). */
|
||||
let r: f64 = f64::from_bits(i!(EXP2FT, i0 as usize));
|
||||
let t: f64 = r as f64 * z;
|
||||
let r: f64 = r + t * (p1 as f64 + z * p2 as f64) + t * (z * z) * (p3 as f64 + z * p4 as f64);
|
||||
|
||||
/* Scale by 2**k */
|
||||
(r * ukf) as f32
|
||||
}
|
97
mikros_std_deps/libm-0.2.8/src/math/expf.rs
Normal file
97
mikros_std_deps/libm-0.2.8/src/math/expf.rs
Normal file
@ -0,0 +1,97 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_expf.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
use super::scalbnf;
|
||||
|
||||
const HALF: [f32; 2] = [0.5, -0.5];
|
||||
const LN2_HI: f32 = 6.9314575195e-01; /* 0x3f317200 */
|
||||
const LN2_LO: f32 = 1.4286067653e-06; /* 0x35bfbe8e */
|
||||
const INV_LN2: f32 = 1.4426950216e+00; /* 0x3fb8aa3b */
|
||||
/*
|
||||
* Domain [-0.34568, 0.34568], range ~[-4.278e-9, 4.447e-9]:
|
||||
* |x*(exp(x)+1)/(exp(x)-1) - p(x)| < 2**-27.74
|
||||
*/
|
||||
const P1: f32 = 1.6666625440e-1; /* 0xaaaa8f.0p-26 */
|
||||
const P2: f32 = -2.7667332906e-3; /* -0xb55215.0p-32 */
|
||||
|
||||
/// Exponential, base *e* (f32)
|
||||
///
|
||||
/// Calculate the exponential of `x`, that is, *e* raised to the power `x`
|
||||
/// (where *e* is the base of the natural system of logarithms, approximately 2.71828).
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn expf(mut x: f32) -> f32 {
|
||||
let x1p127 = f32::from_bits(0x7f000000); // 0x1p127f === 2 ^ 127
|
||||
let x1p_126 = f32::from_bits(0x800000); // 0x1p-126f === 2 ^ -126 /*original 0x1p-149f ??????????? */
|
||||
let mut hx = x.to_bits();
|
||||
let sign = (hx >> 31) as i32; /* sign bit of x */
|
||||
let signb: bool = sign != 0;
|
||||
hx &= 0x7fffffff; /* high word of |x| */
|
||||
|
||||
/* special cases */
|
||||
if hx >= 0x42aeac50 {
|
||||
/* if |x| >= -87.33655f or NaN */
|
||||
if hx > 0x7f800000 {
|
||||
/* NaN */
|
||||
return x;
|
||||
}
|
||||
if (hx >= 0x42b17218) && (!signb) {
|
||||
/* x >= 88.722839f */
|
||||
/* overflow */
|
||||
x *= x1p127;
|
||||
return x;
|
||||
}
|
||||
if signb {
|
||||
/* underflow */
|
||||
force_eval!(-x1p_126 / x);
|
||||
if hx >= 0x42cff1b5 {
|
||||
/* x <= -103.972084f */
|
||||
return 0.;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* argument reduction */
|
||||
let k: i32;
|
||||
let hi: f32;
|
||||
let lo: f32;
|
||||
if hx > 0x3eb17218 {
|
||||
/* if |x| > 0.5 ln2 */
|
||||
if hx > 0x3f851592 {
|
||||
/* if |x| > 1.5 ln2 */
|
||||
k = (INV_LN2 * x + i!(HALF, sign as usize)) as i32;
|
||||
} else {
|
||||
k = 1 - sign - sign;
|
||||
}
|
||||
let kf = k as f32;
|
||||
hi = x - kf * LN2_HI; /* k*ln2hi is exact here */
|
||||
lo = kf * LN2_LO;
|
||||
x = hi - lo;
|
||||
} else if hx > 0x39000000 {
|
||||
/* |x| > 2**-14 */
|
||||
k = 0;
|
||||
hi = x;
|
||||
lo = 0.;
|
||||
} else {
|
||||
/* raise inexact */
|
||||
force_eval!(x1p127 + x);
|
||||
return 1. + x;
|
||||
}
|
||||
|
||||
/* x is now in primary range */
|
||||
let xx = x * x;
|
||||
let c = x - xx * (P1 + xx * P2);
|
||||
let y = 1. + (x * c / (2. - c) - lo + hi);
|
||||
if k == 0 { y } else { scalbnf(y, k) }
|
||||
}
|
144
mikros_std_deps/libm-0.2.8/src/math/expm1.rs
Normal file
144
mikros_std_deps/libm-0.2.8/src/math/expm1.rs
Normal file
@ -0,0 +1,144 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/s_expm1.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
use core::f64;
|
||||
|
||||
const O_THRESHOLD: f64 = 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */
|
||||
const LN2_HI: f64 = 6.93147180369123816490e-01; /* 0x3fe62e42, 0xfee00000 */
|
||||
const LN2_LO: f64 = 1.90821492927058770002e-10; /* 0x3dea39ef, 0x35793c76 */
|
||||
const INVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */
|
||||
/* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
|
||||
const Q1: f64 = -3.33333333333331316428e-02; /* BFA11111 111110F4 */
|
||||
const Q2: f64 = 1.58730158725481460165e-03; /* 3F5A01A0 19FE5585 */
|
||||
const Q3: f64 = -7.93650757867487942473e-05; /* BF14CE19 9EAADBB7 */
|
||||
const Q4: f64 = 4.00821782732936239552e-06; /* 3ED0CFCA 86E65239 */
|
||||
const Q5: f64 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
|
||||
|
||||
/// Exponential, base *e*, of x-1 (f64)
|
||||
///
|
||||
/// Calculates the exponential of `x` and subtract 1, that is, *e* raised
|
||||
/// to the power `x` minus 1 (where *e* is the base of the natural
|
||||
/// system of logarithms, approximately 2.71828).
|
||||
/// The result is accurate even for small values of `x`,
|
||||
/// where using `exp(x)-1` would lose many significant digits.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn expm1(mut x: f64) -> f64 {
|
||||
let hi: f64;
|
||||
let lo: f64;
|
||||
let k: i32;
|
||||
let c: f64;
|
||||
let mut t: f64;
|
||||
let mut y: f64;
|
||||
|
||||
let mut ui = x.to_bits();
|
||||
let hx = ((ui >> 32) & 0x7fffffff) as u32;
|
||||
let sign = (ui >> 63) as i32;
|
||||
|
||||
/* filter out huge and non-finite argument */
|
||||
if hx >= 0x4043687A {
|
||||
/* if |x|>=56*ln2 */
|
||||
if x.is_nan() {
|
||||
return x;
|
||||
}
|
||||
if sign != 0 {
|
||||
return -1.0;
|
||||
}
|
||||
if x > O_THRESHOLD {
|
||||
x *= f64::from_bits(0x7fe0000000000000);
|
||||
return x;
|
||||
}
|
||||
}
|
||||
|
||||
/* argument reduction */
|
||||
if hx > 0x3fd62e42 {
|
||||
/* if |x| > 0.5 ln2 */
|
||||
if hx < 0x3FF0A2B2 {
|
||||
/* and |x| < 1.5 ln2 */
|
||||
if sign == 0 {
|
||||
hi = x - LN2_HI;
|
||||
lo = LN2_LO;
|
||||
k = 1;
|
||||
} else {
|
||||
hi = x + LN2_HI;
|
||||
lo = -LN2_LO;
|
||||
k = -1;
|
||||
}
|
||||
} else {
|
||||
k = (INVLN2 * x + if sign != 0 { -0.5 } else { 0.5 }) as i32;
|
||||
t = k as f64;
|
||||
hi = x - t * LN2_HI; /* t*ln2_hi is exact here */
|
||||
lo = t * LN2_LO;
|
||||
}
|
||||
x = hi - lo;
|
||||
c = (hi - x) - lo;
|
||||
} else if hx < 0x3c900000 {
|
||||
/* |x| < 2**-54, return x */
|
||||
if hx < 0x00100000 {
|
||||
force_eval!(x);
|
||||
}
|
||||
return x;
|
||||
} else {
|
||||
c = 0.0;
|
||||
k = 0;
|
||||
}
|
||||
|
||||
/* x is now in primary range */
|
||||
let hfx = 0.5 * x;
|
||||
let hxs = x * hfx;
|
||||
let r1 = 1.0 + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5))));
|
||||
t = 3.0 - r1 * hfx;
|
||||
let mut e = hxs * ((r1 - t) / (6.0 - x * t));
|
||||
if k == 0 {
|
||||
/* c is 0 */
|
||||
return x - (x * e - hxs);
|
||||
}
|
||||
e = x * (e - c) - c;
|
||||
e -= hxs;
|
||||
/* exp(x) ~ 2^k (x_reduced - e + 1) */
|
||||
if k == -1 {
|
||||
return 0.5 * (x - e) - 0.5;
|
||||
}
|
||||
if k == 1 {
|
||||
if x < -0.25 {
|
||||
return -2.0 * (e - (x + 0.5));
|
||||
}
|
||||
return 1.0 + 2.0 * (x - e);
|
||||
}
|
||||
ui = ((0x3ff + k) as u64) << 52; /* 2^k */
|
||||
let twopk = f64::from_bits(ui);
|
||||
if k < 0 || k > 56 {
|
||||
/* suffice to return exp(x)-1 */
|
||||
y = x - e + 1.0;
|
||||
if k == 1024 {
|
||||
y = y * 2.0 * f64::from_bits(0x7fe0000000000000);
|
||||
} else {
|
||||
y = y * twopk;
|
||||
}
|
||||
return y - 1.0;
|
||||
}
|
||||
ui = ((0x3ff - k) as u64) << 52; /* 2^-k */
|
||||
let uf = f64::from_bits(ui);
|
||||
if k < 20 {
|
||||
y = (x - e + (1.0 - uf)) * twopk;
|
||||
} else {
|
||||
y = (x - (e + uf) + 1.0) * twopk;
|
||||
}
|
||||
y
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
#[test]
|
||||
fn sanity_check() {
|
||||
assert_eq!(super::expm1(1.1), 2.0041660239464334);
|
||||
}
|
||||
}
|
130
mikros_std_deps/libm-0.2.8/src/math/expm1f.rs
Normal file
130
mikros_std_deps/libm-0.2.8/src/math/expm1f.rs
Normal file
@ -0,0 +1,130 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/s_expm1f.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
const O_THRESHOLD: f32 = 8.8721679688e+01; /* 0x42b17180 */
|
||||
const LN2_HI: f32 = 6.9313812256e-01; /* 0x3f317180 */
|
||||
const LN2_LO: f32 = 9.0580006145e-06; /* 0x3717f7d1 */
|
||||
const INV_LN2: f32 = 1.4426950216e+00; /* 0x3fb8aa3b */
|
||||
/*
|
||||
* Domain [-0.34568, 0.34568], range ~[-6.694e-10, 6.696e-10]:
|
||||
* |6 / x * (1 + 2 * (1 / (exp(x) - 1) - 1 / x)) - q(x)| < 2**-30.04
|
||||
* Scaled coefficients: Qn_here = 2**n * Qn_for_q (see s_expm1.c):
|
||||
*/
|
||||
const Q1: f32 = -3.3333212137e-2; /* -0x888868.0p-28 */
|
||||
const Q2: f32 = 1.5807170421e-3; /* 0xcf3010.0p-33 */
|
||||
|
||||
/// Exponential, base *e*, of x-1 (f32)
|
||||
///
|
||||
/// Calculates the exponential of `x` and subtract 1, that is, *e* raised
|
||||
/// to the power `x` minus 1 (where *e* is the base of the natural
|
||||
/// system of logarithms, approximately 2.71828).
|
||||
/// The result is accurate even for small values of `x`,
|
||||
/// where using `exp(x)-1` would lose many significant digits.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn expm1f(mut x: f32) -> f32 {
|
||||
let x1p127 = f32::from_bits(0x7f000000); // 0x1p127f === 2 ^ 127
|
||||
|
||||
let mut hx = x.to_bits();
|
||||
let sign = (hx >> 31) != 0;
|
||||
hx &= 0x7fffffff;
|
||||
|
||||
/* filter out huge and non-finite argument */
|
||||
if hx >= 0x4195b844 {
|
||||
/* if |x|>=27*ln2 */
|
||||
if hx > 0x7f800000 {
|
||||
/* NaN */
|
||||
return x;
|
||||
}
|
||||
if sign {
|
||||
return -1.;
|
||||
}
|
||||
if x > O_THRESHOLD {
|
||||
x *= x1p127;
|
||||
return x;
|
||||
}
|
||||
}
|
||||
|
||||
let k: i32;
|
||||
let hi: f32;
|
||||
let lo: f32;
|
||||
let mut c = 0f32;
|
||||
/* argument reduction */
|
||||
if hx > 0x3eb17218 {
|
||||
/* if |x| > 0.5 ln2 */
|
||||
if hx < 0x3F851592 {
|
||||
/* and |x| < 1.5 ln2 */
|
||||
if !sign {
|
||||
hi = x - LN2_HI;
|
||||
lo = LN2_LO;
|
||||
k = 1;
|
||||
} else {
|
||||
hi = x + LN2_HI;
|
||||
lo = -LN2_LO;
|
||||
k = -1;
|
||||
}
|
||||
} else {
|
||||
k = (INV_LN2 * x + (if sign { -0.5 } else { 0.5 })) as i32;
|
||||
let t = k as f32;
|
||||
hi = x - t * LN2_HI; /* t*ln2_hi is exact here */
|
||||
lo = t * LN2_LO;
|
||||
}
|
||||
x = hi - lo;
|
||||
c = (hi - x) - lo;
|
||||
} else if hx < 0x33000000 {
|
||||
/* when |x|<2**-25, return x */
|
||||
if hx < 0x00800000 {
|
||||
force_eval!(x * x);
|
||||
}
|
||||
return x;
|
||||
} else {
|
||||
k = 0;
|
||||
}
|
||||
|
||||
/* x is now in primary range */
|
||||
let hfx = 0.5 * x;
|
||||
let hxs = x * hfx;
|
||||
let r1 = 1. + hxs * (Q1 + hxs * Q2);
|
||||
let t = 3. - r1 * hfx;
|
||||
let mut e = hxs * ((r1 - t) / (6. - x * t));
|
||||
if k == 0 {
|
||||
/* c is 0 */
|
||||
return x - (x * e - hxs);
|
||||
}
|
||||
e = x * (e - c) - c;
|
||||
e -= hxs;
|
||||
/* exp(x) ~ 2^k (x_reduced - e + 1) */
|
||||
if k == -1 {
|
||||
return 0.5 * (x - e) - 0.5;
|
||||
}
|
||||
if k == 1 {
|
||||
if x < -0.25 {
|
||||
return -2. * (e - (x + 0.5));
|
||||
}
|
||||
return 1. + 2. * (x - e);
|
||||
}
|
||||
let twopk = f32::from_bits(((0x7f + k) << 23) as u32); /* 2^k */
|
||||
if (k < 0) || (k > 56) {
|
||||
/* suffice to return exp(x)-1 */
|
||||
let mut y = x - e + 1.;
|
||||
if k == 128 {
|
||||
y = y * 2. * x1p127;
|
||||
} else {
|
||||
y = y * twopk;
|
||||
}
|
||||
return y - 1.;
|
||||
}
|
||||
let uf = f32::from_bits(((0x7f - k) << 23) as u32); /* 2^-k */
|
||||
if k < 23 { (x - e + (1. - uf)) * twopk } else { (x - (e + uf) + 1.) * twopk }
|
||||
}
|
14
mikros_std_deps/libm-0.2.8/src/math/expo2.rs
Normal file
14
mikros_std_deps/libm-0.2.8/src/math/expo2.rs
Normal file
@ -0,0 +1,14 @@
|
||||
use super::{combine_words, exp};
|
||||
|
||||
/* exp(x)/2 for x >= log(DBL_MAX), slightly better than 0.5*exp(x/2)*exp(x/2) */
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub(crate) fn expo2(x: f64) -> f64 {
|
||||
/* k is such that k*ln2 has minimal relative error and x - kln2 > log(DBL_MIN) */
|
||||
const K: i32 = 2043;
|
||||
let kln2 = f64::from_bits(0x40962066151add8b);
|
||||
|
||||
/* note that k is odd and scale*scale overflows */
|
||||
let scale = combine_words(((0x3ff + K / 2) as u32) << 20, 0);
|
||||
/* exp(x - k ln2) * 2**(k-1) */
|
||||
exp(x - kln2) * scale * scale
|
||||
}
|
41
mikros_std_deps/libm-0.2.8/src/math/fabs.rs
Normal file
41
mikros_std_deps/libm-0.2.8/src/math/fabs.rs
Normal file
@ -0,0 +1,41 @@
|
||||
use core::u64;
|
||||
|
||||
/// Absolute value (magnitude) (f64)
|
||||
/// Calculates the absolute value (magnitude) of the argument `x`,
|
||||
/// by direct manipulation of the bit representation of `x`.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn fabs(x: f64) -> f64 {
|
||||
// On wasm32 we know that LLVM's intrinsic will compile to an optimized
|
||||
// `f64.abs` native instruction, so we can leverage this for both code size
|
||||
// and speed.
|
||||
llvm_intrinsically_optimized! {
|
||||
#[cfg(target_arch = "wasm32")] {
|
||||
return unsafe { ::core::intrinsics::fabsf64(x) }
|
||||
}
|
||||
}
|
||||
f64::from_bits(x.to_bits() & (u64::MAX / 2))
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use core::f64::*;
|
||||
|
||||
#[test]
|
||||
fn sanity_check() {
|
||||
assert_eq!(fabs(-1.0), 1.0);
|
||||
assert_eq!(fabs(2.8), 2.8);
|
||||
}
|
||||
|
||||
/// The spec: https://en.cppreference.com/w/cpp/numeric/math/fabs
|
||||
#[test]
|
||||
fn spec_tests() {
|
||||
assert!(fabs(NAN).is_nan());
|
||||
for f in [0.0, -0.0].iter().copied() {
|
||||
assert_eq!(fabs(f), 0.0);
|
||||
}
|
||||
for f in [INFINITY, NEG_INFINITY].iter().copied() {
|
||||
assert_eq!(fabs(f), INFINITY);
|
||||
}
|
||||
}
|
||||
}
|
41
mikros_std_deps/libm-0.2.8/src/math/fabsf.rs
Normal file
41
mikros_std_deps/libm-0.2.8/src/math/fabsf.rs
Normal file
@ -0,0 +1,41 @@
|
||||
/// Absolute value (magnitude) (f32)
|
||||
/// Calculates the absolute value (magnitude) of the argument `x`,
|
||||
/// by direct manipulation of the bit representation of `x`.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn fabsf(x: f32) -> f32 {
|
||||
// On wasm32 we know that LLVM's intrinsic will compile to an optimized
|
||||
// `f32.abs` native instruction, so we can leverage this for both code size
|
||||
// and speed.
|
||||
llvm_intrinsically_optimized! {
|
||||
#[cfg(target_arch = "wasm32")] {
|
||||
return unsafe { ::core::intrinsics::fabsf32(x) }
|
||||
}
|
||||
}
|
||||
f32::from_bits(x.to_bits() & 0x7fffffff)
|
||||
}
|
||||
|
||||
// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520
|
||||
#[cfg(not(target_arch = "powerpc64"))]
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use core::f32::*;
|
||||
|
||||
#[test]
|
||||
fn sanity_check() {
|
||||
assert_eq!(fabsf(-1.0), 1.0);
|
||||
assert_eq!(fabsf(2.8), 2.8);
|
||||
}
|
||||
|
||||
/// The spec: https://en.cppreference.com/w/cpp/numeric/math/fabs
|
||||
#[test]
|
||||
fn spec_tests() {
|
||||
assert!(fabsf(NAN).is_nan());
|
||||
for f in [0.0, -0.0].iter().copied() {
|
||||
assert_eq!(fabsf(f), 0.0);
|
||||
}
|
||||
for f in [INFINITY, NEG_INFINITY].iter().copied() {
|
||||
assert_eq!(fabsf(f), INFINITY);
|
||||
}
|
||||
}
|
||||
}
|
22
mikros_std_deps/libm-0.2.8/src/math/fdim.rs
Normal file
22
mikros_std_deps/libm-0.2.8/src/math/fdim.rs
Normal file
@ -0,0 +1,22 @@
|
||||
use core::f64;
|
||||
|
||||
/// Positive difference (f64)
|
||||
///
|
||||
/// Determines the positive difference between arguments, returning:
|
||||
/// * x - y if x > y, or
|
||||
/// * +0 if x <= y, or
|
||||
/// * NAN if either argument is NAN.
|
||||
///
|
||||
/// A range error may occur.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn fdim(x: f64, y: f64) -> f64 {
|
||||
if x.is_nan() {
|
||||
x
|
||||
} else if y.is_nan() {
|
||||
y
|
||||
} else if x > y {
|
||||
x - y
|
||||
} else {
|
||||
0.0
|
||||
}
|
||||
}
|
22
mikros_std_deps/libm-0.2.8/src/math/fdimf.rs
Normal file
22
mikros_std_deps/libm-0.2.8/src/math/fdimf.rs
Normal file
@ -0,0 +1,22 @@
|
||||
use core::f32;
|
||||
|
||||
/// Positive difference (f32)
|
||||
///
|
||||
/// Determines the positive difference between arguments, returning:
|
||||
/// * x - y if x > y, or
|
||||
/// * +0 if x <= y, or
|
||||
/// * NAN if either argument is NAN.
|
||||
///
|
||||
/// A range error may occur.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn fdimf(x: f32, y: f32) -> f32 {
|
||||
if x.is_nan() {
|
||||
x
|
||||
} else if y.is_nan() {
|
||||
y
|
||||
} else if x > y {
|
||||
x - y
|
||||
} else {
|
||||
0.0
|
||||
}
|
||||
}
|
27
mikros_std_deps/libm-0.2.8/src/math/fenv.rs
Normal file
27
mikros_std_deps/libm-0.2.8/src/math/fenv.rs
Normal file
@ -0,0 +1,27 @@
|
||||
// src: musl/src/fenv/fenv.c
|
||||
/* Dummy functions for archs lacking fenv implementation */
|
||||
|
||||
pub(crate) const FE_UNDERFLOW: i32 = 0;
|
||||
pub(crate) const FE_INEXACT: i32 = 0;
|
||||
|
||||
pub(crate) const FE_TONEAREST: i32 = 0;
|
||||
|
||||
#[inline]
|
||||
pub(crate) fn feclearexcept(_mask: i32) -> i32 {
|
||||
0
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub(crate) fn feraiseexcept(_mask: i32) -> i32 {
|
||||
0
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub(crate) fn fetestexcept(_mask: i32) -> i32 {
|
||||
0
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub(crate) fn fegetround() -> i32 {
|
||||
FE_TONEAREST
|
||||
}
|
73
mikros_std_deps/libm-0.2.8/src/math/floor.rs
Normal file
73
mikros_std_deps/libm-0.2.8/src/math/floor.rs
Normal file
@ -0,0 +1,73 @@
|
||||
#![allow(unreachable_code)]
|
||||
use core::f64;
|
||||
|
||||
const TOINT: f64 = 1. / f64::EPSILON;
|
||||
|
||||
/// Floor (f64)
|
||||
///
|
||||
/// Finds the nearest integer less than or equal to `x`.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn floor(x: f64) -> f64 {
|
||||
// On wasm32 we know that LLVM's intrinsic will compile to an optimized
|
||||
// `f64.floor` native instruction, so we can leverage this for both code size
|
||||
// and speed.
|
||||
llvm_intrinsically_optimized! {
|
||||
#[cfg(target_arch = "wasm32")] {
|
||||
return unsafe { ::core::intrinsics::floorf64(x) }
|
||||
}
|
||||
}
|
||||
#[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
|
||||
{
|
||||
//use an alternative implementation on x86, because the
|
||||
//main implementation fails with the x87 FPU used by
|
||||
//debian i386, probablly due to excess precision issues.
|
||||
//basic implementation taken from https://github.com/rust-lang/libm/issues/219
|
||||
use super::fabs;
|
||||
if fabs(x).to_bits() < 4503599627370496.0_f64.to_bits() {
|
||||
let truncated = x as i64 as f64;
|
||||
if truncated > x {
|
||||
return truncated - 1.0;
|
||||
} else {
|
||||
return truncated;
|
||||
}
|
||||
} else {
|
||||
return x;
|
||||
}
|
||||
}
|
||||
let ui = x.to_bits();
|
||||
let e = ((ui >> 52) & 0x7ff) as i32;
|
||||
|
||||
if (e >= 0x3ff + 52) || (x == 0.) {
|
||||
return x;
|
||||
}
|
||||
/* y = int(x) - x, where int(x) is an integer neighbor of x */
|
||||
let y = if (ui >> 63) != 0 { x - TOINT + TOINT - x } else { x + TOINT - TOINT - x };
|
||||
/* special case because of non-nearest rounding modes */
|
||||
if e < 0x3ff {
|
||||
force_eval!(y);
|
||||
return if (ui >> 63) != 0 { -1. } else { 0. };
|
||||
}
|
||||
if y > 0. { x + y - 1. } else { x + y }
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use core::f64::*;
|
||||
|
||||
#[test]
|
||||
fn sanity_check() {
|
||||
assert_eq!(floor(1.1), 1.0);
|
||||
assert_eq!(floor(2.9), 2.0);
|
||||
}
|
||||
|
||||
/// The spec: https://en.cppreference.com/w/cpp/numeric/math/floor
|
||||
#[test]
|
||||
fn spec_tests() {
|
||||
// Not Asserted: that the current rounding mode has no effect.
|
||||
assert!(floor(NAN).is_nan());
|
||||
for f in [0.0, -0.0, INFINITY, NEG_INFINITY].iter().copied() {
|
||||
assert_eq!(floor(f), f);
|
||||
}
|
||||
}
|
||||
}
|
66
mikros_std_deps/libm-0.2.8/src/math/floorf.rs
Normal file
66
mikros_std_deps/libm-0.2.8/src/math/floorf.rs
Normal file
@ -0,0 +1,66 @@
|
||||
use core::f32;
|
||||
|
||||
/// Floor (f32)
|
||||
///
|
||||
/// Finds the nearest integer less than or equal to `x`.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn floorf(x: f32) -> f32 {
|
||||
// On wasm32 we know that LLVM's intrinsic will compile to an optimized
|
||||
// `f32.floor` native instruction, so we can leverage this for both code size
|
||||
// and speed.
|
||||
llvm_intrinsically_optimized! {
|
||||
#[cfg(target_arch = "wasm32")] {
|
||||
return unsafe { ::core::intrinsics::floorf32(x) }
|
||||
}
|
||||
}
|
||||
let mut ui = x.to_bits();
|
||||
let e = (((ui >> 23) as i32) & 0xff) - 0x7f;
|
||||
|
||||
if e >= 23 {
|
||||
return x;
|
||||
}
|
||||
if e >= 0 {
|
||||
let m: u32 = 0x007fffff >> e;
|
||||
if (ui & m) == 0 {
|
||||
return x;
|
||||
}
|
||||
force_eval!(x + f32::from_bits(0x7b800000));
|
||||
if ui >> 31 != 0 {
|
||||
ui += m;
|
||||
}
|
||||
ui &= !m;
|
||||
} else {
|
||||
force_eval!(x + f32::from_bits(0x7b800000));
|
||||
if ui >> 31 == 0 {
|
||||
ui = 0;
|
||||
} else if ui << 1 != 0 {
|
||||
return -1.0;
|
||||
}
|
||||
}
|
||||
f32::from_bits(ui)
|
||||
}
|
||||
|
||||
// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520
|
||||
#[cfg(not(target_arch = "powerpc64"))]
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use core::f32::*;
|
||||
|
||||
#[test]
|
||||
fn sanity_check() {
|
||||
assert_eq!(floorf(0.5), 0.0);
|
||||
assert_eq!(floorf(1.1), 1.0);
|
||||
assert_eq!(floorf(2.9), 2.0);
|
||||
}
|
||||
|
||||
/// The spec: https://en.cppreference.com/w/cpp/numeric/math/floor
|
||||
#[test]
|
||||
fn spec_tests() {
|
||||
// Not Asserted: that the current rounding mode has no effect.
|
||||
assert!(floorf(NAN).is_nan());
|
||||
for f in [0.0, -0.0, INFINITY, NEG_INFINITY].iter().copied() {
|
||||
assert_eq!(floorf(f), f);
|
||||
}
|
||||
}
|
||||
}
|
226
mikros_std_deps/libm-0.2.8/src/math/fma.rs
Normal file
226
mikros_std_deps/libm-0.2.8/src/math/fma.rs
Normal file
@ -0,0 +1,226 @@
|
||||
use core::{f32, f64};
|
||||
|
||||
use super::scalbn;
|
||||
|
||||
const ZEROINFNAN: i32 = 0x7ff - 0x3ff - 52 - 1;
|
||||
|
||||
struct Num {
|
||||
m: u64,
|
||||
e: i32,
|
||||
sign: i32,
|
||||
}
|
||||
|
||||
fn normalize(x: f64) -> Num {
|
||||
let x1p63: f64 = f64::from_bits(0x43e0000000000000); // 0x1p63 === 2 ^ 63
|
||||
|
||||
let mut ix: u64 = x.to_bits();
|
||||
let mut e: i32 = (ix >> 52) as i32;
|
||||
let sign: i32 = e & 0x800;
|
||||
e &= 0x7ff;
|
||||
if e == 0 {
|
||||
ix = (x * x1p63).to_bits();
|
||||
e = (ix >> 52) as i32 & 0x7ff;
|
||||
e = if e != 0 { e - 63 } else { 0x800 };
|
||||
}
|
||||
ix &= (1 << 52) - 1;
|
||||
ix |= 1 << 52;
|
||||
ix <<= 1;
|
||||
e -= 0x3ff + 52 + 1;
|
||||
Num { m: ix, e, sign }
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn mul(x: u64, y: u64) -> (u64, u64) {
|
||||
let t = (x as u128).wrapping_mul(y as u128);
|
||||
((t >> 64) as u64, t as u64)
|
||||
}
|
||||
|
||||
/// Floating multiply add (f64)
|
||||
///
|
||||
/// Computes `(x*y)+z`, rounded as one ternary operation:
|
||||
/// Computes the value (as if) to infinite precision and rounds once to the result format,
|
||||
/// according to the rounding mode characterized by the value of FLT_ROUNDS.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn fma(x: f64, y: f64, z: f64) -> f64 {
|
||||
let x1p63: f64 = f64::from_bits(0x43e0000000000000); // 0x1p63 === 2 ^ 63
|
||||
let x0_ffffff8p_63 = f64::from_bits(0x3bfffffff0000000); // 0x0.ffffff8p-63
|
||||
|
||||
/* normalize so top 10bits and last bit are 0 */
|
||||
let nx = normalize(x);
|
||||
let ny = normalize(y);
|
||||
let nz = normalize(z);
|
||||
|
||||
if nx.e >= ZEROINFNAN || ny.e >= ZEROINFNAN {
|
||||
return x * y + z;
|
||||
}
|
||||
if nz.e >= ZEROINFNAN {
|
||||
if nz.e > ZEROINFNAN {
|
||||
/* z==0 */
|
||||
return x * y + z;
|
||||
}
|
||||
return z;
|
||||
}
|
||||
|
||||
/* mul: r = x*y */
|
||||
let zhi: u64;
|
||||
let zlo: u64;
|
||||
let (mut rhi, mut rlo) = mul(nx.m, ny.m);
|
||||
/* either top 20 or 21 bits of rhi and last 2 bits of rlo are 0 */
|
||||
|
||||
/* align exponents */
|
||||
let mut e: i32 = nx.e + ny.e;
|
||||
let mut d: i32 = nz.e - e;
|
||||
/* shift bits z<<=kz, r>>=kr, so kz+kr == d, set e = e+kr (== ez-kz) */
|
||||
if d > 0 {
|
||||
if d < 64 {
|
||||
zlo = nz.m << d;
|
||||
zhi = nz.m >> (64 - d);
|
||||
} else {
|
||||
zlo = 0;
|
||||
zhi = nz.m;
|
||||
e = nz.e - 64;
|
||||
d -= 64;
|
||||
if d == 0 {
|
||||
} else if d < 64 {
|
||||
rlo = rhi << (64 - d) | rlo >> d | ((rlo << (64 - d)) != 0) as u64;
|
||||
rhi = rhi >> d;
|
||||
} else {
|
||||
rlo = 1;
|
||||
rhi = 0;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
zhi = 0;
|
||||
d = -d;
|
||||
if d == 0 {
|
||||
zlo = nz.m;
|
||||
} else if d < 64 {
|
||||
zlo = nz.m >> d | ((nz.m << (64 - d)) != 0) as u64;
|
||||
} else {
|
||||
zlo = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* add */
|
||||
let mut sign: i32 = nx.sign ^ ny.sign;
|
||||
let samesign: bool = (sign ^ nz.sign) == 0;
|
||||
let mut nonzero: i32 = 1;
|
||||
if samesign {
|
||||
/* r += z */
|
||||
rlo = rlo.wrapping_add(zlo);
|
||||
rhi += zhi + (rlo < zlo) as u64;
|
||||
} else {
|
||||
/* r -= z */
|
||||
let (res, borrow) = rlo.overflowing_sub(zlo);
|
||||
rlo = res;
|
||||
rhi = rhi.wrapping_sub(zhi.wrapping_add(borrow as u64));
|
||||
if (rhi >> 63) != 0 {
|
||||
rlo = (rlo as i64).wrapping_neg() as u64;
|
||||
rhi = (rhi as i64).wrapping_neg() as u64 - (rlo != 0) as u64;
|
||||
sign = (sign == 0) as i32;
|
||||
}
|
||||
nonzero = (rhi != 0) as i32;
|
||||
}
|
||||
|
||||
/* set rhi to top 63bit of the result (last bit is sticky) */
|
||||
if nonzero != 0 {
|
||||
e += 64;
|
||||
d = rhi.leading_zeros() as i32 - 1;
|
||||
/* note: d > 0 */
|
||||
rhi = rhi << d | rlo >> (64 - d) | ((rlo << d) != 0) as u64;
|
||||
} else if rlo != 0 {
|
||||
d = rlo.leading_zeros() as i32 - 1;
|
||||
if d < 0 {
|
||||
rhi = rlo >> 1 | (rlo & 1);
|
||||
} else {
|
||||
rhi = rlo << d;
|
||||
}
|
||||
} else {
|
||||
/* exact +-0 */
|
||||
return x * y + z;
|
||||
}
|
||||
e -= d;
|
||||
|
||||
/* convert to double */
|
||||
let mut i: i64 = rhi as i64; /* i is in [1<<62,(1<<63)-1] */
|
||||
if sign != 0 {
|
||||
i = -i;
|
||||
}
|
||||
let mut r: f64 = i as f64; /* |r| is in [0x1p62,0x1p63] */
|
||||
|
||||
if e < -1022 - 62 {
|
||||
/* result is subnormal before rounding */
|
||||
if e == -1022 - 63 {
|
||||
let mut c: f64 = x1p63;
|
||||
if sign != 0 {
|
||||
c = -c;
|
||||
}
|
||||
if r == c {
|
||||
/* min normal after rounding, underflow depends
|
||||
on arch behaviour which can be imitated by
|
||||
a double to float conversion */
|
||||
let fltmin: f32 = (x0_ffffff8p_63 * f32::MIN_POSITIVE as f64 * r) as f32;
|
||||
return f64::MIN_POSITIVE / f32::MIN_POSITIVE as f64 * fltmin as f64;
|
||||
}
|
||||
/* one bit is lost when scaled, add another top bit to
|
||||
only round once at conversion if it is inexact */
|
||||
if (rhi << 53) != 0 {
|
||||
i = (rhi >> 1 | (rhi & 1) | 1 << 62) as i64;
|
||||
if sign != 0 {
|
||||
i = -i;
|
||||
}
|
||||
r = i as f64;
|
||||
r = 2. * r - c; /* remove top bit */
|
||||
|
||||
/* raise underflow portably, such that it
|
||||
cannot be optimized away */
|
||||
{
|
||||
let tiny: f64 = f64::MIN_POSITIVE / f32::MIN_POSITIVE as f64 * r;
|
||||
r += (tiny * tiny) * (r - r);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
/* only round once when scaled */
|
||||
d = 10;
|
||||
i = ((rhi >> d | ((rhi << (64 - d)) != 0) as u64) << d) as i64;
|
||||
if sign != 0 {
|
||||
i = -i;
|
||||
}
|
||||
r = i as f64;
|
||||
}
|
||||
}
|
||||
scalbn(r, e)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
#[test]
|
||||
fn fma_segfault() {
|
||||
// These two inputs cause fma to segfault on release due to overflow:
|
||||
assert_eq!(
|
||||
fma(
|
||||
-0.0000000000000002220446049250313,
|
||||
-0.0000000000000002220446049250313,
|
||||
-0.0000000000000002220446049250313
|
||||
),
|
||||
-0.00000000000000022204460492503126,
|
||||
);
|
||||
|
||||
let result = fma(-0.992, -0.992, -0.992);
|
||||
//force rounding to storage format on x87 to prevent superious errors.
|
||||
#[cfg(all(target_arch = "x86", not(target_feature = "sse2")))]
|
||||
let result = force_eval!(result);
|
||||
assert_eq!(result, -0.007936000000000007,);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn fma_sbb() {
|
||||
assert_eq!(fma(-(1.0 - f64::EPSILON), f64::MIN, f64::MIN), -3991680619069439e277);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn fma_underflow() {
|
||||
assert_eq!(fma(1.1102230246251565e-16, -9.812526705433188e-305, 1.0894e-320), 0.0,);
|
||||
}
|
||||
}
|
113
mikros_std_deps/libm-0.2.8/src/math/fmaf.rs
Normal file
113
mikros_std_deps/libm-0.2.8/src/math/fmaf.rs
Normal file
@ -0,0 +1,113 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/s_fmaf.c */
|
||||
/*-
|
||||
* Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
use core::f32;
|
||||
use core::ptr::read_volatile;
|
||||
|
||||
use super::fenv::{
|
||||
feclearexcept, fegetround, feraiseexcept, fetestexcept, FE_INEXACT, FE_TONEAREST, FE_UNDERFLOW,
|
||||
};
|
||||
|
||||
/*
|
||||
* Fused multiply-add: Compute x * y + z with a single rounding error.
|
||||
*
|
||||
* A double has more than twice as much precision than a float, so
|
||||
* direct double-precision arithmetic suffices, except where double
|
||||
* rounding occurs.
|
||||
*/
|
||||
|
||||
/// Floating multiply add (f32)
|
||||
///
|
||||
/// Computes `(x*y)+z`, rounded as one ternary operation:
|
||||
/// Computes the value (as if) to infinite precision and rounds once to the result format,
|
||||
/// according to the rounding mode characterized by the value of FLT_ROUNDS.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn fmaf(x: f32, y: f32, mut z: f32) -> f32 {
|
||||
let xy: f64;
|
||||
let mut result: f64;
|
||||
let mut ui: u64;
|
||||
let e: i32;
|
||||
|
||||
xy = x as f64 * y as f64;
|
||||
result = xy + z as f64;
|
||||
ui = result.to_bits();
|
||||
e = (ui >> 52) as i32 & 0x7ff;
|
||||
/* Common case: The double precision result is fine. */
|
||||
if (
|
||||
/* not a halfway case */
|
||||
ui & 0x1fffffff) != 0x10000000 ||
|
||||
/* NaN */
|
||||
e == 0x7ff ||
|
||||
/* exact */
|
||||
(result - xy == z as f64 && result - z as f64 == xy) ||
|
||||
/* not round-to-nearest */
|
||||
fegetround() != FE_TONEAREST
|
||||
{
|
||||
/*
|
||||
underflow may not be raised correctly, example:
|
||||
fmaf(0x1p-120f, 0x1p-120f, 0x1p-149f)
|
||||
*/
|
||||
if e < 0x3ff - 126 && e >= 0x3ff - 149 && fetestexcept(FE_INEXACT) != 0 {
|
||||
feclearexcept(FE_INEXACT);
|
||||
// prevent `xy + vz` from being CSE'd with `xy + z` above
|
||||
let vz: f32 = unsafe { read_volatile(&z) };
|
||||
result = xy + vz as f64;
|
||||
if fetestexcept(FE_INEXACT) != 0 {
|
||||
feraiseexcept(FE_UNDERFLOW);
|
||||
} else {
|
||||
feraiseexcept(FE_INEXACT);
|
||||
}
|
||||
}
|
||||
z = result as f32;
|
||||
return z;
|
||||
}
|
||||
|
||||
/*
|
||||
* If result is inexact, and exactly halfway between two float values,
|
||||
* we need to adjust the low-order bit in the direction of the error.
|
||||
*/
|
||||
let neg = ui >> 63 != 0;
|
||||
let err = if neg == (z as f64 > xy) { xy - result + z as f64 } else { z as f64 - result + xy };
|
||||
if neg == (err < 0.0) {
|
||||
ui += 1;
|
||||
} else {
|
||||
ui -= 1;
|
||||
}
|
||||
f64::from_bits(ui) as f32
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
#[test]
|
||||
fn issue_263() {
|
||||
let a = f32::from_bits(1266679807);
|
||||
let b = f32::from_bits(1300234242);
|
||||
let c = f32::from_bits(1115553792);
|
||||
let expected = f32::from_bits(1501560833);
|
||||
assert_eq!(super::fmaf(a, b, c), expected);
|
||||
}
|
||||
}
|
12
mikros_std_deps/libm-0.2.8/src/math/fmax.rs
Normal file
12
mikros_std_deps/libm-0.2.8/src/math/fmax.rs
Normal file
@ -0,0 +1,12 @@
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn fmax(x: f64, y: f64) -> f64 {
|
||||
// IEEE754 says: maxNum(x, y) is the canonicalized number y if x < y, x if y < x, the
|
||||
// canonicalized number if one operand is a number and the other a quiet NaN. Otherwise it
|
||||
// is either x or y, canonicalized (this means results might differ among implementations).
|
||||
// When either x or y is a signalingNaN, then the result is according to 6.2.
|
||||
//
|
||||
// Since we do not support sNaN in Rust yet, we do not need to handle them.
|
||||
// FIXME(nagisa): due to https://bugs.llvm.org/show_bug.cgi?id=33303 we canonicalize by
|
||||
// multiplying by 1.0. Should switch to the `canonicalize` when it works.
|
||||
(if x.is_nan() || x < y { y } else { x }) * 1.0
|
||||
}
|
12
mikros_std_deps/libm-0.2.8/src/math/fmaxf.rs
Normal file
12
mikros_std_deps/libm-0.2.8/src/math/fmaxf.rs
Normal file
@ -0,0 +1,12 @@
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn fmaxf(x: f32, y: f32) -> f32 {
|
||||
// IEEE754 says: maxNum(x, y) is the canonicalized number y if x < y, x if y < x, the
|
||||
// canonicalized number if one operand is a number and the other a quiet NaN. Otherwise it
|
||||
// is either x or y, canonicalized (this means results might differ among implementations).
|
||||
// When either x or y is a signalingNaN, then the result is according to 6.2.
|
||||
//
|
||||
// Since we do not support sNaN in Rust yet, we do not need to handle them.
|
||||
// FIXME(nagisa): due to https://bugs.llvm.org/show_bug.cgi?id=33303 we canonicalize by
|
||||
// multiplying by 1.0. Should switch to the `canonicalize` when it works.
|
||||
(if x.is_nan() || x < y { y } else { x }) * 1.0
|
||||
}
|
12
mikros_std_deps/libm-0.2.8/src/math/fmin.rs
Normal file
12
mikros_std_deps/libm-0.2.8/src/math/fmin.rs
Normal file
@ -0,0 +1,12 @@
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn fmin(x: f64, y: f64) -> f64 {
|
||||
// IEEE754 says: minNum(x, y) is the canonicalized number x if x < y, y if y < x, the
|
||||
// canonicalized number if one operand is a number and the other a quiet NaN. Otherwise it
|
||||
// is either x or y, canonicalized (this means results might differ among implementations).
|
||||
// When either x or y is a signalingNaN, then the result is according to 6.2.
|
||||
//
|
||||
// Since we do not support sNaN in Rust yet, we do not need to handle them.
|
||||
// FIXME(nagisa): due to https://bugs.llvm.org/show_bug.cgi?id=33303 we canonicalize by
|
||||
// multiplying by 1.0. Should switch to the `canonicalize` when it works.
|
||||
(if y.is_nan() || x < y { x } else { y }) * 1.0
|
||||
}
|
12
mikros_std_deps/libm-0.2.8/src/math/fminf.rs
Normal file
12
mikros_std_deps/libm-0.2.8/src/math/fminf.rs
Normal file
@ -0,0 +1,12 @@
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn fminf(x: f32, y: f32) -> f32 {
|
||||
// IEEE754 says: minNum(x, y) is the canonicalized number x if x < y, y if y < x, the
|
||||
// canonicalized number if one operand is a number and the other a quiet NaN. Otherwise it
|
||||
// is either x or y, canonicalized (this means results might differ among implementations).
|
||||
// When either x or y is a signalingNaN, then the result is according to 6.2.
|
||||
//
|
||||
// Since we do not support sNaN in Rust yet, we do not need to handle them.
|
||||
// FIXME(nagisa): due to https://bugs.llvm.org/show_bug.cgi?id=33303 we canonicalize by
|
||||
// multiplying by 1.0. Should switch to the `canonicalize` when it works.
|
||||
(if y.is_nan() || x < y { x } else { y }) * 1.0
|
||||
}
|
80
mikros_std_deps/libm-0.2.8/src/math/fmod.rs
Normal file
80
mikros_std_deps/libm-0.2.8/src/math/fmod.rs
Normal file
@ -0,0 +1,80 @@
|
||||
use core::u64;
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn fmod(x: f64, y: f64) -> f64 {
|
||||
let mut uxi = x.to_bits();
|
||||
let mut uyi = y.to_bits();
|
||||
let mut ex = (uxi >> 52 & 0x7ff) as i64;
|
||||
let mut ey = (uyi >> 52 & 0x7ff) as i64;
|
||||
let sx = uxi >> 63;
|
||||
let mut i;
|
||||
|
||||
if uyi << 1 == 0 || y.is_nan() || ex == 0x7ff {
|
||||
return (x * y) / (x * y);
|
||||
}
|
||||
if uxi << 1 <= uyi << 1 {
|
||||
if uxi << 1 == uyi << 1 {
|
||||
return 0.0 * x;
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
/* normalize x and y */
|
||||
if ex == 0 {
|
||||
i = uxi << 12;
|
||||
while i >> 63 == 0 {
|
||||
ex -= 1;
|
||||
i <<= 1;
|
||||
}
|
||||
uxi <<= -ex + 1;
|
||||
} else {
|
||||
uxi &= u64::MAX >> 12;
|
||||
uxi |= 1 << 52;
|
||||
}
|
||||
if ey == 0 {
|
||||
i = uyi << 12;
|
||||
while i >> 63 == 0 {
|
||||
ey -= 1;
|
||||
i <<= 1;
|
||||
}
|
||||
uyi <<= -ey + 1;
|
||||
} else {
|
||||
uyi &= u64::MAX >> 12;
|
||||
uyi |= 1 << 52;
|
||||
}
|
||||
|
||||
/* x mod y */
|
||||
while ex > ey {
|
||||
i = uxi.wrapping_sub(uyi);
|
||||
if i >> 63 == 0 {
|
||||
if i == 0 {
|
||||
return 0.0 * x;
|
||||
}
|
||||
uxi = i;
|
||||
}
|
||||
uxi <<= 1;
|
||||
ex -= 1;
|
||||
}
|
||||
i = uxi.wrapping_sub(uyi);
|
||||
if i >> 63 == 0 {
|
||||
if i == 0 {
|
||||
return 0.0 * x;
|
||||
}
|
||||
uxi = i;
|
||||
}
|
||||
while uxi >> 52 == 0 {
|
||||
uxi <<= 1;
|
||||
ex -= 1;
|
||||
}
|
||||
|
||||
/* scale result */
|
||||
if ex > 0 {
|
||||
uxi -= 1 << 52;
|
||||
uxi |= (ex as u64) << 52;
|
||||
} else {
|
||||
uxi >>= -ex + 1;
|
||||
}
|
||||
uxi |= (sx as u64) << 63;
|
||||
|
||||
f64::from_bits(uxi)
|
||||
}
|
89
mikros_std_deps/libm-0.2.8/src/math/fmodf.rs
Normal file
89
mikros_std_deps/libm-0.2.8/src/math/fmodf.rs
Normal file
@ -0,0 +1,89 @@
|
||||
use core::f32;
|
||||
use core::u32;
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn fmodf(x: f32, y: f32) -> f32 {
|
||||
let mut uxi = x.to_bits();
|
||||
let mut uyi = y.to_bits();
|
||||
let mut ex = (uxi >> 23 & 0xff) as i32;
|
||||
let mut ey = (uyi >> 23 & 0xff) as i32;
|
||||
let sx = uxi & 0x80000000;
|
||||
let mut i;
|
||||
|
||||
if uyi << 1 == 0 || y.is_nan() || ex == 0xff {
|
||||
return (x * y) / (x * y);
|
||||
}
|
||||
|
||||
if uxi << 1 <= uyi << 1 {
|
||||
if uxi << 1 == uyi << 1 {
|
||||
return 0.0 * x;
|
||||
}
|
||||
|
||||
return x;
|
||||
}
|
||||
|
||||
/* normalize x and y */
|
||||
if ex == 0 {
|
||||
i = uxi << 9;
|
||||
while i >> 31 == 0 {
|
||||
ex -= 1;
|
||||
i <<= 1;
|
||||
}
|
||||
|
||||
uxi <<= -ex + 1;
|
||||
} else {
|
||||
uxi &= u32::MAX >> 9;
|
||||
uxi |= 1 << 23;
|
||||
}
|
||||
|
||||
if ey == 0 {
|
||||
i = uyi << 9;
|
||||
while i >> 31 == 0 {
|
||||
ey -= 1;
|
||||
i <<= 1;
|
||||
}
|
||||
|
||||
uyi <<= -ey + 1;
|
||||
} else {
|
||||
uyi &= u32::MAX >> 9;
|
||||
uyi |= 1 << 23;
|
||||
}
|
||||
|
||||
/* x mod y */
|
||||
while ex > ey {
|
||||
i = uxi.wrapping_sub(uyi);
|
||||
if i >> 31 == 0 {
|
||||
if i == 0 {
|
||||
return 0.0 * x;
|
||||
}
|
||||
uxi = i;
|
||||
}
|
||||
uxi <<= 1;
|
||||
|
||||
ex -= 1;
|
||||
}
|
||||
|
||||
i = uxi.wrapping_sub(uyi);
|
||||
if i >> 31 == 0 {
|
||||
if i == 0 {
|
||||
return 0.0 * x;
|
||||
}
|
||||
uxi = i;
|
||||
}
|
||||
|
||||
while uxi >> 23 == 0 {
|
||||
uxi <<= 1;
|
||||
ex -= 1;
|
||||
}
|
||||
|
||||
/* scale result up */
|
||||
if ex > 0 {
|
||||
uxi -= 1 << 23;
|
||||
uxi |= (ex as u32) << 23;
|
||||
} else {
|
||||
uxi >>= -ex + 1;
|
||||
}
|
||||
uxi |= sx;
|
||||
|
||||
f32::from_bits(uxi)
|
||||
}
|
20
mikros_std_deps/libm-0.2.8/src/math/frexp.rs
Normal file
20
mikros_std_deps/libm-0.2.8/src/math/frexp.rs
Normal file
@ -0,0 +1,20 @@
|
||||
pub fn frexp(x: f64) -> (f64, i32) {
|
||||
let mut y = x.to_bits();
|
||||
let ee = ((y >> 52) & 0x7ff) as i32;
|
||||
|
||||
if ee == 0 {
|
||||
if x != 0.0 {
|
||||
let x1p64 = f64::from_bits(0x43f0000000000000);
|
||||
let (x, e) = frexp(x * x1p64);
|
||||
return (x, e - 64);
|
||||
}
|
||||
return (x, 0);
|
||||
} else if ee == 0x7ff {
|
||||
return (x, 0);
|
||||
}
|
||||
|
||||
let e = ee - 0x3fe;
|
||||
y &= 0x800fffffffffffff;
|
||||
y |= 0x3fe0000000000000;
|
||||
return (f64::from_bits(y), e);
|
||||
}
|
21
mikros_std_deps/libm-0.2.8/src/math/frexpf.rs
Normal file
21
mikros_std_deps/libm-0.2.8/src/math/frexpf.rs
Normal file
@ -0,0 +1,21 @@
|
||||
pub fn frexpf(x: f32) -> (f32, i32) {
|
||||
let mut y = x.to_bits();
|
||||
let ee: i32 = ((y >> 23) & 0xff) as i32;
|
||||
|
||||
if ee == 0 {
|
||||
if x != 0.0 {
|
||||
let x1p64 = f32::from_bits(0x5f800000);
|
||||
let (x, e) = frexpf(x * x1p64);
|
||||
return (x, e - 64);
|
||||
} else {
|
||||
return (x, 0);
|
||||
}
|
||||
} else if ee == 0xff {
|
||||
return (x, 0);
|
||||
}
|
||||
|
||||
let e = ee - 0x7e;
|
||||
y &= 0x807fffff;
|
||||
y |= 0x3f000000;
|
||||
(f32::from_bits(y), e)
|
||||
}
|
74
mikros_std_deps/libm-0.2.8/src/math/hypot.rs
Normal file
74
mikros_std_deps/libm-0.2.8/src/math/hypot.rs
Normal file
@ -0,0 +1,74 @@
|
||||
use core::f64;
|
||||
|
||||
use super::sqrt;
|
||||
|
||||
const SPLIT: f64 = 134217728. + 1.; // 0x1p27 + 1 === (2 ^ 27) + 1
|
||||
|
||||
fn sq(x: f64) -> (f64, f64) {
|
||||
let xh: f64;
|
||||
let xl: f64;
|
||||
let xc: f64;
|
||||
|
||||
xc = x * SPLIT;
|
||||
xh = x - xc + xc;
|
||||
xl = x - xh;
|
||||
let hi = x * x;
|
||||
let lo = xh * xh - hi + 2. * xh * xl + xl * xl;
|
||||
(hi, lo)
|
||||
}
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn hypot(mut x: f64, mut y: f64) -> f64 {
|
||||
let x1p700 = f64::from_bits(0x6bb0000000000000); // 0x1p700 === 2 ^ 700
|
||||
let x1p_700 = f64::from_bits(0x1430000000000000); // 0x1p-700 === 2 ^ -700
|
||||
|
||||
let mut uxi = x.to_bits();
|
||||
let mut uyi = y.to_bits();
|
||||
let uti;
|
||||
let ex: i64;
|
||||
let ey: i64;
|
||||
let mut z: f64;
|
||||
|
||||
/* arrange |x| >= |y| */
|
||||
uxi &= -1i64 as u64 >> 1;
|
||||
uyi &= -1i64 as u64 >> 1;
|
||||
if uxi < uyi {
|
||||
uti = uxi;
|
||||
uxi = uyi;
|
||||
uyi = uti;
|
||||
}
|
||||
|
||||
/* special cases */
|
||||
ex = (uxi >> 52) as i64;
|
||||
ey = (uyi >> 52) as i64;
|
||||
x = f64::from_bits(uxi);
|
||||
y = f64::from_bits(uyi);
|
||||
/* note: hypot(inf,nan) == inf */
|
||||
if ey == 0x7ff {
|
||||
return y;
|
||||
}
|
||||
if ex == 0x7ff || uyi == 0 {
|
||||
return x;
|
||||
}
|
||||
/* note: hypot(x,y) ~= x + y*y/x/2 with inexact for small y/x */
|
||||
/* 64 difference is enough for ld80 double_t */
|
||||
if ex - ey > 64 {
|
||||
return x + y;
|
||||
}
|
||||
|
||||
/* precise sqrt argument in nearest rounding mode without overflow */
|
||||
/* xh*xh must not overflow and xl*xl must not underflow in sq */
|
||||
z = 1.;
|
||||
if ex > 0x3ff + 510 {
|
||||
z = x1p700;
|
||||
x *= x1p_700;
|
||||
y *= x1p_700;
|
||||
} else if ey < 0x3ff - 450 {
|
||||
z = x1p_700;
|
||||
x *= x1p700;
|
||||
y *= x1p700;
|
||||
}
|
||||
let (hx, lx) = sq(x);
|
||||
let (hy, ly) = sq(y);
|
||||
z * sqrt(ly + lx + hy + hx)
|
||||
}
|
43
mikros_std_deps/libm-0.2.8/src/math/hypotf.rs
Normal file
43
mikros_std_deps/libm-0.2.8/src/math/hypotf.rs
Normal file
@ -0,0 +1,43 @@
|
||||
use core::f32;
|
||||
|
||||
use super::sqrtf;
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn hypotf(mut x: f32, mut y: f32) -> f32 {
|
||||
let x1p90 = f32::from_bits(0x6c800000); // 0x1p90f === 2 ^ 90
|
||||
let x1p_90 = f32::from_bits(0x12800000); // 0x1p-90f === 2 ^ -90
|
||||
|
||||
let mut uxi = x.to_bits();
|
||||
let mut uyi = y.to_bits();
|
||||
let uti;
|
||||
let mut z: f32;
|
||||
|
||||
uxi &= -1i32 as u32 >> 1;
|
||||
uyi &= -1i32 as u32 >> 1;
|
||||
if uxi < uyi {
|
||||
uti = uxi;
|
||||
uxi = uyi;
|
||||
uyi = uti;
|
||||
}
|
||||
|
||||
x = f32::from_bits(uxi);
|
||||
y = f32::from_bits(uyi);
|
||||
if uyi == 0xff << 23 {
|
||||
return y;
|
||||
}
|
||||
if uxi >= 0xff << 23 || uyi == 0 || uxi - uyi >= 25 << 23 {
|
||||
return x + y;
|
||||
}
|
||||
|
||||
z = 1.;
|
||||
if uxi >= (0x7f + 60) << 23 {
|
||||
z = x1p90;
|
||||
x *= x1p_90;
|
||||
y *= x1p_90;
|
||||
} else if uyi < (0x7f - 60) << 23 {
|
||||
z = x1p_90;
|
||||
x *= x1p90;
|
||||
y *= x1p90;
|
||||
}
|
||||
z * sqrtf((x as f64 * x as f64 + y as f64 * y as f64) as f32)
|
||||
}
|
28
mikros_std_deps/libm-0.2.8/src/math/ilogb.rs
Normal file
28
mikros_std_deps/libm-0.2.8/src/math/ilogb.rs
Normal file
@ -0,0 +1,28 @@
|
||||
const FP_ILOGBNAN: i32 = -1 - 0x7fffffff;
|
||||
const FP_ILOGB0: i32 = FP_ILOGBNAN;
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn ilogb(x: f64) -> i32 {
|
||||
let mut i: u64 = x.to_bits();
|
||||
let e = ((i >> 52) & 0x7ff) as i32;
|
||||
|
||||
if e == 0 {
|
||||
i <<= 12;
|
||||
if i == 0 {
|
||||
force_eval!(0.0 / 0.0);
|
||||
return FP_ILOGB0;
|
||||
}
|
||||
/* subnormal x */
|
||||
let mut e = -0x3ff;
|
||||
while (i >> 63) == 0 {
|
||||
e -= 1;
|
||||
i <<= 1;
|
||||
}
|
||||
e
|
||||
} else if e == 0x7ff {
|
||||
force_eval!(0.0 / 0.0);
|
||||
if (i << 12) != 0 { FP_ILOGBNAN } else { i32::max_value() }
|
||||
} else {
|
||||
e - 0x3ff
|
||||
}
|
||||
}
|
28
mikros_std_deps/libm-0.2.8/src/math/ilogbf.rs
Normal file
28
mikros_std_deps/libm-0.2.8/src/math/ilogbf.rs
Normal file
@ -0,0 +1,28 @@
|
||||
const FP_ILOGBNAN: i32 = -1 - 0x7fffffff;
|
||||
const FP_ILOGB0: i32 = FP_ILOGBNAN;
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn ilogbf(x: f32) -> i32 {
|
||||
let mut i = x.to_bits();
|
||||
let e = ((i >> 23) & 0xff) as i32;
|
||||
|
||||
if e == 0 {
|
||||
i <<= 9;
|
||||
if i == 0 {
|
||||
force_eval!(0.0 / 0.0);
|
||||
return FP_ILOGB0;
|
||||
}
|
||||
/* subnormal x */
|
||||
let mut e = -0x7f;
|
||||
while (i >> 31) == 0 {
|
||||
e -= 1;
|
||||
i <<= 1;
|
||||
}
|
||||
e
|
||||
} else if e == 0xff {
|
||||
force_eval!(0.0 / 0.0);
|
||||
if (i << 9) != 0 { FP_ILOGBNAN } else { i32::max_value() }
|
||||
} else {
|
||||
e - 0x7f
|
||||
}
|
||||
}
|
422
mikros_std_deps/libm-0.2.8/src/math/j0.rs
Normal file
422
mikros_std_deps/libm-0.2.8/src/math/j0.rs
Normal file
@ -0,0 +1,422 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_j0.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* j0(x), y0(x)
|
||||
* Bessel function of the first and second kinds of order zero.
|
||||
* Method -- j0(x):
|
||||
* 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
|
||||
* 2. Reduce x to |x| since j0(x)=j0(-x), and
|
||||
* for x in (0,2)
|
||||
* j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x;
|
||||
* (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
|
||||
* for x in (2,inf)
|
||||
* j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
|
||||
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
|
||||
* as follow:
|
||||
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
|
||||
* = 1/sqrt(2) * (cos(x) + sin(x))
|
||||
* sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) - cos(x))
|
||||
* (To avoid cancellation, use
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
* to compute the worse one.)
|
||||
*
|
||||
* 3 Special cases
|
||||
* j0(nan)= nan
|
||||
* j0(0) = 1
|
||||
* j0(inf) = 0
|
||||
*
|
||||
* Method -- y0(x):
|
||||
* 1. For x<2.
|
||||
* Since
|
||||
* y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
|
||||
* therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
|
||||
* We use the following function to approximate y0,
|
||||
* y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
|
||||
* where
|
||||
* U(z) = u00 + u01*z + ... + u06*z^6
|
||||
* V(z) = 1 + v01*z + ... + v04*z^4
|
||||
* with absolute approximation error bounded by 2**-72.
|
||||
* Note: For tiny x, U/V = u0 and j0(x)~1, hence
|
||||
* y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
|
||||
* 2. For x>=2.
|
||||
* y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
|
||||
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
|
||||
* by the method mentioned above.
|
||||
* 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
|
||||
*/
|
||||
|
||||
use super::{cos, fabs, get_high_word, get_low_word, log, sin, sqrt};
|
||||
const INVSQRTPI: f64 = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
|
||||
const TPI: f64 = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */
|
||||
|
||||
/* common method when |x|>=2 */
|
||||
fn common(ix: u32, x: f64, y0: bool) -> f64 {
|
||||
let s: f64;
|
||||
let mut c: f64;
|
||||
let mut ss: f64;
|
||||
let mut cc: f64;
|
||||
let z: f64;
|
||||
|
||||
/*
|
||||
* j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x-pi/4)-q0(x)*sin(x-pi/4))
|
||||
* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x-pi/4)+q0(x)*cos(x-pi/4))
|
||||
*
|
||||
* sin(x-pi/4) = (sin(x) - cos(x))/sqrt(2)
|
||||
* cos(x-pi/4) = (sin(x) + cos(x))/sqrt(2)
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
*/
|
||||
s = sin(x);
|
||||
c = cos(x);
|
||||
if y0 {
|
||||
c = -c;
|
||||
}
|
||||
cc = s + c;
|
||||
/* avoid overflow in 2*x, big ulp error when x>=0x1p1023 */
|
||||
if ix < 0x7fe00000 {
|
||||
ss = s - c;
|
||||
z = -cos(2.0 * x);
|
||||
if s * c < 0.0 {
|
||||
cc = z / ss;
|
||||
} else {
|
||||
ss = z / cc;
|
||||
}
|
||||
if ix < 0x48000000 {
|
||||
if y0 {
|
||||
ss = -ss;
|
||||
}
|
||||
cc = pzero(x) * cc - qzero(x) * ss;
|
||||
}
|
||||
}
|
||||
return INVSQRTPI * cc / sqrt(x);
|
||||
}
|
||||
|
||||
/* R0/S0 on [0, 2.00] */
|
||||
const R02: f64 = 1.56249999999999947958e-02; /* 0x3F8FFFFF, 0xFFFFFFFD */
|
||||
const R03: f64 = -1.89979294238854721751e-04; /* 0xBF28E6A5, 0xB61AC6E9 */
|
||||
const R04: f64 = 1.82954049532700665670e-06; /* 0x3EBEB1D1, 0x0C503919 */
|
||||
const R05: f64 = -4.61832688532103189199e-09; /* 0xBE33D5E7, 0x73D63FCE */
|
||||
const S01: f64 = 1.56191029464890010492e-02; /* 0x3F8FFCE8, 0x82C8C2A4 */
|
||||
const S02: f64 = 1.16926784663337450260e-04; /* 0x3F1EA6D2, 0xDD57DBF4 */
|
||||
const S03: f64 = 5.13546550207318111446e-07; /* 0x3EA13B54, 0xCE84D5A9 */
|
||||
const S04: f64 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
|
||||
|
||||
pub fn j0(mut x: f64) -> f64 {
|
||||
let z: f64;
|
||||
let r: f64;
|
||||
let s: f64;
|
||||
let mut ix: u32;
|
||||
|
||||
ix = get_high_word(x);
|
||||
ix &= 0x7fffffff;
|
||||
|
||||
/* j0(+-inf)=0, j0(nan)=nan */
|
||||
if ix >= 0x7ff00000 {
|
||||
return 1.0 / (x * x);
|
||||
}
|
||||
x = fabs(x);
|
||||
|
||||
if ix >= 0x40000000 {
|
||||
/* |x| >= 2 */
|
||||
/* large ulp error near zeros: 2.4, 5.52, 8.6537,.. */
|
||||
return common(ix, x, false);
|
||||
}
|
||||
|
||||
/* 1 - x*x/4 + x*x*R(x^2)/S(x^2) */
|
||||
if ix >= 0x3f200000 {
|
||||
/* |x| >= 2**-13 */
|
||||
/* up to 4ulp error close to 2 */
|
||||
z = x * x;
|
||||
r = z * (R02 + z * (R03 + z * (R04 + z * R05)));
|
||||
s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * S04)));
|
||||
return (1.0 + x / 2.0) * (1.0 - x / 2.0) + z * (r / s);
|
||||
}
|
||||
|
||||
/* 1 - x*x/4 */
|
||||
/* prevent underflow */
|
||||
/* inexact should be raised when x!=0, this is not done correctly */
|
||||
if ix >= 0x38000000 {
|
||||
/* |x| >= 2**-127 */
|
||||
x = 0.25 * x * x;
|
||||
}
|
||||
return 1.0 - x;
|
||||
}
|
||||
|
||||
const U00: f64 = -7.38042951086872317523e-02; /* 0xBFB2E4D6, 0x99CBD01F */
|
||||
const U01: f64 = 1.76666452509181115538e-01; /* 0x3FC69D01, 0x9DE9E3FC */
|
||||
const U02: f64 = -1.38185671945596898896e-02; /* 0xBF8C4CE8, 0xB16CFA97 */
|
||||
const U03: f64 = 3.47453432093683650238e-04; /* 0x3F36C54D, 0x20B29B6B */
|
||||
const U04: f64 = -3.81407053724364161125e-06; /* 0xBECFFEA7, 0x73D25CAD */
|
||||
const U05: f64 = 1.95590137035022920206e-08; /* 0x3E550057, 0x3B4EABD4 */
|
||||
const U06: f64 = -3.98205194132103398453e-11; /* 0xBDC5E43D, 0x693FB3C8 */
|
||||
const V01: f64 = 1.27304834834123699328e-02; /* 0x3F8A1270, 0x91C9C71A */
|
||||
const V02: f64 = 7.60068627350353253702e-05; /* 0x3F13ECBB, 0xF578C6C1 */
|
||||
const V03: f64 = 2.59150851840457805467e-07; /* 0x3E91642D, 0x7FF202FD */
|
||||
const V04: f64 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
|
||||
|
||||
pub fn y0(x: f64) -> f64 {
|
||||
let z: f64;
|
||||
let u: f64;
|
||||
let v: f64;
|
||||
let ix: u32;
|
||||
let lx: u32;
|
||||
|
||||
ix = get_high_word(x);
|
||||
lx = get_low_word(x);
|
||||
|
||||
/* y0(nan)=nan, y0(<0)=nan, y0(0)=-inf, y0(inf)=0 */
|
||||
if ((ix << 1) | lx) == 0 {
|
||||
return -1.0 / 0.0;
|
||||
}
|
||||
if (ix >> 31) != 0 {
|
||||
return 0.0 / 0.0;
|
||||
}
|
||||
if ix >= 0x7ff00000 {
|
||||
return 1.0 / x;
|
||||
}
|
||||
|
||||
if ix >= 0x40000000 {
|
||||
/* x >= 2 */
|
||||
/* large ulp errors near zeros: 3.958, 7.086,.. */
|
||||
return common(ix, x, true);
|
||||
}
|
||||
|
||||
/* U(x^2)/V(x^2) + (2/pi)*j0(x)*log(x) */
|
||||
if ix >= 0x3e400000 {
|
||||
/* x >= 2**-27 */
|
||||
/* large ulp error near the first zero, x ~= 0.89 */
|
||||
z = x * x;
|
||||
u = U00 + z * (U01 + z * (U02 + z * (U03 + z * (U04 + z * (U05 + z * U06)))));
|
||||
v = 1.0 + z * (V01 + z * (V02 + z * (V03 + z * V04)));
|
||||
return u / v + TPI * (j0(x) * log(x));
|
||||
}
|
||||
return U00 + TPI * log(x);
|
||||
}
|
||||
|
||||
/* The asymptotic expansions of pzero is
|
||||
* 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
|
||||
* For x >= 2, We approximate pzero by
|
||||
* pzero(x) = 1 + (R/S)
|
||||
* where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
|
||||
* S = 1 + pS0*s^2 + ... + pS4*s^10
|
||||
* and
|
||||
* | pzero(x)-1-R/S | <= 2 ** ( -60.26)
|
||||
*/
|
||||
const PR8: [f64; 6] = [
|
||||
/* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
-7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
|
||||
-8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
|
||||
-2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
|
||||
-2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
|
||||
-5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
|
||||
];
|
||||
const PS8: [f64; 5] = [
|
||||
1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
|
||||
3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
|
||||
4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
|
||||
1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
|
||||
4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
|
||||
];
|
||||
|
||||
const PR5: [f64; 6] = [
|
||||
/* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
-1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
|
||||
-7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
|
||||
-4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
|
||||
-6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
|
||||
-3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
|
||||
-3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
|
||||
];
|
||||
const PS5: [f64; 5] = [
|
||||
6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
|
||||
1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
|
||||
5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
|
||||
9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
|
||||
2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
|
||||
];
|
||||
|
||||
const PR3: [f64; 6] = [
|
||||
/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
-2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
|
||||
-7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
|
||||
-2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
|
||||
-2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
|
||||
-5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
|
||||
-3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
|
||||
];
|
||||
const PS3: [f64; 5] = [
|
||||
3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
|
||||
3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
|
||||
1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
|
||||
1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
|
||||
1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
|
||||
];
|
||||
|
||||
const PR2: [f64; 6] = [
|
||||
/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
-8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
|
||||
-7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
|
||||
-1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
|
||||
-7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
|
||||
-1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
|
||||
-3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
|
||||
];
|
||||
const PS2: [f64; 5] = [
|
||||
2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
|
||||
1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
|
||||
2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
|
||||
1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
|
||||
1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
|
||||
];
|
||||
|
||||
fn pzero(x: f64) -> f64 {
|
||||
let p: &[f64; 6];
|
||||
let q: &[f64; 5];
|
||||
let z: f64;
|
||||
let r: f64;
|
||||
let s: f64;
|
||||
let mut ix: u32;
|
||||
|
||||
ix = get_high_word(x);
|
||||
ix &= 0x7fffffff;
|
||||
if ix >= 0x40200000 {
|
||||
p = &PR8;
|
||||
q = &PS8;
|
||||
} else if ix >= 0x40122E8B {
|
||||
p = &PR5;
|
||||
q = &PS5;
|
||||
} else if ix >= 0x4006DB6D {
|
||||
p = &PR3;
|
||||
q = &PS3;
|
||||
} else
|
||||
/*ix >= 0x40000000*/
|
||||
{
|
||||
p = &PR2;
|
||||
q = &PS2;
|
||||
}
|
||||
z = 1.0 / (x * x);
|
||||
r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
|
||||
s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
|
||||
return 1.0 + r / s;
|
||||
}
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of qzero is
|
||||
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
|
||||
* We approximate pzero by
|
||||
* qzero(x) = s*(-1.25 + (R/S))
|
||||
* where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
|
||||
* S = 1 + qS0*s^2 + ... + qS5*s^12
|
||||
* and
|
||||
* | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
|
||||
*/
|
||||
const QR8: [f64; 6] = [
|
||||
/* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
|
||||
1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
|
||||
5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
|
||||
8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
|
||||
3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
|
||||
];
|
||||
const QS8: [f64; 6] = [
|
||||
1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
|
||||
8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
|
||||
1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
|
||||
8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
|
||||
8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
|
||||
-3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
|
||||
];
|
||||
|
||||
const QR5: [f64; 6] = [
|
||||
/* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
|
||||
7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
|
||||
5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
|
||||
1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
|
||||
1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
|
||||
1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
|
||||
];
|
||||
const QS5: [f64; 6] = [
|
||||
8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
|
||||
2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
|
||||
1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
|
||||
5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
|
||||
3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
|
||||
-5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
|
||||
];
|
||||
|
||||
const QR3: [f64; 6] = [
|
||||
/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
|
||||
7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
|
||||
3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
|
||||
4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
|
||||
1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
|
||||
1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
|
||||
];
|
||||
const QS3: [f64; 6] = [
|
||||
4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
|
||||
7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
|
||||
3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
|
||||
6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
|
||||
2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
|
||||
-1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
|
||||
];
|
||||
|
||||
const QR2: [f64; 6] = [
|
||||
/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
|
||||
7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
|
||||
1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
|
||||
1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
|
||||
3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
|
||||
1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
|
||||
];
|
||||
const QS2: [f64; 6] = [
|
||||
3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
|
||||
2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
|
||||
8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
|
||||
8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
|
||||
2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
|
||||
-5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
|
||||
];
|
||||
|
||||
fn qzero(x: f64) -> f64 {
|
||||
let p: &[f64; 6];
|
||||
let q: &[f64; 6];
|
||||
let s: f64;
|
||||
let r: f64;
|
||||
let z: f64;
|
||||
let mut ix: u32;
|
||||
|
||||
ix = get_high_word(x);
|
||||
ix &= 0x7fffffff;
|
||||
if ix >= 0x40200000 {
|
||||
p = &QR8;
|
||||
q = &QS8;
|
||||
} else if ix >= 0x40122E8B {
|
||||
p = &QR5;
|
||||
q = &QS5;
|
||||
} else if ix >= 0x4006DB6D {
|
||||
p = &QR3;
|
||||
q = &QS3;
|
||||
} else
|
||||
/*ix >= 0x40000000*/
|
||||
{
|
||||
p = &QR2;
|
||||
q = &QS2;
|
||||
}
|
||||
z = 1.0 / (x * x);
|
||||
r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
|
||||
s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
|
||||
return (-0.125 + r / s) / x;
|
||||
}
|
359
mikros_std_deps/libm-0.2.8/src/math/j0f.rs
Normal file
359
mikros_std_deps/libm-0.2.8/src/math/j0f.rs
Normal file
@ -0,0 +1,359 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_j0f.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
use super::{cosf, fabsf, logf, sinf, sqrtf};
|
||||
|
||||
const INVSQRTPI: f32 = 5.6418961287e-01; /* 0x3f106ebb */
|
||||
const TPI: f32 = 6.3661974669e-01; /* 0x3f22f983 */
|
||||
|
||||
fn common(ix: u32, x: f32, y0: bool) -> f32 {
|
||||
let z: f32;
|
||||
let s: f32;
|
||||
let mut c: f32;
|
||||
let mut ss: f32;
|
||||
let mut cc: f32;
|
||||
/*
|
||||
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
|
||||
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
|
||||
*/
|
||||
s = sinf(x);
|
||||
c = cosf(x);
|
||||
if y0 {
|
||||
c = -c;
|
||||
}
|
||||
cc = s + c;
|
||||
if ix < 0x7f000000 {
|
||||
ss = s - c;
|
||||
z = -cosf(2.0 * x);
|
||||
if s * c < 0.0 {
|
||||
cc = z / ss;
|
||||
} else {
|
||||
ss = z / cc;
|
||||
}
|
||||
if ix < 0x58800000 {
|
||||
if y0 {
|
||||
ss = -ss;
|
||||
}
|
||||
cc = pzerof(x) * cc - qzerof(x) * ss;
|
||||
}
|
||||
}
|
||||
return INVSQRTPI * cc / sqrtf(x);
|
||||
}
|
||||
|
||||
/* R0/S0 on [0, 2.00] */
|
||||
const R02: f32 = 1.5625000000e-02; /* 0x3c800000 */
|
||||
const R03: f32 = -1.8997929874e-04; /* 0xb947352e */
|
||||
const R04: f32 = 1.8295404516e-06; /* 0x35f58e88 */
|
||||
const R05: f32 = -4.6183270541e-09; /* 0xb19eaf3c */
|
||||
const S01: f32 = 1.5619102865e-02; /* 0x3c7fe744 */
|
||||
const S02: f32 = 1.1692678527e-04; /* 0x38f53697 */
|
||||
const S03: f32 = 5.1354652442e-07; /* 0x3509daa6 */
|
||||
const S04: f32 = 1.1661400734e-09; /* 0x30a045e8 */
|
||||
|
||||
pub fn j0f(mut x: f32) -> f32 {
|
||||
let z: f32;
|
||||
let r: f32;
|
||||
let s: f32;
|
||||
let mut ix: u32;
|
||||
|
||||
ix = x.to_bits();
|
||||
ix &= 0x7fffffff;
|
||||
if ix >= 0x7f800000 {
|
||||
return 1.0 / (x * x);
|
||||
}
|
||||
x = fabsf(x);
|
||||
|
||||
if ix >= 0x40000000 {
|
||||
/* |x| >= 2 */
|
||||
/* large ulp error near zeros */
|
||||
return common(ix, x, false);
|
||||
}
|
||||
if ix >= 0x3a000000 {
|
||||
/* |x| >= 2**-11 */
|
||||
/* up to 4ulp error near 2 */
|
||||
z = x * x;
|
||||
r = z * (R02 + z * (R03 + z * (R04 + z * R05)));
|
||||
s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * S04)));
|
||||
return (1.0 + x / 2.0) * (1.0 - x / 2.0) + z * (r / s);
|
||||
}
|
||||
if ix >= 0x21800000 {
|
||||
/* |x| >= 2**-60 */
|
||||
x = 0.25 * x * x;
|
||||
}
|
||||
return 1.0 - x;
|
||||
}
|
||||
|
||||
const U00: f32 = -7.3804296553e-02; /* 0xbd9726b5 */
|
||||
const U01: f32 = 1.7666645348e-01; /* 0x3e34e80d */
|
||||
const U02: f32 = -1.3818567619e-02; /* 0xbc626746 */
|
||||
const U03: f32 = 3.4745343146e-04; /* 0x39b62a69 */
|
||||
const U04: f32 = -3.8140706238e-06; /* 0xb67ff53c */
|
||||
const U05: f32 = 1.9559013964e-08; /* 0x32a802ba */
|
||||
const U06: f32 = -3.9820518410e-11; /* 0xae2f21eb */
|
||||
const V01: f32 = 1.2730483897e-02; /* 0x3c509385 */
|
||||
const V02: f32 = 7.6006865129e-05; /* 0x389f65e0 */
|
||||
const V03: f32 = 2.5915085189e-07; /* 0x348b216c */
|
||||
const V04: f32 = 4.4111031494e-10; /* 0x2ff280c2 */
|
||||
|
||||
pub fn y0f(x: f32) -> f32 {
|
||||
let z: f32;
|
||||
let u: f32;
|
||||
let v: f32;
|
||||
let ix: u32;
|
||||
|
||||
ix = x.to_bits();
|
||||
if (ix & 0x7fffffff) == 0 {
|
||||
return -1.0 / 0.0;
|
||||
}
|
||||
if (ix >> 31) != 0 {
|
||||
return 0.0 / 0.0;
|
||||
}
|
||||
if ix >= 0x7f800000 {
|
||||
return 1.0 / x;
|
||||
}
|
||||
if ix >= 0x40000000 {
|
||||
/* |x| >= 2.0 */
|
||||
/* large ulp error near zeros */
|
||||
return common(ix, x, true);
|
||||
}
|
||||
if ix >= 0x39000000 {
|
||||
/* x >= 2**-13 */
|
||||
/* large ulp error at x ~= 0.89 */
|
||||
z = x * x;
|
||||
u = U00 + z * (U01 + z * (U02 + z * (U03 + z * (U04 + z * (U05 + z * U06)))));
|
||||
v = 1.0 + z * (V01 + z * (V02 + z * (V03 + z * V04)));
|
||||
return u / v + TPI * (j0f(x) * logf(x));
|
||||
}
|
||||
return U00 + TPI * logf(x);
|
||||
}
|
||||
|
||||
/* The asymptotic expansions of pzero is
|
||||
* 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
|
||||
* For x >= 2, We approximate pzero by
|
||||
* pzero(x) = 1 + (R/S)
|
||||
* where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
|
||||
* S = 1 + pS0*s^2 + ... + pS4*s^10
|
||||
* and
|
||||
* | pzero(x)-1-R/S | <= 2 ** ( -60.26)
|
||||
*/
|
||||
const PR8: [f32; 6] = [
|
||||
/* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.0000000000e+00, /* 0x00000000 */
|
||||
-7.0312500000e-02, /* 0xbd900000 */
|
||||
-8.0816707611e+00, /* 0xc1014e86 */
|
||||
-2.5706311035e+02, /* 0xc3808814 */
|
||||
-2.4852163086e+03, /* 0xc51b5376 */
|
||||
-5.2530439453e+03, /* 0xc5a4285a */
|
||||
];
|
||||
const PS8: [f32; 5] = [
|
||||
1.1653436279e+02, /* 0x42e91198 */
|
||||
3.8337448730e+03, /* 0x456f9beb */
|
||||
4.0597855469e+04, /* 0x471e95db */
|
||||
1.1675296875e+05, /* 0x47e4087c */
|
||||
4.7627726562e+04, /* 0x473a0bba */
|
||||
];
|
||||
const PR5: [f32; 6] = [
|
||||
/* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
-1.1412546255e-11, /* 0xad48c58a */
|
||||
-7.0312492549e-02, /* 0xbd8fffff */
|
||||
-4.1596107483e+00, /* 0xc0851b88 */
|
||||
-6.7674766541e+01, /* 0xc287597b */
|
||||
-3.3123129272e+02, /* 0xc3a59d9b */
|
||||
-3.4643338013e+02, /* 0xc3ad3779 */
|
||||
];
|
||||
const PS5: [f32; 5] = [
|
||||
6.0753936768e+01, /* 0x42730408 */
|
||||
1.0512523193e+03, /* 0x44836813 */
|
||||
5.9789707031e+03, /* 0x45bad7c4 */
|
||||
9.6254453125e+03, /* 0x461665c8 */
|
||||
2.4060581055e+03, /* 0x451660ee */
|
||||
];
|
||||
|
||||
const PR3: [f32; 6] = [
|
||||
/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
-2.5470459075e-09, /* 0xb12f081b */
|
||||
-7.0311963558e-02, /* 0xbd8fffb8 */
|
||||
-2.4090321064e+00, /* 0xc01a2d95 */
|
||||
-2.1965976715e+01, /* 0xc1afba52 */
|
||||
-5.8079170227e+01, /* 0xc2685112 */
|
||||
-3.1447946548e+01, /* 0xc1fb9565 */
|
||||
];
|
||||
const PS3: [f32; 5] = [
|
||||
3.5856033325e+01, /* 0x420f6c94 */
|
||||
3.6151397705e+02, /* 0x43b4c1ca */
|
||||
1.1936077881e+03, /* 0x44953373 */
|
||||
1.1279968262e+03, /* 0x448cffe6 */
|
||||
1.7358093262e+02, /* 0x432d94b8 */
|
||||
];
|
||||
|
||||
const PR2: [f32; 6] = [
|
||||
/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
-8.8753431271e-08, /* 0xb3be98b7 */
|
||||
-7.0303097367e-02, /* 0xbd8ffb12 */
|
||||
-1.4507384300e+00, /* 0xbfb9b1cc */
|
||||
-7.6356959343e+00, /* 0xc0f4579f */
|
||||
-1.1193166733e+01, /* 0xc1331736 */
|
||||
-3.2336456776e+00, /* 0xc04ef40d */
|
||||
];
|
||||
const PS2: [f32; 5] = [
|
||||
2.2220300674e+01, /* 0x41b1c32d */
|
||||
1.3620678711e+02, /* 0x430834f0 */
|
||||
2.7047027588e+02, /* 0x43873c32 */
|
||||
1.5387539673e+02, /* 0x4319e01a */
|
||||
1.4657617569e+01, /* 0x416a859a */
|
||||
];
|
||||
|
||||
fn pzerof(x: f32) -> f32 {
|
||||
let p: &[f32; 6];
|
||||
let q: &[f32; 5];
|
||||
let z: f32;
|
||||
let r: f32;
|
||||
let s: f32;
|
||||
let mut ix: u32;
|
||||
|
||||
ix = x.to_bits();
|
||||
ix &= 0x7fffffff;
|
||||
if ix >= 0x41000000 {
|
||||
p = &PR8;
|
||||
q = &PS8;
|
||||
} else if ix >= 0x409173eb {
|
||||
p = &PR5;
|
||||
q = &PS5;
|
||||
} else if ix >= 0x4036d917 {
|
||||
p = &PR3;
|
||||
q = &PS3;
|
||||
} else
|
||||
/*ix >= 0x40000000*/
|
||||
{
|
||||
p = &PR2;
|
||||
q = &PS2;
|
||||
}
|
||||
z = 1.0 / (x * x);
|
||||
r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
|
||||
s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
|
||||
return 1.0 + r / s;
|
||||
}
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of qzero is
|
||||
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
|
||||
* We approximate pzero by
|
||||
* qzero(x) = s*(-1.25 + (R/S))
|
||||
* where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
|
||||
* S = 1 + qS0*s^2 + ... + qS5*s^12
|
||||
* and
|
||||
* | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
|
||||
*/
|
||||
const QR8: [f32; 6] = [
|
||||
/* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.0000000000e+00, /* 0x00000000 */
|
||||
7.3242187500e-02, /* 0x3d960000 */
|
||||
1.1768206596e+01, /* 0x413c4a93 */
|
||||
5.5767340088e+02, /* 0x440b6b19 */
|
||||
8.8591972656e+03, /* 0x460a6cca */
|
||||
3.7014625000e+04, /* 0x471096a0 */
|
||||
];
|
||||
const QS8: [f32; 6] = [
|
||||
1.6377603149e+02, /* 0x4323c6aa */
|
||||
8.0983447266e+03, /* 0x45fd12c2 */
|
||||
1.4253829688e+05, /* 0x480b3293 */
|
||||
8.0330925000e+05, /* 0x49441ed4 */
|
||||
8.4050156250e+05, /* 0x494d3359 */
|
||||
-3.4389928125e+05, /* 0xc8a7eb69 */
|
||||
];
|
||||
|
||||
const QR5: [f32; 6] = [
|
||||
/* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
1.8408595828e-11, /* 0x2da1ec79 */
|
||||
7.3242180049e-02, /* 0x3d95ffff */
|
||||
5.8356351852e+00, /* 0x40babd86 */
|
||||
1.3511157227e+02, /* 0x43071c90 */
|
||||
1.0272437744e+03, /* 0x448067cd */
|
||||
1.9899779053e+03, /* 0x44f8bf4b */
|
||||
];
|
||||
const QS5: [f32; 6] = [
|
||||
8.2776611328e+01, /* 0x42a58da0 */
|
||||
2.0778142090e+03, /* 0x4501dd07 */
|
||||
1.8847289062e+04, /* 0x46933e94 */
|
||||
5.6751113281e+04, /* 0x475daf1d */
|
||||
3.5976753906e+04, /* 0x470c88c1 */
|
||||
-5.3543427734e+03, /* 0xc5a752be */
|
||||
];
|
||||
|
||||
const QR3: [f32; 6] = [
|
||||
/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
4.3774099900e-09, /* 0x3196681b */
|
||||
7.3241114616e-02, /* 0x3d95ff70 */
|
||||
3.3442313671e+00, /* 0x405607e3 */
|
||||
4.2621845245e+01, /* 0x422a7cc5 */
|
||||
1.7080809021e+02, /* 0x432acedf */
|
||||
1.6673394775e+02, /* 0x4326bbe4 */
|
||||
];
|
||||
const QS3: [f32; 6] = [
|
||||
4.8758872986e+01, /* 0x42430916 */
|
||||
7.0968920898e+02, /* 0x44316c1c */
|
||||
3.7041481934e+03, /* 0x4567825f */
|
||||
6.4604252930e+03, /* 0x45c9e367 */
|
||||
2.5163337402e+03, /* 0x451d4557 */
|
||||
-1.4924745178e+02, /* 0xc3153f59 */
|
||||
];
|
||||
|
||||
const QR2: [f32; 6] = [
|
||||
/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
1.5044444979e-07, /* 0x342189db */
|
||||
7.3223426938e-02, /* 0x3d95f62a */
|
||||
1.9981917143e+00, /* 0x3fffc4bf */
|
||||
1.4495602608e+01, /* 0x4167edfd */
|
||||
3.1666231155e+01, /* 0x41fd5471 */
|
||||
1.6252708435e+01, /* 0x4182058c */
|
||||
];
|
||||
const QS2: [f32; 6] = [
|
||||
3.0365585327e+01, /* 0x41f2ecb8 */
|
||||
2.6934811401e+02, /* 0x4386ac8f */
|
||||
8.4478375244e+02, /* 0x44533229 */
|
||||
8.8293585205e+02, /* 0x445cbbe5 */
|
||||
2.1266638184e+02, /* 0x4354aa98 */
|
||||
-5.3109550476e+00, /* 0xc0a9f358 */
|
||||
];
|
||||
|
||||
fn qzerof(x: f32) -> f32 {
|
||||
let p: &[f32; 6];
|
||||
let q: &[f32; 6];
|
||||
let s: f32;
|
||||
let r: f32;
|
||||
let z: f32;
|
||||
let mut ix: u32;
|
||||
|
||||
ix = x.to_bits();
|
||||
ix &= 0x7fffffff;
|
||||
if ix >= 0x41000000 {
|
||||
p = &QR8;
|
||||
q = &QS8;
|
||||
} else if ix >= 0x409173eb {
|
||||
p = &QR5;
|
||||
q = &QS5;
|
||||
} else if ix >= 0x4036d917 {
|
||||
p = &QR3;
|
||||
q = &QS3;
|
||||
} else
|
||||
/*ix >= 0x40000000*/
|
||||
{
|
||||
p = &QR2;
|
||||
q = &QS2;
|
||||
}
|
||||
z = 1.0 / (x * x);
|
||||
r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
|
||||
s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
|
||||
return (-0.125 + r / s) / x;
|
||||
}
|
414
mikros_std_deps/libm-0.2.8/src/math/j1.rs
Normal file
414
mikros_std_deps/libm-0.2.8/src/math/j1.rs
Normal file
@ -0,0 +1,414 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_j1.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* j1(x), y1(x)
|
||||
* Bessel function of the first and second kinds of order zero.
|
||||
* Method -- j1(x):
|
||||
* 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
|
||||
* 2. Reduce x to |x| since j1(x)=-j1(-x), and
|
||||
* for x in (0,2)
|
||||
* j1(x) = x/2 + x*z*R0/S0, where z = x*x;
|
||||
* (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
|
||||
* for x in (2,inf)
|
||||
* j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
|
||||
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
|
||||
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
|
||||
* as follow:
|
||||
* cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) - cos(x))
|
||||
* sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
||||
* = -1/sqrt(2) * (sin(x) + cos(x))
|
||||
* (To avoid cancellation, use
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
* to compute the worse one.)
|
||||
*
|
||||
* 3 Special cases
|
||||
* j1(nan)= nan
|
||||
* j1(0) = 0
|
||||
* j1(inf) = 0
|
||||
*
|
||||
* Method -- y1(x):
|
||||
* 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
|
||||
* 2. For x<2.
|
||||
* Since
|
||||
* y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
|
||||
* therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
|
||||
* We use the following function to approximate y1,
|
||||
* y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
|
||||
* where for x in [0,2] (abs err less than 2**-65.89)
|
||||
* U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
|
||||
* V(z) = 1 + v0[0]*z + ... + v0[4]*z^5
|
||||
* Note: For tiny x, 1/x dominate y1 and hence
|
||||
* y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
|
||||
* 3. For x>=2.
|
||||
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
|
||||
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
|
||||
* by method mentioned above.
|
||||
*/
|
||||
|
||||
use super::{cos, fabs, get_high_word, get_low_word, log, sin, sqrt};
|
||||
|
||||
const INVSQRTPI: f64 = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
|
||||
const TPI: f64 = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */
|
||||
|
||||
fn common(ix: u32, x: f64, y1: bool, sign: bool) -> f64 {
|
||||
let z: f64;
|
||||
let mut s: f64;
|
||||
let c: f64;
|
||||
let mut ss: f64;
|
||||
let mut cc: f64;
|
||||
|
||||
/*
|
||||
* j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x-3pi/4)-q1(x)*sin(x-3pi/4))
|
||||
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x-3pi/4)+q1(x)*cos(x-3pi/4))
|
||||
*
|
||||
* sin(x-3pi/4) = -(sin(x) + cos(x))/sqrt(2)
|
||||
* cos(x-3pi/4) = (sin(x) - cos(x))/sqrt(2)
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
*/
|
||||
s = sin(x);
|
||||
if y1 {
|
||||
s = -s;
|
||||
}
|
||||
c = cos(x);
|
||||
cc = s - c;
|
||||
if ix < 0x7fe00000 {
|
||||
/* avoid overflow in 2*x */
|
||||
ss = -s - c;
|
||||
z = cos(2.0 * x);
|
||||
if s * c > 0.0 {
|
||||
cc = z / ss;
|
||||
} else {
|
||||
ss = z / cc;
|
||||
}
|
||||
if ix < 0x48000000 {
|
||||
if y1 {
|
||||
ss = -ss;
|
||||
}
|
||||
cc = pone(x) * cc - qone(x) * ss;
|
||||
}
|
||||
}
|
||||
if sign {
|
||||
cc = -cc;
|
||||
}
|
||||
return INVSQRTPI * cc / sqrt(x);
|
||||
}
|
||||
|
||||
/* R0/S0 on [0,2] */
|
||||
const R00: f64 = -6.25000000000000000000e-02; /* 0xBFB00000, 0x00000000 */
|
||||
const R01: f64 = 1.40705666955189706048e-03; /* 0x3F570D9F, 0x98472C61 */
|
||||
const R02: f64 = -1.59955631084035597520e-05; /* 0xBEF0C5C6, 0xBA169668 */
|
||||
const R03: f64 = 4.96727999609584448412e-08; /* 0x3E6AAAFA, 0x46CA0BD9 */
|
||||
const S01: f64 = 1.91537599538363460805e-02; /* 0x3F939D0B, 0x12637E53 */
|
||||
const S02: f64 = 1.85946785588630915560e-04; /* 0x3F285F56, 0xB9CDF664 */
|
||||
const S03: f64 = 1.17718464042623683263e-06; /* 0x3EB3BFF8, 0x333F8498 */
|
||||
const S04: f64 = 5.04636257076217042715e-09; /* 0x3E35AC88, 0xC97DFF2C */
|
||||
const S05: f64 = 1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */
|
||||
|
||||
pub fn j1(x: f64) -> f64 {
|
||||
let mut z: f64;
|
||||
let r: f64;
|
||||
let s: f64;
|
||||
let mut ix: u32;
|
||||
let sign: bool;
|
||||
|
||||
ix = get_high_word(x);
|
||||
sign = (ix >> 31) != 0;
|
||||
ix &= 0x7fffffff;
|
||||
if ix >= 0x7ff00000 {
|
||||
return 1.0 / (x * x);
|
||||
}
|
||||
if ix >= 0x40000000 {
|
||||
/* |x| >= 2 */
|
||||
return common(ix, fabs(x), false, sign);
|
||||
}
|
||||
if ix >= 0x38000000 {
|
||||
/* |x| >= 2**-127 */
|
||||
z = x * x;
|
||||
r = z * (R00 + z * (R01 + z * (R02 + z * R03)));
|
||||
s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * (S04 + z * S05))));
|
||||
z = r / s;
|
||||
} else {
|
||||
/* avoid underflow, raise inexact if x!=0 */
|
||||
z = x;
|
||||
}
|
||||
return (0.5 + z) * x;
|
||||
}
|
||||
|
||||
const U0: [f64; 5] = [
|
||||
-1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
|
||||
5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
|
||||
-1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
|
||||
2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
|
||||
-9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
|
||||
];
|
||||
const V0: [f64; 5] = [
|
||||
1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
|
||||
2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
|
||||
1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
|
||||
6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
|
||||
1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
|
||||
];
|
||||
|
||||
pub fn y1(x: f64) -> f64 {
|
||||
let z: f64;
|
||||
let u: f64;
|
||||
let v: f64;
|
||||
let ix: u32;
|
||||
let lx: u32;
|
||||
|
||||
ix = get_high_word(x);
|
||||
lx = get_low_word(x);
|
||||
|
||||
/* y1(nan)=nan, y1(<0)=nan, y1(0)=-inf, y1(inf)=0 */
|
||||
if (ix << 1 | lx) == 0 {
|
||||
return -1.0 / 0.0;
|
||||
}
|
||||
if (ix >> 31) != 0 {
|
||||
return 0.0 / 0.0;
|
||||
}
|
||||
if ix >= 0x7ff00000 {
|
||||
return 1.0 / x;
|
||||
}
|
||||
|
||||
if ix >= 0x40000000 {
|
||||
/* x >= 2 */
|
||||
return common(ix, x, true, false);
|
||||
}
|
||||
if ix < 0x3c900000 {
|
||||
/* x < 2**-54 */
|
||||
return -TPI / x;
|
||||
}
|
||||
z = x * x;
|
||||
u = U0[0] + z * (U0[1] + z * (U0[2] + z * (U0[3] + z * U0[4])));
|
||||
v = 1.0 + z * (V0[0] + z * (V0[1] + z * (V0[2] + z * (V0[3] + z * V0[4]))));
|
||||
return x * (u / v) + TPI * (j1(x) * log(x) - 1.0 / x);
|
||||
}
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of pone is
|
||||
* 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
|
||||
* We approximate pone by
|
||||
* pone(x) = 1 + (R/S)
|
||||
* where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
|
||||
* S = 1 + ps0*s^2 + ... + ps4*s^10
|
||||
* and
|
||||
* | pone(x)-1-R/S | <= 2 ** ( -60.06)
|
||||
*/
|
||||
|
||||
const PR8: [f64; 6] = [
|
||||
/* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
|
||||
1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
|
||||
4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
|
||||
3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
|
||||
7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
|
||||
];
|
||||
const PS8: [f64; 5] = [
|
||||
1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
|
||||
3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
|
||||
3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
|
||||
9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
|
||||
3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
|
||||
];
|
||||
|
||||
const PR5: [f64; 6] = [
|
||||
/* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
|
||||
1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
|
||||
6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
|
||||
1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
|
||||
5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
|
||||
5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
|
||||
];
|
||||
const PS5: [f64; 5] = [
|
||||
5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
|
||||
9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
|
||||
5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
|
||||
7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
|
||||
1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
|
||||
];
|
||||
|
||||
const PR3: [f64; 6] = [
|
||||
3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
|
||||
1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
|
||||
3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
|
||||
3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
|
||||
9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
|
||||
4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
|
||||
];
|
||||
const PS3: [f64; 5] = [
|
||||
3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
|
||||
3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
|
||||
1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
|
||||
8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
|
||||
1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
|
||||
];
|
||||
|
||||
const PR2: [f64; 6] = [
|
||||
/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
|
||||
1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
|
||||
2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
|
||||
1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
|
||||
1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
|
||||
5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
|
||||
];
|
||||
const PS2: [f64; 5] = [
|
||||
2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
|
||||
1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
|
||||
2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
|
||||
1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
|
||||
8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
|
||||
];
|
||||
|
||||
fn pone(x: f64) -> f64 {
|
||||
let p: &[f64; 6];
|
||||
let q: &[f64; 5];
|
||||
let z: f64;
|
||||
let r: f64;
|
||||
let s: f64;
|
||||
let mut ix: u32;
|
||||
|
||||
ix = get_high_word(x);
|
||||
ix &= 0x7fffffff;
|
||||
if ix >= 0x40200000 {
|
||||
p = &PR8;
|
||||
q = &PS8;
|
||||
} else if ix >= 0x40122E8B {
|
||||
p = &PR5;
|
||||
q = &PS5;
|
||||
} else if ix >= 0x4006DB6D {
|
||||
p = &PR3;
|
||||
q = &PS3;
|
||||
} else
|
||||
/*ix >= 0x40000000*/
|
||||
{
|
||||
p = &PR2;
|
||||
q = &PS2;
|
||||
}
|
||||
z = 1.0 / (x * x);
|
||||
r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
|
||||
s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
|
||||
return 1.0 + r / s;
|
||||
}
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of qone is
|
||||
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
|
||||
* We approximate pone by
|
||||
* qone(x) = s*(0.375 + (R/S))
|
||||
* where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
|
||||
* S = 1 + qs1*s^2 + ... + qs6*s^12
|
||||
* and
|
||||
* | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
|
||||
*/
|
||||
|
||||
const QR8: [f64; 6] = [
|
||||
/* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
-1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
|
||||
-1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
|
||||
-7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
|
||||
-1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
|
||||
-4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
|
||||
];
|
||||
const QS8: [f64; 6] = [
|
||||
1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
|
||||
7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
|
||||
1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
|
||||
7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
|
||||
6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
|
||||
-2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
|
||||
];
|
||||
|
||||
const QR5: [f64; 6] = [
|
||||
/* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
-2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
|
||||
-1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
|
||||
-8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
|
||||
-1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
|
||||
-1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
|
||||
-2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
|
||||
];
|
||||
const QS5: [f64; 6] = [
|
||||
8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
|
||||
1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
|
||||
1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
|
||||
4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
|
||||
2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
|
||||
-4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
|
||||
];
|
||||
|
||||
const QR3: [f64; 6] = [
|
||||
-5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
|
||||
-1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
|
||||
-4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
|
||||
-5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
|
||||
-2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
|
||||
-2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
|
||||
];
|
||||
const QS3: [f64; 6] = [
|
||||
4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
|
||||
6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
|
||||
3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
|
||||
5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
|
||||
1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
|
||||
-1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
|
||||
];
|
||||
|
||||
const QR2: [f64; 6] = [
|
||||
/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
-1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
|
||||
-1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
|
||||
-2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
|
||||
-1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
|
||||
-4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
|
||||
-2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
|
||||
];
|
||||
const QS2: [f64; 6] = [
|
||||
2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
|
||||
2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
|
||||
7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
|
||||
7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
|
||||
1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
|
||||
-4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
|
||||
];
|
||||
|
||||
fn qone(x: f64) -> f64 {
|
||||
let p: &[f64; 6];
|
||||
let q: &[f64; 6];
|
||||
let s: f64;
|
||||
let r: f64;
|
||||
let z: f64;
|
||||
let mut ix: u32;
|
||||
|
||||
ix = get_high_word(x);
|
||||
ix &= 0x7fffffff;
|
||||
if ix >= 0x40200000 {
|
||||
p = &QR8;
|
||||
q = &QS8;
|
||||
} else if ix >= 0x40122E8B {
|
||||
p = &QR5;
|
||||
q = &QS5;
|
||||
} else if ix >= 0x4006DB6D {
|
||||
p = &QR3;
|
||||
q = &QS3;
|
||||
} else
|
||||
/*ix >= 0x40000000*/
|
||||
{
|
||||
p = &QR2;
|
||||
q = &QS2;
|
||||
}
|
||||
z = 1.0 / (x * x);
|
||||
r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
|
||||
s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
|
||||
return (0.375 + r / s) / x;
|
||||
}
|
380
mikros_std_deps/libm-0.2.8/src/math/j1f.rs
Normal file
380
mikros_std_deps/libm-0.2.8/src/math/j1f.rs
Normal file
@ -0,0 +1,380 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_j1f.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
use super::{cosf, fabsf, logf, sinf, sqrtf};
|
||||
|
||||
const INVSQRTPI: f32 = 5.6418961287e-01; /* 0x3f106ebb */
|
||||
const TPI: f32 = 6.3661974669e-01; /* 0x3f22f983 */
|
||||
|
||||
fn common(ix: u32, x: f32, y1: bool, sign: bool) -> f32 {
|
||||
let z: f64;
|
||||
let mut s: f64;
|
||||
let c: f64;
|
||||
let mut ss: f64;
|
||||
let mut cc: f64;
|
||||
|
||||
s = sinf(x) as f64;
|
||||
if y1 {
|
||||
s = -s;
|
||||
}
|
||||
c = cosf(x) as f64;
|
||||
cc = s - c;
|
||||
if ix < 0x7f000000 {
|
||||
ss = -s - c;
|
||||
z = cosf(2.0 * x) as f64;
|
||||
if s * c > 0.0 {
|
||||
cc = z / ss;
|
||||
} else {
|
||||
ss = z / cc;
|
||||
}
|
||||
if ix < 0x58800000 {
|
||||
if y1 {
|
||||
ss = -ss;
|
||||
}
|
||||
cc = (ponef(x) as f64) * cc - (qonef(x) as f64) * ss;
|
||||
}
|
||||
}
|
||||
if sign {
|
||||
cc = -cc;
|
||||
}
|
||||
return (((INVSQRTPI as f64) * cc) / (sqrtf(x) as f64)) as f32;
|
||||
}
|
||||
|
||||
/* R0/S0 on [0,2] */
|
||||
const R00: f32 = -6.2500000000e-02; /* 0xbd800000 */
|
||||
const R01: f32 = 1.4070566976e-03; /* 0x3ab86cfd */
|
||||
const R02: f32 = -1.5995563444e-05; /* 0xb7862e36 */
|
||||
const R03: f32 = 4.9672799207e-08; /* 0x335557d2 */
|
||||
const S01: f32 = 1.9153760746e-02; /* 0x3c9ce859 */
|
||||
const S02: f32 = 1.8594678841e-04; /* 0x3942fab6 */
|
||||
const S03: f32 = 1.1771846857e-06; /* 0x359dffc2 */
|
||||
const S04: f32 = 5.0463624390e-09; /* 0x31ad6446 */
|
||||
const S05: f32 = 1.2354227016e-11; /* 0x2d59567e */
|
||||
|
||||
pub fn j1f(x: f32) -> f32 {
|
||||
let mut z: f32;
|
||||
let r: f32;
|
||||
let s: f32;
|
||||
let mut ix: u32;
|
||||
let sign: bool;
|
||||
|
||||
ix = x.to_bits();
|
||||
sign = (ix >> 31) != 0;
|
||||
ix &= 0x7fffffff;
|
||||
if ix >= 0x7f800000 {
|
||||
return 1.0 / (x * x);
|
||||
}
|
||||
if ix >= 0x40000000 {
|
||||
/* |x| >= 2 */
|
||||
return common(ix, fabsf(x), false, sign);
|
||||
}
|
||||
if ix >= 0x39000000 {
|
||||
/* |x| >= 2**-13 */
|
||||
z = x * x;
|
||||
r = z * (R00 + z * (R01 + z * (R02 + z * R03)));
|
||||
s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * (S04 + z * S05))));
|
||||
z = 0.5 + r / s;
|
||||
} else {
|
||||
z = 0.5;
|
||||
}
|
||||
return z * x;
|
||||
}
|
||||
|
||||
const U0: [f32; 5] = [
|
||||
-1.9605709612e-01, /* 0xbe48c331 */
|
||||
5.0443872809e-02, /* 0x3d4e9e3c */
|
||||
-1.9125689287e-03, /* 0xbafaaf2a */
|
||||
2.3525259166e-05, /* 0x37c5581c */
|
||||
-9.1909917899e-08, /* 0xb3c56003 */
|
||||
];
|
||||
const V0: [f32; 5] = [
|
||||
1.9916731864e-02, /* 0x3ca3286a */
|
||||
2.0255257550e-04, /* 0x3954644b */
|
||||
1.3560879779e-06, /* 0x35b602d4 */
|
||||
6.2274145840e-09, /* 0x31d5f8eb */
|
||||
1.6655924903e-11, /* 0x2d9281cf */
|
||||
];
|
||||
|
||||
pub fn y1f(x: f32) -> f32 {
|
||||
let z: f32;
|
||||
let u: f32;
|
||||
let v: f32;
|
||||
let ix: u32;
|
||||
|
||||
ix = x.to_bits();
|
||||
if (ix & 0x7fffffff) == 0 {
|
||||
return -1.0 / 0.0;
|
||||
}
|
||||
if (ix >> 31) != 0 {
|
||||
return 0.0 / 0.0;
|
||||
}
|
||||
if ix >= 0x7f800000 {
|
||||
return 1.0 / x;
|
||||
}
|
||||
if ix >= 0x40000000 {
|
||||
/* |x| >= 2.0 */
|
||||
return common(ix, x, true, false);
|
||||
}
|
||||
if ix < 0x33000000 {
|
||||
/* x < 2**-25 */
|
||||
return -TPI / x;
|
||||
}
|
||||
z = x * x;
|
||||
u = U0[0] + z * (U0[1] + z * (U0[2] + z * (U0[3] + z * U0[4])));
|
||||
v = 1.0 + z * (V0[0] + z * (V0[1] + z * (V0[2] + z * (V0[3] + z * V0[4]))));
|
||||
return x * (u / v) + TPI * (j1f(x) * logf(x) - 1.0 / x);
|
||||
}
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of pone is
|
||||
* 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
|
||||
* We approximate pone by
|
||||
* pone(x) = 1 + (R/S)
|
||||
* where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
|
||||
* S = 1 + ps0*s^2 + ... + ps4*s^10
|
||||
* and
|
||||
* | pone(x)-1-R/S | <= 2 ** ( -60.06)
|
||||
*/
|
||||
|
||||
const PR8: [f32; 6] = [
|
||||
/* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.0000000000e+00, /* 0x00000000 */
|
||||
1.1718750000e-01, /* 0x3df00000 */
|
||||
1.3239480972e+01, /* 0x4153d4ea */
|
||||
4.1205184937e+02, /* 0x43ce06a3 */
|
||||
3.8747453613e+03, /* 0x45722bed */
|
||||
7.9144794922e+03, /* 0x45f753d6 */
|
||||
];
|
||||
const PS8: [f32; 5] = [
|
||||
1.1420736694e+02, /* 0x42e46a2c */
|
||||
3.6509309082e+03, /* 0x45642ee5 */
|
||||
3.6956207031e+04, /* 0x47105c35 */
|
||||
9.7602796875e+04, /* 0x47bea166 */
|
||||
3.0804271484e+04, /* 0x46f0a88b */
|
||||
];
|
||||
|
||||
const PR5: [f32; 6] = [
|
||||
/* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
1.3199052094e-11, /* 0x2d68333f */
|
||||
1.1718749255e-01, /* 0x3defffff */
|
||||
6.8027510643e+00, /* 0x40d9b023 */
|
||||
1.0830818176e+02, /* 0x42d89dca */
|
||||
5.1763616943e+02, /* 0x440168b7 */
|
||||
5.2871520996e+02, /* 0x44042dc6 */
|
||||
];
|
||||
const PS5: [f32; 5] = [
|
||||
5.9280597687e+01, /* 0x426d1f55 */
|
||||
9.9140142822e+02, /* 0x4477d9b1 */
|
||||
5.3532670898e+03, /* 0x45a74a23 */
|
||||
7.8446904297e+03, /* 0x45f52586 */
|
||||
1.5040468750e+03, /* 0x44bc0180 */
|
||||
];
|
||||
|
||||
const PR3: [f32; 6] = [
|
||||
3.0250391081e-09, /* 0x314fe10d */
|
||||
1.1718686670e-01, /* 0x3defffab */
|
||||
3.9329774380e+00, /* 0x407bb5e7 */
|
||||
3.5119403839e+01, /* 0x420c7a45 */
|
||||
9.1055007935e+01, /* 0x42b61c2a */
|
||||
4.8559066772e+01, /* 0x42423c7c */
|
||||
];
|
||||
const PS3: [f32; 5] = [
|
||||
3.4791309357e+01, /* 0x420b2a4d */
|
||||
3.3676245117e+02, /* 0x43a86198 */
|
||||
1.0468714600e+03, /* 0x4482dbe3 */
|
||||
8.9081134033e+02, /* 0x445eb3ed */
|
||||
1.0378793335e+02, /* 0x42cf936c */
|
||||
];
|
||||
|
||||
const PR2: [f32; 6] = [
|
||||
/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
1.0771083225e-07, /* 0x33e74ea8 */
|
||||
1.1717621982e-01, /* 0x3deffa16 */
|
||||
2.3685150146e+00, /* 0x401795c0 */
|
||||
1.2242610931e+01, /* 0x4143e1bc */
|
||||
1.7693971634e+01, /* 0x418d8d41 */
|
||||
5.0735230446e+00, /* 0x40a25a4d */
|
||||
];
|
||||
const PS2: [f32; 5] = [
|
||||
2.1436485291e+01, /* 0x41ab7dec */
|
||||
1.2529022980e+02, /* 0x42fa9499 */
|
||||
2.3227647400e+02, /* 0x436846c7 */
|
||||
1.1767937469e+02, /* 0x42eb5bd7 */
|
||||
8.3646392822e+00, /* 0x4105d590 */
|
||||
];
|
||||
|
||||
fn ponef(x: f32) -> f32 {
|
||||
let p: &[f32; 6];
|
||||
let q: &[f32; 5];
|
||||
let z: f32;
|
||||
let r: f32;
|
||||
let s: f32;
|
||||
let mut ix: u32;
|
||||
|
||||
ix = x.to_bits();
|
||||
ix &= 0x7fffffff;
|
||||
if ix >= 0x41000000 {
|
||||
p = &PR8;
|
||||
q = &PS8;
|
||||
} else if ix >= 0x409173eb {
|
||||
p = &PR5;
|
||||
q = &PS5;
|
||||
} else if ix >= 0x4036d917 {
|
||||
p = &PR3;
|
||||
q = &PS3;
|
||||
} else
|
||||
/*ix >= 0x40000000*/
|
||||
{
|
||||
p = &PR2;
|
||||
q = &PS2;
|
||||
}
|
||||
z = 1.0 / (x * x);
|
||||
r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
|
||||
s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
|
||||
return 1.0 + r / s;
|
||||
}
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of qone is
|
||||
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
|
||||
* We approximate pone by
|
||||
* qone(x) = s*(0.375 + (R/S))
|
||||
* where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
|
||||
* S = 1 + qs1*s^2 + ... + qs6*s^12
|
||||
* and
|
||||
* | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
|
||||
*/
|
||||
|
||||
const QR8: [f32; 6] = [
|
||||
/* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.0000000000e+00, /* 0x00000000 */
|
||||
-1.0253906250e-01, /* 0xbdd20000 */
|
||||
-1.6271753311e+01, /* 0xc1822c8d */
|
||||
-7.5960174561e+02, /* 0xc43de683 */
|
||||
-1.1849806641e+04, /* 0xc639273a */
|
||||
-4.8438511719e+04, /* 0xc73d3683 */
|
||||
];
|
||||
const QS8: [f32; 6] = [
|
||||
1.6139537048e+02, /* 0x43216537 */
|
||||
7.8253862305e+03, /* 0x45f48b17 */
|
||||
1.3387534375e+05, /* 0x4802bcd6 */
|
||||
7.1965775000e+05, /* 0x492fb29c */
|
||||
6.6660125000e+05, /* 0x4922be94 */
|
||||
-2.9449025000e+05, /* 0xc88fcb48 */
|
||||
];
|
||||
|
||||
const QR5: [f32; 6] = [
|
||||
/* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
-2.0897993405e-11, /* 0xadb7d219 */
|
||||
-1.0253904760e-01, /* 0xbdd1fffe */
|
||||
-8.0564479828e+00, /* 0xc100e736 */
|
||||
-1.8366960144e+02, /* 0xc337ab6b */
|
||||
-1.3731937256e+03, /* 0xc4aba633 */
|
||||
-2.6124443359e+03, /* 0xc523471c */
|
||||
];
|
||||
const QS5: [f32; 6] = [
|
||||
8.1276550293e+01, /* 0x42a28d98 */
|
||||
1.9917987061e+03, /* 0x44f8f98f */
|
||||
1.7468484375e+04, /* 0x468878f8 */
|
||||
4.9851425781e+04, /* 0x4742bb6d */
|
||||
2.7948074219e+04, /* 0x46da5826 */
|
||||
-4.7191835938e+03, /* 0xc5937978 */
|
||||
];
|
||||
|
||||
const QR3: [f32; 6] = [
|
||||
-5.0783124372e-09, /* 0xb1ae7d4f */
|
||||
-1.0253783315e-01, /* 0xbdd1ff5b */
|
||||
-4.6101160049e+00, /* 0xc0938612 */
|
||||
-5.7847221375e+01, /* 0xc267638e */
|
||||
-2.2824453735e+02, /* 0xc3643e9a */
|
||||
-2.1921012878e+02, /* 0xc35b35cb */
|
||||
];
|
||||
const QS3: [f32; 6] = [
|
||||
4.7665153503e+01, /* 0x423ea91e */
|
||||
6.7386511230e+02, /* 0x4428775e */
|
||||
3.3801528320e+03, /* 0x45534272 */
|
||||
5.5477290039e+03, /* 0x45ad5dd5 */
|
||||
1.9031191406e+03, /* 0x44ede3d0 */
|
||||
-1.3520118713e+02, /* 0xc3073381 */
|
||||
];
|
||||
|
||||
const QR2: [f32; 6] = [
|
||||
/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
-1.7838172539e-07, /* 0xb43f8932 */
|
||||
-1.0251704603e-01, /* 0xbdd1f475 */
|
||||
-2.7522056103e+00, /* 0xc0302423 */
|
||||
-1.9663616180e+01, /* 0xc19d4f16 */
|
||||
-4.2325313568e+01, /* 0xc2294d1f */
|
||||
-2.1371921539e+01, /* 0xc1aaf9b2 */
|
||||
];
|
||||
const QS2: [f32; 6] = [
|
||||
2.9533363342e+01, /* 0x41ec4454 */
|
||||
2.5298155212e+02, /* 0x437cfb47 */
|
||||
7.5750280762e+02, /* 0x443d602e */
|
||||
7.3939318848e+02, /* 0x4438d92a */
|
||||
1.5594900513e+02, /* 0x431bf2f2 */
|
||||
-4.9594988823e+00, /* 0xc09eb437 */
|
||||
];
|
||||
|
||||
fn qonef(x: f32) -> f32 {
|
||||
let p: &[f32; 6];
|
||||
let q: &[f32; 6];
|
||||
let s: f32;
|
||||
let r: f32;
|
||||
let z: f32;
|
||||
let mut ix: u32;
|
||||
|
||||
ix = x.to_bits();
|
||||
ix &= 0x7fffffff;
|
||||
if ix >= 0x41000000 {
|
||||
p = &QR8;
|
||||
q = &QS8;
|
||||
} else if ix >= 0x409173eb {
|
||||
p = &QR5;
|
||||
q = &QS5;
|
||||
} else if ix >= 0x4036d917 {
|
||||
p = &QR3;
|
||||
q = &QS3;
|
||||
} else
|
||||
/*ix >= 0x40000000*/
|
||||
{
|
||||
p = &QR2;
|
||||
q = &QS2;
|
||||
}
|
||||
z = 1.0 / (x * x);
|
||||
r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
|
||||
s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
|
||||
return (0.375 + r / s) / x;
|
||||
}
|
||||
|
||||
// PowerPC tests are failing on LLVM 13: https://github.com/rust-lang/rust/issues/88520
|
||||
#[cfg(not(target_arch = "powerpc64"))]
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::{j1f, y1f};
|
||||
#[test]
|
||||
fn test_j1f_2488() {
|
||||
// 0x401F3E49
|
||||
assert_eq!(j1f(2.4881766_f32), 0.49999475_f32);
|
||||
}
|
||||
#[test]
|
||||
fn test_y1f_2002() {
|
||||
//allow slightly different result on x87
|
||||
let res = y1f(2.0000002_f32);
|
||||
if cfg!(all(target_arch = "x86", not(target_feature = "sse2"))) && (res == -0.10703231_f32)
|
||||
{
|
||||
return;
|
||||
}
|
||||
assert_eq!(res, -0.10703229_f32);
|
||||
}
|
||||
}
|
335
mikros_std_deps/libm-0.2.8/src/math/jn.rs
Normal file
335
mikros_std_deps/libm-0.2.8/src/math/jn.rs
Normal file
@ -0,0 +1,335 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/*
|
||||
* jn(n, x), yn(n, x)
|
||||
* floating point Bessel's function of the 1st and 2nd kind
|
||||
* of order n
|
||||
*
|
||||
* Special cases:
|
||||
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
|
||||
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
|
||||
* Note 2. About jn(n,x), yn(n,x)
|
||||
* For n=0, j0(x) is called,
|
||||
* for n=1, j1(x) is called,
|
||||
* for n<=x, forward recursion is used starting
|
||||
* from values of j0(x) and j1(x).
|
||||
* for n>x, a continued fraction approximation to
|
||||
* j(n,x)/j(n-1,x) is evaluated and then backward
|
||||
* recursion is used starting from a supposed value
|
||||
* for j(n,x). The resulting value of j(0,x) is
|
||||
* compared with the actual value to correct the
|
||||
* supposed value of j(n,x).
|
||||
*
|
||||
* yn(n,x) is similar in all respects, except
|
||||
* that forward recursion is used for all
|
||||
* values of n>1.
|
||||
*/
|
||||
|
||||
use super::{cos, fabs, get_high_word, get_low_word, j0, j1, log, sin, sqrt, y0, y1};
|
||||
|
||||
const INVSQRTPI: f64 = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
|
||||
|
||||
pub fn jn(n: i32, mut x: f64) -> f64 {
|
||||
let mut ix: u32;
|
||||
let lx: u32;
|
||||
let nm1: i32;
|
||||
let mut i: i32;
|
||||
let mut sign: bool;
|
||||
let mut a: f64;
|
||||
let mut b: f64;
|
||||
let mut temp: f64;
|
||||
|
||||
ix = get_high_word(x);
|
||||
lx = get_low_word(x);
|
||||
sign = (ix >> 31) != 0;
|
||||
ix &= 0x7fffffff;
|
||||
|
||||
// -lx == !lx + 1
|
||||
if (ix | (lx | ((!lx).wrapping_add(1))) >> 31) > 0x7ff00000 {
|
||||
/* nan */
|
||||
return x;
|
||||
}
|
||||
|
||||
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
|
||||
* Thus, J(-n,x) = J(n,-x)
|
||||
*/
|
||||
/* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */
|
||||
if n == 0 {
|
||||
return j0(x);
|
||||
}
|
||||
if n < 0 {
|
||||
nm1 = -(n + 1);
|
||||
x = -x;
|
||||
sign = !sign;
|
||||
} else {
|
||||
nm1 = n - 1;
|
||||
}
|
||||
if nm1 == 0 {
|
||||
return j1(x);
|
||||
}
|
||||
|
||||
sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */
|
||||
x = fabs(x);
|
||||
if (ix | lx) == 0 || ix == 0x7ff00000 {
|
||||
/* if x is 0 or inf */
|
||||
b = 0.0;
|
||||
} else if (nm1 as f64) < x {
|
||||
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
||||
if ix >= 0x52d00000 {
|
||||
/* x > 2**302 */
|
||||
/* (x >> n**2)
|
||||
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Let s=sin(x), c=cos(x),
|
||||
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
||||
*
|
||||
* n sin(xn)*sqt2 cos(xn)*sqt2
|
||||
* ----------------------------------
|
||||
* 0 s-c c+s
|
||||
* 1 -s-c -c+s
|
||||
* 2 -s+c -c-s
|
||||
* 3 s+c c-s
|
||||
*/
|
||||
temp = match nm1 & 3 {
|
||||
0 => -cos(x) + sin(x),
|
||||
1 => -cos(x) - sin(x),
|
||||
2 => cos(x) - sin(x),
|
||||
3 | _ => cos(x) + sin(x),
|
||||
};
|
||||
b = INVSQRTPI * temp / sqrt(x);
|
||||
} else {
|
||||
a = j0(x);
|
||||
b = j1(x);
|
||||
i = 0;
|
||||
while i < nm1 {
|
||||
i += 1;
|
||||
temp = b;
|
||||
b = b * (2.0 * (i as f64) / x) - a; /* avoid underflow */
|
||||
a = temp;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if ix < 0x3e100000 {
|
||||
/* x < 2**-29 */
|
||||
/* x is tiny, return the first Taylor expansion of J(n,x)
|
||||
* J(n,x) = 1/n!*(x/2)^n - ...
|
||||
*/
|
||||
if nm1 > 32 {
|
||||
/* underflow */
|
||||
b = 0.0;
|
||||
} else {
|
||||
temp = x * 0.5;
|
||||
b = temp;
|
||||
a = 1.0;
|
||||
i = 2;
|
||||
while i <= nm1 + 1 {
|
||||
a *= i as f64; /* a = n! */
|
||||
b *= temp; /* b = (x/2)^n */
|
||||
i += 1;
|
||||
}
|
||||
b = b / a;
|
||||
}
|
||||
} else {
|
||||
/* use backward recurrence */
|
||||
/* x x^2 x^2
|
||||
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
||||
* 2n - 2(n+1) - 2(n+2)
|
||||
*
|
||||
* 1 1 1
|
||||
* (for large x) = ---- ------ ------ .....
|
||||
* 2n 2(n+1) 2(n+2)
|
||||
* -- - ------ - ------ -
|
||||
* x x x
|
||||
*
|
||||
* Let w = 2n/x and h=2/x, then the above quotient
|
||||
* is equal to the continued fraction:
|
||||
* 1
|
||||
* = -----------------------
|
||||
* 1
|
||||
* w - -----------------
|
||||
* 1
|
||||
* w+h - ---------
|
||||
* w+2h - ...
|
||||
*
|
||||
* To determine how many terms needed, let
|
||||
* Q(0) = w, Q(1) = w(w+h) - 1,
|
||||
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
||||
* When Q(k) > 1e4 good for single
|
||||
* When Q(k) > 1e9 good for double
|
||||
* When Q(k) > 1e17 good for quadruple
|
||||
*/
|
||||
/* determine k */
|
||||
let mut t: f64;
|
||||
let mut q0: f64;
|
||||
let mut q1: f64;
|
||||
let mut w: f64;
|
||||
let h: f64;
|
||||
let mut z: f64;
|
||||
let mut tmp: f64;
|
||||
let nf: f64;
|
||||
|
||||
let mut k: i32;
|
||||
|
||||
nf = (nm1 as f64) + 1.0;
|
||||
w = 2.0 * nf / x;
|
||||
h = 2.0 / x;
|
||||
z = w + h;
|
||||
q0 = w;
|
||||
q1 = w * z - 1.0;
|
||||
k = 1;
|
||||
while q1 < 1.0e9 {
|
||||
k += 1;
|
||||
z += h;
|
||||
tmp = z * q1 - q0;
|
||||
q0 = q1;
|
||||
q1 = tmp;
|
||||
}
|
||||
t = 0.0;
|
||||
i = k;
|
||||
while i >= 0 {
|
||||
t = 1.0 / (2.0 * ((i as f64) + nf) / x - t);
|
||||
i -= 1;
|
||||
}
|
||||
a = t;
|
||||
b = 1.0;
|
||||
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
||||
* Hence, if n*(log(2n/x)) > ...
|
||||
* single 8.8722839355e+01
|
||||
* double 7.09782712893383973096e+02
|
||||
* long double 1.1356523406294143949491931077970765006170e+04
|
||||
* then recurrent value may overflow and the result is
|
||||
* likely underflow to zero
|
||||
*/
|
||||
tmp = nf * log(fabs(w));
|
||||
if tmp < 7.09782712893383973096e+02 {
|
||||
i = nm1;
|
||||
while i > 0 {
|
||||
temp = b;
|
||||
b = b * (2.0 * (i as f64)) / x - a;
|
||||
a = temp;
|
||||
i -= 1;
|
||||
}
|
||||
} else {
|
||||
i = nm1;
|
||||
while i > 0 {
|
||||
temp = b;
|
||||
b = b * (2.0 * (i as f64)) / x - a;
|
||||
a = temp;
|
||||
/* scale b to avoid spurious overflow */
|
||||
let x1p500 = f64::from_bits(0x5f30000000000000); // 0x1p500 == 2^500
|
||||
if b > x1p500 {
|
||||
a /= b;
|
||||
t /= b;
|
||||
b = 1.0;
|
||||
}
|
||||
i -= 1;
|
||||
}
|
||||
}
|
||||
z = j0(x);
|
||||
w = j1(x);
|
||||
if fabs(z) >= fabs(w) {
|
||||
b = t * z / b;
|
||||
} else {
|
||||
b = t * w / a;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if sign { -b } else { b }
|
||||
}
|
||||
|
||||
pub fn yn(n: i32, x: f64) -> f64 {
|
||||
let mut ix: u32;
|
||||
let lx: u32;
|
||||
let mut ib: u32;
|
||||
let nm1: i32;
|
||||
let mut sign: bool;
|
||||
let mut i: i32;
|
||||
let mut a: f64;
|
||||
let mut b: f64;
|
||||
let mut temp: f64;
|
||||
|
||||
ix = get_high_word(x);
|
||||
lx = get_low_word(x);
|
||||
sign = (ix >> 31) != 0;
|
||||
ix &= 0x7fffffff;
|
||||
|
||||
// -lx == !lx + 1
|
||||
if (ix | (lx | ((!lx).wrapping_add(1))) >> 31) > 0x7ff00000 {
|
||||
/* nan */
|
||||
return x;
|
||||
}
|
||||
if sign && (ix | lx) != 0 {
|
||||
/* x < 0 */
|
||||
return 0.0 / 0.0;
|
||||
}
|
||||
if ix == 0x7ff00000 {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
if n == 0 {
|
||||
return y0(x);
|
||||
}
|
||||
if n < 0 {
|
||||
nm1 = -(n + 1);
|
||||
sign = (n & 1) != 0;
|
||||
} else {
|
||||
nm1 = n - 1;
|
||||
sign = false;
|
||||
}
|
||||
if nm1 == 0 {
|
||||
if sign {
|
||||
return -y1(x);
|
||||
} else {
|
||||
return y1(x);
|
||||
}
|
||||
}
|
||||
|
||||
if ix >= 0x52d00000 {
|
||||
/* x > 2**302 */
|
||||
/* (x >> n**2)
|
||||
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Let s=sin(x), c=cos(x),
|
||||
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
||||
*
|
||||
* n sin(xn)*sqt2 cos(xn)*sqt2
|
||||
* ----------------------------------
|
||||
* 0 s-c c+s
|
||||
* 1 -s-c -c+s
|
||||
* 2 -s+c -c-s
|
||||
* 3 s+c c-s
|
||||
*/
|
||||
temp = match nm1 & 3 {
|
||||
0 => -sin(x) - cos(x),
|
||||
1 => -sin(x) + cos(x),
|
||||
2 => sin(x) + cos(x),
|
||||
3 | _ => sin(x) - cos(x),
|
||||
};
|
||||
b = INVSQRTPI * temp / sqrt(x);
|
||||
} else {
|
||||
a = y0(x);
|
||||
b = y1(x);
|
||||
/* quit if b is -inf */
|
||||
ib = get_high_word(b);
|
||||
i = 0;
|
||||
while i < nm1 && ib != 0xfff00000 {
|
||||
i += 1;
|
||||
temp = b;
|
||||
b = (2.0 * (i as f64) / x) * b - a;
|
||||
ib = get_high_word(b);
|
||||
a = temp;
|
||||
}
|
||||
}
|
||||
|
||||
if sign { -b } else { b }
|
||||
}
|
251
mikros_std_deps/libm-0.2.8/src/math/jnf.rs
Normal file
251
mikros_std_deps/libm-0.2.8/src/math/jnf.rs
Normal file
@ -0,0 +1,251 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
use super::{fabsf, j0f, j1f, logf, y0f, y1f};
|
||||
|
||||
pub fn jnf(n: i32, mut x: f32) -> f32 {
|
||||
let mut ix: u32;
|
||||
let mut nm1: i32;
|
||||
let mut sign: bool;
|
||||
let mut i: i32;
|
||||
let mut a: f32;
|
||||
let mut b: f32;
|
||||
let mut temp: f32;
|
||||
|
||||
ix = x.to_bits();
|
||||
sign = (ix >> 31) != 0;
|
||||
ix &= 0x7fffffff;
|
||||
if ix > 0x7f800000 {
|
||||
/* nan */
|
||||
return x;
|
||||
}
|
||||
|
||||
/* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
|
||||
if n == 0 {
|
||||
return j0f(x);
|
||||
}
|
||||
if n < 0 {
|
||||
nm1 = -(n + 1);
|
||||
x = -x;
|
||||
sign = !sign;
|
||||
} else {
|
||||
nm1 = n - 1;
|
||||
}
|
||||
if nm1 == 0 {
|
||||
return j1f(x);
|
||||
}
|
||||
|
||||
sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */
|
||||
x = fabsf(x);
|
||||
if ix == 0 || ix == 0x7f800000 {
|
||||
/* if x is 0 or inf */
|
||||
b = 0.0;
|
||||
} else if (nm1 as f32) < x {
|
||||
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
||||
a = j0f(x);
|
||||
b = j1f(x);
|
||||
i = 0;
|
||||
while i < nm1 {
|
||||
i += 1;
|
||||
temp = b;
|
||||
b = b * (2.0 * (i as f32) / x) - a;
|
||||
a = temp;
|
||||
}
|
||||
} else {
|
||||
if ix < 0x35800000 {
|
||||
/* x < 2**-20 */
|
||||
/* x is tiny, return the first Taylor expansion of J(n,x)
|
||||
* J(n,x) = 1/n!*(x/2)^n - ...
|
||||
*/
|
||||
if nm1 > 8 {
|
||||
/* underflow */
|
||||
nm1 = 8;
|
||||
}
|
||||
temp = 0.5 * x;
|
||||
b = temp;
|
||||
a = 1.0;
|
||||
i = 2;
|
||||
while i <= nm1 + 1 {
|
||||
a *= i as f32; /* a = n! */
|
||||
b *= temp; /* b = (x/2)^n */
|
||||
i += 1;
|
||||
}
|
||||
b = b / a;
|
||||
} else {
|
||||
/* use backward recurrence */
|
||||
/* x x^2 x^2
|
||||
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
||||
* 2n - 2(n+1) - 2(n+2)
|
||||
*
|
||||
* 1 1 1
|
||||
* (for large x) = ---- ------ ------ .....
|
||||
* 2n 2(n+1) 2(n+2)
|
||||
* -- - ------ - ------ -
|
||||
* x x x
|
||||
*
|
||||
* Let w = 2n/x and h=2/x, then the above quotient
|
||||
* is equal to the continued fraction:
|
||||
* 1
|
||||
* = -----------------------
|
||||
* 1
|
||||
* w - -----------------
|
||||
* 1
|
||||
* w+h - ---------
|
||||
* w+2h - ...
|
||||
*
|
||||
* To determine how many terms needed, let
|
||||
* Q(0) = w, Q(1) = w(w+h) - 1,
|
||||
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
||||
* When Q(k) > 1e4 good for single
|
||||
* When Q(k) > 1e9 good for double
|
||||
* When Q(k) > 1e17 good for quadruple
|
||||
*/
|
||||
/* determine k */
|
||||
let mut t: f32;
|
||||
let mut q0: f32;
|
||||
let mut q1: f32;
|
||||
let mut w: f32;
|
||||
let h: f32;
|
||||
let mut z: f32;
|
||||
let mut tmp: f32;
|
||||
let nf: f32;
|
||||
let mut k: i32;
|
||||
|
||||
nf = (nm1 as f32) + 1.0;
|
||||
w = 2.0 * (nf as f32) / x;
|
||||
h = 2.0 / x;
|
||||
z = w + h;
|
||||
q0 = w;
|
||||
q1 = w * z - 1.0;
|
||||
k = 1;
|
||||
while q1 < 1.0e4 {
|
||||
k += 1;
|
||||
z += h;
|
||||
tmp = z * q1 - q0;
|
||||
q0 = q1;
|
||||
q1 = tmp;
|
||||
}
|
||||
t = 0.0;
|
||||
i = k;
|
||||
while i >= 0 {
|
||||
t = 1.0 / (2.0 * ((i as f32) + nf) / x - t);
|
||||
i -= 1;
|
||||
}
|
||||
a = t;
|
||||
b = 1.0;
|
||||
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
||||
* Hence, if n*(log(2n/x)) > ...
|
||||
* single 8.8722839355e+01
|
||||
* double 7.09782712893383973096e+02
|
||||
* long double 1.1356523406294143949491931077970765006170e+04
|
||||
* then recurrent value may overflow and the result is
|
||||
* likely underflow to zero
|
||||
*/
|
||||
tmp = nf * logf(fabsf(w));
|
||||
if tmp < 88.721679688 {
|
||||
i = nm1;
|
||||
while i > 0 {
|
||||
temp = b;
|
||||
b = 2.0 * (i as f32) * b / x - a;
|
||||
a = temp;
|
||||
i -= 1;
|
||||
}
|
||||
} else {
|
||||
i = nm1;
|
||||
while i > 0 {
|
||||
temp = b;
|
||||
b = 2.0 * (i as f32) * b / x - a;
|
||||
a = temp;
|
||||
/* scale b to avoid spurious overflow */
|
||||
let x1p60 = f32::from_bits(0x5d800000); // 0x1p60 == 2^60
|
||||
if b > x1p60 {
|
||||
a /= b;
|
||||
t /= b;
|
||||
b = 1.0;
|
||||
}
|
||||
i -= 1;
|
||||
}
|
||||
}
|
||||
z = j0f(x);
|
||||
w = j1f(x);
|
||||
if fabsf(z) >= fabsf(w) {
|
||||
b = t * z / b;
|
||||
} else {
|
||||
b = t * w / a;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if sign { -b } else { b }
|
||||
}
|
||||
|
||||
pub fn ynf(n: i32, x: f32) -> f32 {
|
||||
let mut ix: u32;
|
||||
let mut ib: u32;
|
||||
let nm1: i32;
|
||||
let mut sign: bool;
|
||||
let mut i: i32;
|
||||
let mut a: f32;
|
||||
let mut b: f32;
|
||||
let mut temp: f32;
|
||||
|
||||
ix = x.to_bits();
|
||||
sign = (ix >> 31) != 0;
|
||||
ix &= 0x7fffffff;
|
||||
if ix > 0x7f800000 {
|
||||
/* nan */
|
||||
return x;
|
||||
}
|
||||
if sign && ix != 0 {
|
||||
/* x < 0 */
|
||||
return 0.0 / 0.0;
|
||||
}
|
||||
if ix == 0x7f800000 {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
if n == 0 {
|
||||
return y0f(x);
|
||||
}
|
||||
if n < 0 {
|
||||
nm1 = -(n + 1);
|
||||
sign = (n & 1) != 0;
|
||||
} else {
|
||||
nm1 = n - 1;
|
||||
sign = false;
|
||||
}
|
||||
if nm1 == 0 {
|
||||
if sign {
|
||||
return -y1f(x);
|
||||
} else {
|
||||
return y1f(x);
|
||||
}
|
||||
}
|
||||
|
||||
a = y0f(x);
|
||||
b = y1f(x);
|
||||
/* quit if b is -inf */
|
||||
ib = b.to_bits();
|
||||
i = 0;
|
||||
while i < nm1 && ib != 0xff800000 {
|
||||
i += 1;
|
||||
temp = b;
|
||||
b = (2.0 * (i as f32) / x) * b - a;
|
||||
ib = b.to_bits();
|
||||
a = temp;
|
||||
}
|
||||
|
||||
if sign { -b } else { b }
|
||||
}
|
62
mikros_std_deps/libm-0.2.8/src/math/k_cos.rs
Normal file
62
mikros_std_deps/libm-0.2.8/src/math/k_cos.rs
Normal file
@ -0,0 +1,62 @@
|
||||
// origin: FreeBSD /usr/src/lib/msun/src/k_cos.c
|
||||
//
|
||||
// ====================================================
|
||||
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
//
|
||||
// Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
// Permission to use, copy, modify, and distribute this
|
||||
// software is freely granted, provided that this notice
|
||||
// is preserved.
|
||||
// ====================================================
|
||||
|
||||
const C1: f64 = 4.16666666666666019037e-02; /* 0x3FA55555, 0x5555554C */
|
||||
const C2: f64 = -1.38888888888741095749e-03; /* 0xBF56C16C, 0x16C15177 */
|
||||
const C3: f64 = 2.48015872894767294178e-05; /* 0x3EFA01A0, 0x19CB1590 */
|
||||
const C4: f64 = -2.75573143513906633035e-07; /* 0xBE927E4F, 0x809C52AD */
|
||||
const C5: f64 = 2.08757232129817482790e-09; /* 0x3E21EE9E, 0xBDB4B1C4 */
|
||||
const C6: f64 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
|
||||
|
||||
// kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
|
||||
// Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||
// Input y is the tail of x.
|
||||
//
|
||||
// Algorithm
|
||||
// 1. Since cos(-x) = cos(x), we need only to consider positive x.
|
||||
// 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
|
||||
// 3. cos(x) is approximated by a polynomial of degree 14 on
|
||||
// [0,pi/4]
|
||||
// 4 14
|
||||
// cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
|
||||
// where the remez error is
|
||||
//
|
||||
// | 2 4 6 8 10 12 14 | -58
|
||||
// |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
|
||||
// | |
|
||||
//
|
||||
// 4 6 8 10 12 14
|
||||
// 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
|
||||
// cos(x) ~ 1 - x*x/2 + r
|
||||
// since cos(x+y) ~ cos(x) - sin(x)*y
|
||||
// ~ cos(x) - x*y,
|
||||
// a correction term is necessary in cos(x) and hence
|
||||
// cos(x+y) = 1 - (x*x/2 - (r - x*y))
|
||||
// For better accuracy, rearrange to
|
||||
// cos(x+y) ~ w + (tmp + (r-x*y))
|
||||
// where w = 1 - x*x/2 and tmp is a tiny correction term
|
||||
// (1 - x*x/2 == w + tmp exactly in infinite precision).
|
||||
// The exactness of w + tmp in infinite precision depends on w
|
||||
// and tmp having the same precision as x. If they have extra
|
||||
// precision due to compiler bugs, then the extra precision is
|
||||
// only good provided it is retained in all terms of the final
|
||||
// expression for cos(). Retention happens in all cases tested
|
||||
// under FreeBSD, so don't pessimize things by forcibly clipping
|
||||
// any extra precision in w.
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub(crate) fn k_cos(x: f64, y: f64) -> f64 {
|
||||
let z = x * x;
|
||||
let w = z * z;
|
||||
let r = z * (C1 + z * (C2 + z * C3)) + w * w * (C4 + z * (C5 + z * C6));
|
||||
let hz = 0.5 * z;
|
||||
let w = 1.0 - hz;
|
||||
w + (((1.0 - w) - hz) + (z * r - x * y))
|
||||
}
|
29
mikros_std_deps/libm-0.2.8/src/math/k_cosf.rs
Normal file
29
mikros_std_deps/libm-0.2.8/src/math/k_cosf.rs
Normal file
@ -0,0 +1,29 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/k_cosf.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
* Debugged and optimized by Bruce D. Evans.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* |cos(x) - c(x)| < 2**-34.1 (~[-5.37e-11, 5.295e-11]). */
|
||||
const C0: f64 = -0.499999997251031003120; /* -0x1ffffffd0c5e81.0p-54 */
|
||||
const C1: f64 = 0.0416666233237390631894; /* 0x155553e1053a42.0p-57 */
|
||||
const C2: f64 = -0.00138867637746099294692; /* -0x16c087e80f1e27.0p-62 */
|
||||
const C3: f64 = 0.0000243904487962774090654; /* 0x199342e0ee5069.0p-68 */
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub(crate) fn k_cosf(x: f64) -> f32 {
|
||||
let z = x * x;
|
||||
let w = z * z;
|
||||
let r = C2 + z * C3;
|
||||
(((1.0 + z * C0) + w * C1) + (w * z) * r) as f32
|
||||
}
|
14
mikros_std_deps/libm-0.2.8/src/math/k_expo2.rs
Normal file
14
mikros_std_deps/libm-0.2.8/src/math/k_expo2.rs
Normal file
@ -0,0 +1,14 @@
|
||||
use super::exp;
|
||||
|
||||
/* k is such that k*ln2 has minimal relative error and x - kln2 > log(FLT_MIN) */
|
||||
const K: i32 = 2043;
|
||||
|
||||
/* expf(x)/2 for x >= log(FLT_MAX), slightly better than 0.5f*expf(x/2)*expf(x/2) */
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub(crate) fn k_expo2(x: f64) -> f64 {
|
||||
let k_ln2 = f64::from_bits(0x40962066151add8b);
|
||||
/* note that k is odd and scale*scale overflows */
|
||||
let scale = f64::from_bits(((((0x3ff + K / 2) as u32) << 20) as u64) << 32);
|
||||
/* exp(x - k ln2) * 2**(k-1) */
|
||||
exp(x - k_ln2) * scale * scale
|
||||
}
|
14
mikros_std_deps/libm-0.2.8/src/math/k_expo2f.rs
Normal file
14
mikros_std_deps/libm-0.2.8/src/math/k_expo2f.rs
Normal file
@ -0,0 +1,14 @@
|
||||
use super::expf;
|
||||
|
||||
/* k is such that k*ln2 has minimal relative error and x - kln2 > log(FLT_MIN) */
|
||||
const K: i32 = 235;
|
||||
|
||||
/* expf(x)/2 for x >= log(FLT_MAX), slightly better than 0.5f*expf(x/2)*expf(x/2) */
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub(crate) fn k_expo2f(x: f32) -> f32 {
|
||||
let k_ln2 = f32::from_bits(0x4322e3bc);
|
||||
/* note that k is odd and scale*scale overflows */
|
||||
let scale = f32::from_bits(((0x7f + K / 2) as u32) << 23);
|
||||
/* exp(x - k ln2) * 2**(k-1) */
|
||||
expf(x - k_ln2) * scale * scale
|
||||
}
|
53
mikros_std_deps/libm-0.2.8/src/math/k_sin.rs
Normal file
53
mikros_std_deps/libm-0.2.8/src/math/k_sin.rs
Normal file
@ -0,0 +1,53 @@
|
||||
// origin: FreeBSD /usr/src/lib/msun/src/k_sin.c
|
||||
//
|
||||
// ====================================================
|
||||
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
//
|
||||
// Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
// Permission to use, copy, modify, and distribute this
|
||||
// software is freely granted, provided that this notice
|
||||
// is preserved.
|
||||
// ====================================================
|
||||
|
||||
const S1: f64 = -1.66666666666666324348e-01; /* 0xBFC55555, 0x55555549 */
|
||||
const S2: f64 = 8.33333333332248946124e-03; /* 0x3F811111, 0x1110F8A6 */
|
||||
const S3: f64 = -1.98412698298579493134e-04; /* 0xBF2A01A0, 0x19C161D5 */
|
||||
const S4: f64 = 2.75573137070700676789e-06; /* 0x3EC71DE3, 0x57B1FE7D */
|
||||
const S5: f64 = -2.50507602534068634195e-08; /* 0xBE5AE5E6, 0x8A2B9CEB */
|
||||
const S6: f64 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
|
||||
|
||||
// kernel sin function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
|
||||
// Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||
// Input y is the tail of x.
|
||||
// Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
|
||||
//
|
||||
// Algorithm
|
||||
// 1. Since sin(-x) = -sin(x), we need only to consider positive x.
|
||||
// 2. Callers must return sin(-0) = -0 without calling here since our
|
||||
// odd polynomial is not evaluated in a way that preserves -0.
|
||||
// Callers may do the optimization sin(x) ~ x for tiny x.
|
||||
// 3. sin(x) is approximated by a polynomial of degree 13 on
|
||||
// [0,pi/4]
|
||||
// 3 13
|
||||
// sin(x) ~ x + S1*x + ... + S6*x
|
||||
// where
|
||||
//
|
||||
// |sin(x) 2 4 6 8 10 12 | -58
|
||||
// |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
|
||||
// | x |
|
||||
//
|
||||
// 4. sin(x+y) = sin(x) + sin'(x')*y
|
||||
// ~ sin(x) + (1-x*x/2)*y
|
||||
// For better accuracy, let
|
||||
// 3 2 2 2 2
|
||||
// r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
|
||||
// then 3 2
|
||||
// sin(x) = x + (S1*x + (x *(r-y/2)+y))
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub(crate) fn k_sin(x: f64, y: f64, iy: i32) -> f64 {
|
||||
let z = x * x;
|
||||
let w = z * z;
|
||||
let r = S2 + z * (S3 + z * S4) + z * w * (S5 + z * S6);
|
||||
let v = z * x;
|
||||
if iy == 0 { x + v * (S1 + z * r) } else { x - ((z * (0.5 * y - v * r) - y) - v * S1) }
|
||||
}
|
30
mikros_std_deps/libm-0.2.8/src/math/k_sinf.rs
Normal file
30
mikros_std_deps/libm-0.2.8/src/math/k_sinf.rs
Normal file
@ -0,0 +1,30 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/k_sinf.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
* Optimized by Bruce D. Evans.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* |sin(x)/x - s(x)| < 2**-37.5 (~[-4.89e-12, 4.824e-12]). */
|
||||
const S1: f64 = -0.166666666416265235595; /* -0x15555554cbac77.0p-55 */
|
||||
const S2: f64 = 0.0083333293858894631756; /* 0x111110896efbb2.0p-59 */
|
||||
const S3: f64 = -0.000198393348360966317347; /* -0x1a00f9e2cae774.0p-65 */
|
||||
const S4: f64 = 0.0000027183114939898219064; /* 0x16cd878c3b46a7.0p-71 */
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub(crate) fn k_sinf(x: f64) -> f32 {
|
||||
let z = x * x;
|
||||
let w = z * z;
|
||||
let r = S3 + z * S4;
|
||||
let s = z * x;
|
||||
((x + s * (S1 + z * S2)) + s * w * r) as f32
|
||||
}
|
105
mikros_std_deps/libm-0.2.8/src/math/k_tan.rs
Normal file
105
mikros_std_deps/libm-0.2.8/src/math/k_tan.rs
Normal file
@ -0,0 +1,105 @@
|
||||
// origin: FreeBSD /usr/src/lib/msun/src/k_tan.c */
|
||||
//
|
||||
// ====================================================
|
||||
// Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
|
||||
//
|
||||
// Permission to use, copy, modify, and distribute this
|
||||
// software is freely granted, provided that this notice
|
||||
// is preserved.
|
||||
// ====================================================
|
||||
|
||||
// kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
|
||||
// Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||
// Input y is the tail of x.
|
||||
// Input odd indicates whether tan (if odd = 0) or -1/tan (if odd = 1) is returned.
|
||||
//
|
||||
// Algorithm
|
||||
// 1. Since tan(-x) = -tan(x), we need only to consider positive x.
|
||||
// 2. Callers must return tan(-0) = -0 without calling here since our
|
||||
// odd polynomial is not evaluated in a way that preserves -0.
|
||||
// Callers may do the optimization tan(x) ~ x for tiny x.
|
||||
// 3. tan(x) is approximated by a odd polynomial of degree 27 on
|
||||
// [0,0.67434]
|
||||
// 3 27
|
||||
// tan(x) ~ x + T1*x + ... + T13*x
|
||||
// where
|
||||
//
|
||||
// |tan(x) 2 4 26 | -59.2
|
||||
// |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
|
||||
// | x |
|
||||
//
|
||||
// Note: tan(x+y) = tan(x) + tan'(x)*y
|
||||
// ~ tan(x) + (1+x*x)*y
|
||||
// Therefore, for better accuracy in computing tan(x+y), let
|
||||
// 3 2 2 2 2
|
||||
// r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
|
||||
// then
|
||||
// 3 2
|
||||
// tan(x+y) = x + (T1*x + (x *(r+y)+y))
|
||||
//
|
||||
// 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
|
||||
// tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
|
||||
// = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
|
||||
static T: [f64; 13] = [
|
||||
3.33333333333334091986e-01, /* 3FD55555, 55555563 */
|
||||
1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
|
||||
5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
|
||||
2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
|
||||
8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
|
||||
3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
|
||||
1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
|
||||
5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
|
||||
2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
|
||||
7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
|
||||
7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
|
||||
-1.85586374855275456654e-05, /* BEF375CB, DB605373 */
|
||||
2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
|
||||
];
|
||||
const PIO4: f64 = 7.85398163397448278999e-01; /* 3FE921FB, 54442D18 */
|
||||
const PIO4_LO: f64 = 3.06161699786838301793e-17; /* 3C81A626, 33145C07 */
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub(crate) fn k_tan(mut x: f64, mut y: f64, odd: i32) -> f64 {
|
||||
let hx = (f64::to_bits(x) >> 32) as u32;
|
||||
let big = (hx & 0x7fffffff) >= 0x3FE59428; /* |x| >= 0.6744 */
|
||||
if big {
|
||||
let sign = hx >> 31;
|
||||
if sign != 0 {
|
||||
x = -x;
|
||||
y = -y;
|
||||
}
|
||||
x = (PIO4 - x) + (PIO4_LO - y);
|
||||
y = 0.0;
|
||||
}
|
||||
let z = x * x;
|
||||
let w = z * z;
|
||||
/*
|
||||
* Break x^5*(T[1]+x^2*T[2]+...) into
|
||||
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
|
||||
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
|
||||
*/
|
||||
let r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + w * T[11]))));
|
||||
let v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + w * T[12])))));
|
||||
let s = z * x;
|
||||
let r = y + z * (s * (r + v) + y) + s * T[0];
|
||||
let w = x + r;
|
||||
if big {
|
||||
let sign = hx >> 31;
|
||||
let s = 1.0 - 2.0 * odd as f64;
|
||||
let v = s - 2.0 * (x + (r - w * w / (w + s)));
|
||||
return if sign != 0 { -v } else { v };
|
||||
}
|
||||
if odd == 0 {
|
||||
return w;
|
||||
}
|
||||
/* -1.0/(x+r) has up to 2ulp error, so compute it accurately */
|
||||
let w0 = zero_low_word(w);
|
||||
let v = r - (w0 - x); /* w0+v = r+x */
|
||||
let a = -1.0 / w;
|
||||
let a0 = zero_low_word(a);
|
||||
a0 + a * (1.0 + a0 * w0 + a0 * v)
|
||||
}
|
||||
|
||||
fn zero_low_word(x: f64) -> f64 {
|
||||
f64::from_bits(f64::to_bits(x) & 0xFFFF_FFFF_0000_0000)
|
||||
}
|
46
mikros_std_deps/libm-0.2.8/src/math/k_tanf.rs
Normal file
46
mikros_std_deps/libm-0.2.8/src/math/k_tanf.rs
Normal file
@ -0,0 +1,46 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/k_tan.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */
|
||||
const T: [f64; 6] = [
|
||||
0.333331395030791399758, /* 0x15554d3418c99f.0p-54 */
|
||||
0.133392002712976742718, /* 0x1112fd38999f72.0p-55 */
|
||||
0.0533812378445670393523, /* 0x1b54c91d865afe.0p-57 */
|
||||
0.0245283181166547278873, /* 0x191df3908c33ce.0p-58 */
|
||||
0.00297435743359967304927, /* 0x185dadfcecf44e.0p-61 */
|
||||
0.00946564784943673166728, /* 0x1362b9bf971bcd.0p-59 */
|
||||
];
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub(crate) fn k_tanf(x: f64, odd: bool) -> f32 {
|
||||
let z = x * x;
|
||||
/*
|
||||
* Split up the polynomial into small independent terms to give
|
||||
* opportunities for parallel evaluation. The chosen splitting is
|
||||
* micro-optimized for Athlons (XP, X64). It costs 2 multiplications
|
||||
* relative to Horner's method on sequential machines.
|
||||
*
|
||||
* We add the small terms from lowest degree up for efficiency on
|
||||
* non-sequential machines (the lowest degree terms tend to be ready
|
||||
* earlier). Apart from this, we don't care about order of
|
||||
* operations, and don't need to to care since we have precision to
|
||||
* spare. However, the chosen splitting is good for accuracy too,
|
||||
* and would give results as accurate as Horner's method if the
|
||||
* small terms were added from highest degree down.
|
||||
*/
|
||||
let mut r = T[4] + z * T[5];
|
||||
let t = T[2] + z * T[3];
|
||||
let w = z * z;
|
||||
let s = z * x;
|
||||
let u = T[0] + z * T[1];
|
||||
r = (x + s * u) + (s * w) * (t + w * r);
|
||||
(if odd { -1. / r } else { r }) as f32
|
||||
}
|
4
mikros_std_deps/libm-0.2.8/src/math/ldexp.rs
Normal file
4
mikros_std_deps/libm-0.2.8/src/math/ldexp.rs
Normal file
@ -0,0 +1,4 @@
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn ldexp(x: f64, n: i32) -> f64 {
|
||||
super::scalbn(x, n)
|
||||
}
|
4
mikros_std_deps/libm-0.2.8/src/math/ldexpf.rs
Normal file
4
mikros_std_deps/libm-0.2.8/src/math/ldexpf.rs
Normal file
@ -0,0 +1,4 @@
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn ldexpf(x: f32, n: i32) -> f32 {
|
||||
super::scalbnf(x, n)
|
||||
}
|
6
mikros_std_deps/libm-0.2.8/src/math/lgamma.rs
Normal file
6
mikros_std_deps/libm-0.2.8/src/math/lgamma.rs
Normal file
@ -0,0 +1,6 @@
|
||||
use super::lgamma_r;
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn lgamma(x: f64) -> f64 {
|
||||
lgamma_r(x).0
|
||||
}
|
320
mikros_std_deps/libm-0.2.8/src/math/lgamma_r.rs
Normal file
320
mikros_std_deps/libm-0.2.8/src/math/lgamma_r.rs
Normal file
@ -0,0 +1,320 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_lgamma_r.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
/* lgamma_r(x, signgamp)
|
||||
* Reentrant version of the logarithm of the Gamma function
|
||||
* with user provide pointer for the sign of Gamma(x).
|
||||
*
|
||||
* Method:
|
||||
* 1. Argument Reduction for 0 < x <= 8
|
||||
* Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
|
||||
* reduce x to a number in [1.5,2.5] by
|
||||
* lgamma(1+s) = log(s) + lgamma(s)
|
||||
* for example,
|
||||
* lgamma(7.3) = log(6.3) + lgamma(6.3)
|
||||
* = log(6.3*5.3) + lgamma(5.3)
|
||||
* = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
|
||||
* 2. Polynomial approximation of lgamma around its
|
||||
* minimun ymin=1.461632144968362245 to maintain monotonicity.
|
||||
* On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
|
||||
* Let z = x-ymin;
|
||||
* lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
|
||||
* where
|
||||
* poly(z) is a 14 degree polynomial.
|
||||
* 2. Rational approximation in the primary interval [2,3]
|
||||
* We use the following approximation:
|
||||
* s = x-2.0;
|
||||
* lgamma(x) = 0.5*s + s*P(s)/Q(s)
|
||||
* with accuracy
|
||||
* |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
|
||||
* Our algorithms are based on the following observation
|
||||
*
|
||||
* zeta(2)-1 2 zeta(3)-1 3
|
||||
* lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
|
||||
* 2 3
|
||||
*
|
||||
* where Euler = 0.5771... is the Euler constant, which is very
|
||||
* close to 0.5.
|
||||
*
|
||||
* 3. For x>=8, we have
|
||||
* lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
|
||||
* (better formula:
|
||||
* lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
|
||||
* Let z = 1/x, then we approximation
|
||||
* f(z) = lgamma(x) - (x-0.5)(log(x)-1)
|
||||
* by
|
||||
* 3 5 11
|
||||
* w = w0 + w1*z + w2*z + w3*z + ... + w6*z
|
||||
* where
|
||||
* |w - f(z)| < 2**-58.74
|
||||
*
|
||||
* 4. For negative x, since (G is gamma function)
|
||||
* -x*G(-x)*G(x) = PI/sin(PI*x),
|
||||
* we have
|
||||
* G(x) = PI/(sin(PI*x)*(-x)*G(-x))
|
||||
* since G(-x) is positive, sign(G(x)) = sign(sin(PI*x)) for x<0
|
||||
* Hence, for x<0, signgam = sign(sin(PI*x)) and
|
||||
* lgamma(x) = log(|Gamma(x)|)
|
||||
* = log(PI/(|x*sin(PI*x)|)) - lgamma(-x);
|
||||
* Note: one should avoid compute PI*(-x) directly in the
|
||||
* computation of sin(PI*(-x)).
|
||||
*
|
||||
* 5. Special Cases
|
||||
* lgamma(2+s) ~ s*(1-Euler) for tiny s
|
||||
* lgamma(1) = lgamma(2) = 0
|
||||
* lgamma(x) ~ -log(|x|) for tiny x
|
||||
* lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero
|
||||
* lgamma(inf) = inf
|
||||
* lgamma(-inf) = inf (bug for bug compatible with C99!?)
|
||||
*
|
||||
*/
|
||||
|
||||
use super::{floor, k_cos, k_sin, log};
|
||||
|
||||
const PI: f64 = 3.14159265358979311600e+00; /* 0x400921FB, 0x54442D18 */
|
||||
const A0: f64 = 7.72156649015328655494e-02; /* 0x3FB3C467, 0xE37DB0C8 */
|
||||
const A1: f64 = 3.22467033424113591611e-01; /* 0x3FD4A34C, 0xC4A60FAD */
|
||||
const A2: f64 = 6.73523010531292681824e-02; /* 0x3FB13E00, 0x1A5562A7 */
|
||||
const A3: f64 = 2.05808084325167332806e-02; /* 0x3F951322, 0xAC92547B */
|
||||
const A4: f64 = 7.38555086081402883957e-03; /* 0x3F7E404F, 0xB68FEFE8 */
|
||||
const A5: f64 = 2.89051383673415629091e-03; /* 0x3F67ADD8, 0xCCB7926B */
|
||||
const A6: f64 = 1.19270763183362067845e-03; /* 0x3F538A94, 0x116F3F5D */
|
||||
const A7: f64 = 5.10069792153511336608e-04; /* 0x3F40B6C6, 0x89B99C00 */
|
||||
const A8: f64 = 2.20862790713908385557e-04; /* 0x3F2CF2EC, 0xED10E54D */
|
||||
const A9: f64 = 1.08011567247583939954e-04; /* 0x3F1C5088, 0x987DFB07 */
|
||||
const A10: f64 = 2.52144565451257326939e-05; /* 0x3EFA7074, 0x428CFA52 */
|
||||
const A11: f64 = 4.48640949618915160150e-05; /* 0x3F07858E, 0x90A45837 */
|
||||
const TC: f64 = 1.46163214496836224576e+00; /* 0x3FF762D8, 0x6356BE3F */
|
||||
const TF: f64 = -1.21486290535849611461e-01; /* 0xBFBF19B9, 0xBCC38A42 */
|
||||
/* tt = -(tail of TF) */
|
||||
const TT: f64 = -3.63867699703950536541e-18; /* 0xBC50C7CA, 0xA48A971F */
|
||||
const T0: f64 = 4.83836122723810047042e-01; /* 0x3FDEF72B, 0xC8EE38A2 */
|
||||
const T1: f64 = -1.47587722994593911752e-01; /* 0xBFC2E427, 0x8DC6C509 */
|
||||
const T2: f64 = 6.46249402391333854778e-02; /* 0x3FB08B42, 0x94D5419B */
|
||||
const T3: f64 = -3.27885410759859649565e-02; /* 0xBFA0C9A8, 0xDF35B713 */
|
||||
const T4: f64 = 1.79706750811820387126e-02; /* 0x3F9266E7, 0x970AF9EC */
|
||||
const T5: f64 = -1.03142241298341437450e-02; /* 0xBF851F9F, 0xBA91EC6A */
|
||||
const T6: f64 = 6.10053870246291332635e-03; /* 0x3F78FCE0, 0xE370E344 */
|
||||
const T7: f64 = -3.68452016781138256760e-03; /* 0xBF6E2EFF, 0xB3E914D7 */
|
||||
const T8: f64 = 2.25964780900612472250e-03; /* 0x3F6282D3, 0x2E15C915 */
|
||||
const T9: f64 = -1.40346469989232843813e-03; /* 0xBF56FE8E, 0xBF2D1AF1 */
|
||||
const T10: f64 = 8.81081882437654011382e-04; /* 0x3F4CDF0C, 0xEF61A8E9 */
|
||||
const T11: f64 = -5.38595305356740546715e-04; /* 0xBF41A610, 0x9C73E0EC */
|
||||
const T12: f64 = 3.15632070903625950361e-04; /* 0x3F34AF6D, 0x6C0EBBF7 */
|
||||
const T13: f64 = -3.12754168375120860518e-04; /* 0xBF347F24, 0xECC38C38 */
|
||||
const T14: f64 = 3.35529192635519073543e-04; /* 0x3F35FD3E, 0xE8C2D3F4 */
|
||||
const U0: f64 = -7.72156649015328655494e-02; /* 0xBFB3C467, 0xE37DB0C8 */
|
||||
const U1: f64 = 6.32827064025093366517e-01; /* 0x3FE4401E, 0x8B005DFF */
|
||||
const U2: f64 = 1.45492250137234768737e+00; /* 0x3FF7475C, 0xD119BD6F */
|
||||
const U3: f64 = 9.77717527963372745603e-01; /* 0x3FEF4976, 0x44EA8450 */
|
||||
const U4: f64 = 2.28963728064692451092e-01; /* 0x3FCD4EAE, 0xF6010924 */
|
||||
const U5: f64 = 1.33810918536787660377e-02; /* 0x3F8B678B, 0xBF2BAB09 */
|
||||
const V1: f64 = 2.45597793713041134822e+00; /* 0x4003A5D7, 0xC2BD619C */
|
||||
const V2: f64 = 2.12848976379893395361e+00; /* 0x40010725, 0xA42B18F5 */
|
||||
const V3: f64 = 7.69285150456672783825e-01; /* 0x3FE89DFB, 0xE45050AF */
|
||||
const V4: f64 = 1.04222645593369134254e-01; /* 0x3FBAAE55, 0xD6537C88 */
|
||||
const V5: f64 = 3.21709242282423911810e-03; /* 0x3F6A5ABB, 0x57D0CF61 */
|
||||
const S0: f64 = -7.72156649015328655494e-02; /* 0xBFB3C467, 0xE37DB0C8 */
|
||||
const S1: f64 = 2.14982415960608852501e-01; /* 0x3FCB848B, 0x36E20878 */
|
||||
const S2: f64 = 3.25778796408930981787e-01; /* 0x3FD4D98F, 0x4F139F59 */
|
||||
const S3: f64 = 1.46350472652464452805e-01; /* 0x3FC2BB9C, 0xBEE5F2F7 */
|
||||
const S4: f64 = 2.66422703033638609560e-02; /* 0x3F9B481C, 0x7E939961 */
|
||||
const S5: f64 = 1.84028451407337715652e-03; /* 0x3F5E26B6, 0x7368F239 */
|
||||
const S6: f64 = 3.19475326584100867617e-05; /* 0x3F00BFEC, 0xDD17E945 */
|
||||
const R1: f64 = 1.39200533467621045958e+00; /* 0x3FF645A7, 0x62C4AB74 */
|
||||
const R2: f64 = 7.21935547567138069525e-01; /* 0x3FE71A18, 0x93D3DCDC */
|
||||
const R3: f64 = 1.71933865632803078993e-01; /* 0x3FC601ED, 0xCCFBDF27 */
|
||||
const R4: f64 = 1.86459191715652901344e-02; /* 0x3F9317EA, 0x742ED475 */
|
||||
const R5: f64 = 7.77942496381893596434e-04; /* 0x3F497DDA, 0xCA41A95B */
|
||||
const R6: f64 = 7.32668430744625636189e-06; /* 0x3EDEBAF7, 0xA5B38140 */
|
||||
const W0: f64 = 4.18938533204672725052e-01; /* 0x3FDACFE3, 0x90C97D69 */
|
||||
const W1: f64 = 8.33333333333329678849e-02; /* 0x3FB55555, 0x5555553B */
|
||||
const W2: f64 = -2.77777777728775536470e-03; /* 0xBF66C16C, 0x16B02E5C */
|
||||
const W3: f64 = 7.93650558643019558500e-04; /* 0x3F4A019F, 0x98CF38B6 */
|
||||
const W4: f64 = -5.95187557450339963135e-04; /* 0xBF4380CB, 0x8C0FE741 */
|
||||
const W5: f64 = 8.36339918996282139126e-04; /* 0x3F4B67BA, 0x4CDAD5D1 */
|
||||
const W6: f64 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
|
||||
|
||||
/* sin(PI*x) assuming x > 2^-100, if sin(PI*x)==0 the sign is arbitrary */
|
||||
fn sin_pi(mut x: f64) -> f64 {
|
||||
let mut n: i32;
|
||||
|
||||
/* spurious inexact if odd int */
|
||||
x = 2.0 * (x * 0.5 - floor(x * 0.5)); /* x mod 2.0 */
|
||||
|
||||
n = (x * 4.0) as i32;
|
||||
n = div!(n + 1, 2);
|
||||
x -= (n as f64) * 0.5;
|
||||
x *= PI;
|
||||
|
||||
match n {
|
||||
1 => k_cos(x, 0.0),
|
||||
2 => k_sin(-x, 0.0, 0),
|
||||
3 => -k_cos(x, 0.0),
|
||||
0 | _ => k_sin(x, 0.0, 0),
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn lgamma_r(mut x: f64) -> (f64, i32) {
|
||||
let u: u64 = x.to_bits();
|
||||
let mut t: f64;
|
||||
let y: f64;
|
||||
let mut z: f64;
|
||||
let nadj: f64;
|
||||
let p: f64;
|
||||
let p1: f64;
|
||||
let p2: f64;
|
||||
let p3: f64;
|
||||
let q: f64;
|
||||
let mut r: f64;
|
||||
let w: f64;
|
||||
let ix: u32;
|
||||
let sign: bool;
|
||||
let i: i32;
|
||||
let mut signgam: i32;
|
||||
|
||||
/* purge off +-inf, NaN, +-0, tiny and negative arguments */
|
||||
signgam = 1;
|
||||
sign = (u >> 63) != 0;
|
||||
ix = ((u >> 32) as u32) & 0x7fffffff;
|
||||
if ix >= 0x7ff00000 {
|
||||
return (x * x, signgam);
|
||||
}
|
||||
if ix < (0x3ff - 70) << 20 {
|
||||
/* |x|<2**-70, return -log(|x|) */
|
||||
if sign {
|
||||
x = -x;
|
||||
signgam = -1;
|
||||
}
|
||||
return (-log(x), signgam);
|
||||
}
|
||||
if sign {
|
||||
x = -x;
|
||||
t = sin_pi(x);
|
||||
if t == 0.0 {
|
||||
/* -integer */
|
||||
return (1.0 / (x - x), signgam);
|
||||
}
|
||||
if t > 0.0 {
|
||||
signgam = -1;
|
||||
} else {
|
||||
t = -t;
|
||||
}
|
||||
nadj = log(PI / (t * x));
|
||||
} else {
|
||||
nadj = 0.0;
|
||||
}
|
||||
|
||||
/* purge off 1 and 2 */
|
||||
if (ix == 0x3ff00000 || ix == 0x40000000) && (u & 0xffffffff) == 0 {
|
||||
r = 0.0;
|
||||
}
|
||||
/* for x < 2.0 */
|
||||
else if ix < 0x40000000 {
|
||||
if ix <= 0x3feccccc {
|
||||
/* lgamma(x) = lgamma(x+1)-log(x) */
|
||||
r = -log(x);
|
||||
if ix >= 0x3FE76944 {
|
||||
y = 1.0 - x;
|
||||
i = 0;
|
||||
} else if ix >= 0x3FCDA661 {
|
||||
y = x - (TC - 1.0);
|
||||
i = 1;
|
||||
} else {
|
||||
y = x;
|
||||
i = 2;
|
||||
}
|
||||
} else {
|
||||
r = 0.0;
|
||||
if ix >= 0x3FFBB4C3 {
|
||||
/* [1.7316,2] */
|
||||
y = 2.0 - x;
|
||||
i = 0;
|
||||
} else if ix >= 0x3FF3B4C4 {
|
||||
/* [1.23,1.73] */
|
||||
y = x - TC;
|
||||
i = 1;
|
||||
} else {
|
||||
y = x - 1.0;
|
||||
i = 2;
|
||||
}
|
||||
}
|
||||
match i {
|
||||
0 => {
|
||||
z = y * y;
|
||||
p1 = A0 + z * (A2 + z * (A4 + z * (A6 + z * (A8 + z * A10))));
|
||||
p2 = z * (A1 + z * (A3 + z * (A5 + z * (A7 + z * (A9 + z * A11)))));
|
||||
p = y * p1 + p2;
|
||||
r += p - 0.5 * y;
|
||||
}
|
||||
1 => {
|
||||
z = y * y;
|
||||
w = z * y;
|
||||
p1 = T0 + w * (T3 + w * (T6 + w * (T9 + w * T12))); /* parallel comp */
|
||||
p2 = T1 + w * (T4 + w * (T7 + w * (T10 + w * T13)));
|
||||
p3 = T2 + w * (T5 + w * (T8 + w * (T11 + w * T14)));
|
||||
p = z * p1 - (TT - w * (p2 + y * p3));
|
||||
r += TF + p;
|
||||
}
|
||||
2 => {
|
||||
p1 = y * (U0 + y * (U1 + y * (U2 + y * (U3 + y * (U4 + y * U5)))));
|
||||
p2 = 1.0 + y * (V1 + y * (V2 + y * (V3 + y * (V4 + y * V5))));
|
||||
r += -0.5 * y + p1 / p2;
|
||||
}
|
||||
#[cfg(debug_assertions)]
|
||||
_ => unreachable!(),
|
||||
#[cfg(not(debug_assertions))]
|
||||
_ => {}
|
||||
}
|
||||
} else if ix < 0x40200000 {
|
||||
/* x < 8.0 */
|
||||
i = x as i32;
|
||||
y = x - (i as f64);
|
||||
p = y * (S0 + y * (S1 + y * (S2 + y * (S3 + y * (S4 + y * (S5 + y * S6))))));
|
||||
q = 1.0 + y * (R1 + y * (R2 + y * (R3 + y * (R4 + y * (R5 + y * R6)))));
|
||||
r = 0.5 * y + p / q;
|
||||
z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */
|
||||
// TODO: In C, this was implemented using switch jumps with fallthrough.
|
||||
// Does this implementation have performance problems?
|
||||
if i >= 7 {
|
||||
z *= y + 6.0;
|
||||
}
|
||||
if i >= 6 {
|
||||
z *= y + 5.0;
|
||||
}
|
||||
if i >= 5 {
|
||||
z *= y + 4.0;
|
||||
}
|
||||
if i >= 4 {
|
||||
z *= y + 3.0;
|
||||
}
|
||||
if i >= 3 {
|
||||
z *= y + 2.0;
|
||||
r += log(z);
|
||||
}
|
||||
} else if ix < 0x43900000 {
|
||||
/* 8.0 <= x < 2**58 */
|
||||
t = log(x);
|
||||
z = 1.0 / x;
|
||||
y = z * z;
|
||||
w = W0 + z * (W1 + y * (W2 + y * (W3 + y * (W4 + y * (W5 + y * W6)))));
|
||||
r = (x - 0.5) * (t - 1.0) + w;
|
||||
} else {
|
||||
/* 2**58 <= x <= inf */
|
||||
r = x * (log(x) - 1.0);
|
||||
}
|
||||
if sign {
|
||||
r = nadj - r;
|
||||
}
|
||||
return (r, signgam);
|
||||
}
|
6
mikros_std_deps/libm-0.2.8/src/math/lgammaf.rs
Normal file
6
mikros_std_deps/libm-0.2.8/src/math/lgammaf.rs
Normal file
@ -0,0 +1,6 @@
|
||||
use super::lgammaf_r;
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn lgammaf(x: f32) -> f32 {
|
||||
lgammaf_r(x).0
|
||||
}
|
255
mikros_std_deps/libm-0.2.8/src/math/lgammaf_r.rs
Normal file
255
mikros_std_deps/libm-0.2.8/src/math/lgammaf_r.rs
Normal file
@ -0,0 +1,255 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_lgammaf_r.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
use super::{floorf, k_cosf, k_sinf, logf};
|
||||
|
||||
const PI: f32 = 3.1415927410e+00; /* 0x40490fdb */
|
||||
const A0: f32 = 7.7215664089e-02; /* 0x3d9e233f */
|
||||
const A1: f32 = 3.2246702909e-01; /* 0x3ea51a66 */
|
||||
const A2: f32 = 6.7352302372e-02; /* 0x3d89f001 */
|
||||
const A3: f32 = 2.0580807701e-02; /* 0x3ca89915 */
|
||||
const A4: f32 = 7.3855509982e-03; /* 0x3bf2027e */
|
||||
const A5: f32 = 2.8905137442e-03; /* 0x3b3d6ec6 */
|
||||
const A6: f32 = 1.1927076848e-03; /* 0x3a9c54a1 */
|
||||
const A7: f32 = 5.1006977446e-04; /* 0x3a05b634 */
|
||||
const A8: f32 = 2.2086278477e-04; /* 0x39679767 */
|
||||
const A9: f32 = 1.0801156895e-04; /* 0x38e28445 */
|
||||
const A10: f32 = 2.5214456400e-05; /* 0x37d383a2 */
|
||||
const A11: f32 = 4.4864096708e-05; /* 0x383c2c75 */
|
||||
const TC: f32 = 1.4616321325e+00; /* 0x3fbb16c3 */
|
||||
const TF: f32 = -1.2148628384e-01; /* 0xbdf8cdcd */
|
||||
/* TT = -(tail of TF) */
|
||||
const TT: f32 = 6.6971006518e-09; /* 0x31e61c52 */
|
||||
const T0: f32 = 4.8383611441e-01; /* 0x3ef7b95e */
|
||||
const T1: f32 = -1.4758771658e-01; /* 0xbe17213c */
|
||||
const T2: f32 = 6.4624942839e-02; /* 0x3d845a15 */
|
||||
const T3: f32 = -3.2788541168e-02; /* 0xbd064d47 */
|
||||
const T4: f32 = 1.7970675603e-02; /* 0x3c93373d */
|
||||
const T5: f32 = -1.0314224288e-02; /* 0xbc28fcfe */
|
||||
const T6: f32 = 6.1005386524e-03; /* 0x3bc7e707 */
|
||||
const T7: f32 = -3.6845202558e-03; /* 0xbb7177fe */
|
||||
const T8: f32 = 2.2596477065e-03; /* 0x3b141699 */
|
||||
const T9: f32 = -1.4034647029e-03; /* 0xbab7f476 */
|
||||
const T10: f32 = 8.8108185446e-04; /* 0x3a66f867 */
|
||||
const T11: f32 = -5.3859531181e-04; /* 0xba0d3085 */
|
||||
const T12: f32 = 3.1563205994e-04; /* 0x39a57b6b */
|
||||
const T13: f32 = -3.1275415677e-04; /* 0xb9a3f927 */
|
||||
const T14: f32 = 3.3552918467e-04; /* 0x39afe9f7 */
|
||||
const U0: f32 = -7.7215664089e-02; /* 0xbd9e233f */
|
||||
const U1: f32 = 6.3282704353e-01; /* 0x3f2200f4 */
|
||||
const U2: f32 = 1.4549225569e+00; /* 0x3fba3ae7 */
|
||||
const U3: f32 = 9.7771751881e-01; /* 0x3f7a4bb2 */
|
||||
const U4: f32 = 2.2896373272e-01; /* 0x3e6a7578 */
|
||||
const U5: f32 = 1.3381091878e-02; /* 0x3c5b3c5e */
|
||||
const V1: f32 = 2.4559779167e+00; /* 0x401d2ebe */
|
||||
const V2: f32 = 2.1284897327e+00; /* 0x4008392d */
|
||||
const V3: f32 = 7.6928514242e-01; /* 0x3f44efdf */
|
||||
const V4: f32 = 1.0422264785e-01; /* 0x3dd572af */
|
||||
const V5: f32 = 3.2170924824e-03; /* 0x3b52d5db */
|
||||
const S0: f32 = -7.7215664089e-02; /* 0xbd9e233f */
|
||||
const S1: f32 = 2.1498242021e-01; /* 0x3e5c245a */
|
||||
const S2: f32 = 3.2577878237e-01; /* 0x3ea6cc7a */
|
||||
const S3: f32 = 1.4635047317e-01; /* 0x3e15dce6 */
|
||||
const S4: f32 = 2.6642270386e-02; /* 0x3cda40e4 */
|
||||
const S5: f32 = 1.8402845599e-03; /* 0x3af135b4 */
|
||||
const S6: f32 = 3.1947532989e-05; /* 0x3805ff67 */
|
||||
const R1: f32 = 1.3920053244e+00; /* 0x3fb22d3b */
|
||||
const R2: f32 = 7.2193557024e-01; /* 0x3f38d0c5 */
|
||||
const R3: f32 = 1.7193385959e-01; /* 0x3e300f6e */
|
||||
const R4: f32 = 1.8645919859e-02; /* 0x3c98bf54 */
|
||||
const R5: f32 = 7.7794247773e-04; /* 0x3a4beed6 */
|
||||
const R6: f32 = 7.3266842264e-06; /* 0x36f5d7bd */
|
||||
const W0: f32 = 4.1893854737e-01; /* 0x3ed67f1d */
|
||||
const W1: f32 = 8.3333335817e-02; /* 0x3daaaaab */
|
||||
const W2: f32 = -2.7777778450e-03; /* 0xbb360b61 */
|
||||
const W3: f32 = 7.9365057172e-04; /* 0x3a500cfd */
|
||||
const W4: f32 = -5.9518753551e-04; /* 0xba1c065c */
|
||||
const W5: f32 = 8.3633989561e-04; /* 0x3a5b3dd2 */
|
||||
const W6: f32 = -1.6309292987e-03; /* 0xbad5c4e8 */
|
||||
|
||||
/* sin(PI*x) assuming x > 2^-100, if sin(PI*x)==0 the sign is arbitrary */
|
||||
fn sin_pi(mut x: f32) -> f32 {
|
||||
let mut y: f64;
|
||||
let mut n: isize;
|
||||
|
||||
/* spurious inexact if odd int */
|
||||
x = 2.0 * (x * 0.5 - floorf(x * 0.5)); /* x mod 2.0 */
|
||||
|
||||
n = (x * 4.0) as isize;
|
||||
n = div!(n + 1, 2);
|
||||
y = (x as f64) - (n as f64) * 0.5;
|
||||
y *= 3.14159265358979323846;
|
||||
match n {
|
||||
1 => k_cosf(y),
|
||||
2 => k_sinf(-y),
|
||||
3 => -k_cosf(y),
|
||||
0 | _ => k_sinf(y),
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn lgammaf_r(mut x: f32) -> (f32, i32) {
|
||||
let u = x.to_bits();
|
||||
let mut t: f32;
|
||||
let y: f32;
|
||||
let mut z: f32;
|
||||
let nadj: f32;
|
||||
let p: f32;
|
||||
let p1: f32;
|
||||
let p2: f32;
|
||||
let p3: f32;
|
||||
let q: f32;
|
||||
let mut r: f32;
|
||||
let w: f32;
|
||||
let ix: u32;
|
||||
let i: i32;
|
||||
let sign: bool;
|
||||
let mut signgam: i32;
|
||||
|
||||
/* purge off +-inf, NaN, +-0, tiny and negative arguments */
|
||||
signgam = 1;
|
||||
sign = (u >> 31) != 0;
|
||||
ix = u & 0x7fffffff;
|
||||
if ix >= 0x7f800000 {
|
||||
return (x * x, signgam);
|
||||
}
|
||||
if ix < 0x35000000 {
|
||||
/* |x| < 2**-21, return -log(|x|) */
|
||||
if sign {
|
||||
signgam = -1;
|
||||
x = -x;
|
||||
}
|
||||
return (-logf(x), signgam);
|
||||
}
|
||||
if sign {
|
||||
x = -x;
|
||||
t = sin_pi(x);
|
||||
if t == 0.0 {
|
||||
/* -integer */
|
||||
return (1.0 / (x - x), signgam);
|
||||
}
|
||||
if t > 0.0 {
|
||||
signgam = -1;
|
||||
} else {
|
||||
t = -t;
|
||||
}
|
||||
nadj = logf(PI / (t * x));
|
||||
} else {
|
||||
nadj = 0.0;
|
||||
}
|
||||
|
||||
/* purge off 1 and 2 */
|
||||
if ix == 0x3f800000 || ix == 0x40000000 {
|
||||
r = 0.0;
|
||||
}
|
||||
/* for x < 2.0 */
|
||||
else if ix < 0x40000000 {
|
||||
if ix <= 0x3f666666 {
|
||||
/* lgamma(x) = lgamma(x+1)-log(x) */
|
||||
r = -logf(x);
|
||||
if ix >= 0x3f3b4a20 {
|
||||
y = 1.0 - x;
|
||||
i = 0;
|
||||
} else if ix >= 0x3e6d3308 {
|
||||
y = x - (TC - 1.0);
|
||||
i = 1;
|
||||
} else {
|
||||
y = x;
|
||||
i = 2;
|
||||
}
|
||||
} else {
|
||||
r = 0.0;
|
||||
if ix >= 0x3fdda618 {
|
||||
/* [1.7316,2] */
|
||||
y = 2.0 - x;
|
||||
i = 0;
|
||||
} else if ix >= 0x3F9da620 {
|
||||
/* [1.23,1.73] */
|
||||
y = x - TC;
|
||||
i = 1;
|
||||
} else {
|
||||
y = x - 1.0;
|
||||
i = 2;
|
||||
}
|
||||
}
|
||||
match i {
|
||||
0 => {
|
||||
z = y * y;
|
||||
p1 = A0 + z * (A2 + z * (A4 + z * (A6 + z * (A8 + z * A10))));
|
||||
p2 = z * (A1 + z * (A3 + z * (A5 + z * (A7 + z * (A9 + z * A11)))));
|
||||
p = y * p1 + p2;
|
||||
r += p - 0.5 * y;
|
||||
}
|
||||
1 => {
|
||||
z = y * y;
|
||||
w = z * y;
|
||||
p1 = T0 + w * (T3 + w * (T6 + w * (T9 + w * T12))); /* parallel comp */
|
||||
p2 = T1 + w * (T4 + w * (T7 + w * (T10 + w * T13)));
|
||||
p3 = T2 + w * (T5 + w * (T8 + w * (T11 + w * T14)));
|
||||
p = z * p1 - (TT - w * (p2 + y * p3));
|
||||
r += TF + p;
|
||||
}
|
||||
2 => {
|
||||
p1 = y * (U0 + y * (U1 + y * (U2 + y * (U3 + y * (U4 + y * U5)))));
|
||||
p2 = 1.0 + y * (V1 + y * (V2 + y * (V3 + y * (V4 + y * V5))));
|
||||
r += -0.5 * y + p1 / p2;
|
||||
}
|
||||
#[cfg(debug_assertions)]
|
||||
_ => unreachable!(),
|
||||
#[cfg(not(debug_assertions))]
|
||||
_ => {}
|
||||
}
|
||||
} else if ix < 0x41000000 {
|
||||
/* x < 8.0 */
|
||||
i = x as i32;
|
||||
y = x - (i as f32);
|
||||
p = y * (S0 + y * (S1 + y * (S2 + y * (S3 + y * (S4 + y * (S5 + y * S6))))));
|
||||
q = 1.0 + y * (R1 + y * (R2 + y * (R3 + y * (R4 + y * (R5 + y * R6)))));
|
||||
r = 0.5 * y + p / q;
|
||||
z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */
|
||||
// TODO: In C, this was implemented using switch jumps with fallthrough.
|
||||
// Does this implementation have performance problems?
|
||||
if i >= 7 {
|
||||
z *= y + 6.0;
|
||||
}
|
||||
if i >= 6 {
|
||||
z *= y + 5.0;
|
||||
}
|
||||
if i >= 5 {
|
||||
z *= y + 4.0;
|
||||
}
|
||||
if i >= 4 {
|
||||
z *= y + 3.0;
|
||||
}
|
||||
if i >= 3 {
|
||||
z *= y + 2.0;
|
||||
r += logf(z);
|
||||
}
|
||||
} else if ix < 0x5c800000 {
|
||||
/* 8.0 <= x < 2**58 */
|
||||
t = logf(x);
|
||||
z = 1.0 / x;
|
||||
y = z * z;
|
||||
w = W0 + z * (W1 + y * (W2 + y * (W3 + y * (W4 + y * (W5 + y * W6)))));
|
||||
r = (x - 0.5) * (t - 1.0) + w;
|
||||
} else {
|
||||
/* 2**58 <= x <= inf */
|
||||
r = x * (logf(x) - 1.0);
|
||||
}
|
||||
if sign {
|
||||
r = nadj - r;
|
||||
}
|
||||
return (r, signgam);
|
||||
}
|
117
mikros_std_deps/libm-0.2.8/src/math/log.rs
Normal file
117
mikros_std_deps/libm-0.2.8/src/math/log.rs
Normal file
@ -0,0 +1,117 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_log.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* log(x)
|
||||
* Return the logarithm of x
|
||||
*
|
||||
* Method :
|
||||
* 1. Argument Reduction: find k and f such that
|
||||
* x = 2^k * (1+f),
|
||||
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
||||
*
|
||||
* 2. Approximation of log(1+f).
|
||||
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
||||
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
||||
* = 2s + s*R
|
||||
* We use a special Remez algorithm on [0,0.1716] to generate
|
||||
* a polynomial of degree 14 to approximate R The maximum error
|
||||
* of this polynomial approximation is bounded by 2**-58.45. In
|
||||
* other words,
|
||||
* 2 4 6 8 10 12 14
|
||||
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
|
||||
* (the values of Lg1 to Lg7 are listed in the program)
|
||||
* and
|
||||
* | 2 14 | -58.45
|
||||
* | Lg1*s +...+Lg7*s - R(z) | <= 2
|
||||
* | |
|
||||
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
||||
* In order to guarantee error in log below 1ulp, we compute log
|
||||
* by
|
||||
* log(1+f) = f - s*(f - R) (if f is not too large)
|
||||
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
|
||||
*
|
||||
* 3. Finally, log(x) = k*ln2 + log(1+f).
|
||||
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
||||
* Here ln2 is split into two floating point number:
|
||||
* ln2_hi + ln2_lo,
|
||||
* where n*ln2_hi is always exact for |n| < 2000.
|
||||
*
|
||||
* Special cases:
|
||||
* log(x) is NaN with signal if x < 0 (including -INF) ;
|
||||
* log(+INF) is +INF; log(0) is -INF with signal;
|
||||
* log(NaN) is that NaN with no signal.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
|
||||
const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
|
||||
const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
|
||||
const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
|
||||
const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
|
||||
const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
|
||||
const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
|
||||
const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
|
||||
const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn log(mut x: f64) -> f64 {
|
||||
let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54
|
||||
|
||||
let mut ui = x.to_bits();
|
||||
let mut hx: u32 = (ui >> 32) as u32;
|
||||
let mut k: i32 = 0;
|
||||
|
||||
if (hx < 0x00100000) || ((hx >> 31) != 0) {
|
||||
/* x < 2**-126 */
|
||||
if ui << 1 == 0 {
|
||||
return -1. / (x * x); /* log(+-0)=-inf */
|
||||
}
|
||||
if hx >> 31 != 0 {
|
||||
return (x - x) / 0.0; /* log(-#) = NaN */
|
||||
}
|
||||
/* subnormal number, scale x up */
|
||||
k -= 54;
|
||||
x *= x1p54;
|
||||
ui = x.to_bits();
|
||||
hx = (ui >> 32) as u32;
|
||||
} else if hx >= 0x7ff00000 {
|
||||
return x;
|
||||
} else if hx == 0x3ff00000 && ui << 32 == 0 {
|
||||
return 0.;
|
||||
}
|
||||
|
||||
/* reduce x into [sqrt(2)/2, sqrt(2)] */
|
||||
hx += 0x3ff00000 - 0x3fe6a09e;
|
||||
k += ((hx >> 20) as i32) - 0x3ff;
|
||||
hx = (hx & 0x000fffff) + 0x3fe6a09e;
|
||||
ui = ((hx as u64) << 32) | (ui & 0xffffffff);
|
||||
x = f64::from_bits(ui);
|
||||
|
||||
let f: f64 = x - 1.0;
|
||||
let hfsq: f64 = 0.5 * f * f;
|
||||
let s: f64 = f / (2.0 + f);
|
||||
let z: f64 = s * s;
|
||||
let w: f64 = z * z;
|
||||
let t1: f64 = w * (LG2 + w * (LG4 + w * LG6));
|
||||
let t2: f64 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
|
||||
let r: f64 = t2 + t1;
|
||||
let dk: f64 = k as f64;
|
||||
s * (hfsq + r) + dk * LN2_LO - hfsq + f + dk * LN2_HI
|
||||
}
|
117
mikros_std_deps/libm-0.2.8/src/math/log10.rs
Normal file
117
mikros_std_deps/libm-0.2.8/src/math/log10.rs
Normal file
@ -0,0 +1,117 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_log10.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/*
|
||||
* Return the base 10 logarithm of x. See log.c for most comments.
|
||||
*
|
||||
* Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2
|
||||
* as in log.c, then combine and scale in extra precision:
|
||||
* log10(x) = (f - f*f/2 + r)/log(10) + k*log10(2)
|
||||
*/
|
||||
|
||||
use core::f64;
|
||||
|
||||
const IVLN10HI: f64 = 4.34294481878168880939e-01; /* 0x3fdbcb7b, 0x15200000 */
|
||||
const IVLN10LO: f64 = 2.50829467116452752298e-11; /* 0x3dbb9438, 0xca9aadd5 */
|
||||
const LOG10_2HI: f64 = 3.01029995663611771306e-01; /* 0x3FD34413, 0x509F6000 */
|
||||
const LOG10_2LO: f64 = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
|
||||
const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
|
||||
const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
|
||||
const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
|
||||
const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
|
||||
const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
|
||||
const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
|
||||
const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn log10(mut x: f64) -> f64 {
|
||||
let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54
|
||||
|
||||
let mut ui: u64 = x.to_bits();
|
||||
let hfsq: f64;
|
||||
let f: f64;
|
||||
let s: f64;
|
||||
let z: f64;
|
||||
let r: f64;
|
||||
let mut w: f64;
|
||||
let t1: f64;
|
||||
let t2: f64;
|
||||
let dk: f64;
|
||||
let y: f64;
|
||||
let mut hi: f64;
|
||||
let lo: f64;
|
||||
let mut val_hi: f64;
|
||||
let mut val_lo: f64;
|
||||
let mut hx: u32;
|
||||
let mut k: i32;
|
||||
|
||||
hx = (ui >> 32) as u32;
|
||||
k = 0;
|
||||
if hx < 0x00100000 || (hx >> 31) > 0 {
|
||||
if ui << 1 == 0 {
|
||||
return -1. / (x * x); /* log(+-0)=-inf */
|
||||
}
|
||||
if (hx >> 31) > 0 {
|
||||
return (x - x) / 0.0; /* log(-#) = NaN */
|
||||
}
|
||||
/* subnormal number, scale x up */
|
||||
k -= 54;
|
||||
x *= x1p54;
|
||||
ui = x.to_bits();
|
||||
hx = (ui >> 32) as u32;
|
||||
} else if hx >= 0x7ff00000 {
|
||||
return x;
|
||||
} else if hx == 0x3ff00000 && ui << 32 == 0 {
|
||||
return 0.;
|
||||
}
|
||||
|
||||
/* reduce x into [sqrt(2)/2, sqrt(2)] */
|
||||
hx += 0x3ff00000 - 0x3fe6a09e;
|
||||
k += (hx >> 20) as i32 - 0x3ff;
|
||||
hx = (hx & 0x000fffff) + 0x3fe6a09e;
|
||||
ui = (hx as u64) << 32 | (ui & 0xffffffff);
|
||||
x = f64::from_bits(ui);
|
||||
|
||||
f = x - 1.0;
|
||||
hfsq = 0.5 * f * f;
|
||||
s = f / (2.0 + f);
|
||||
z = s * s;
|
||||
w = z * z;
|
||||
t1 = w * (LG2 + w * (LG4 + w * LG6));
|
||||
t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
|
||||
r = t2 + t1;
|
||||
|
||||
/* See log2.c for details. */
|
||||
/* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
|
||||
hi = f - hfsq;
|
||||
ui = hi.to_bits();
|
||||
ui &= (-1i64 as u64) << 32;
|
||||
hi = f64::from_bits(ui);
|
||||
lo = f - hi - hfsq + s * (hfsq + r);
|
||||
|
||||
/* val_hi+val_lo ~ log10(1+f) + k*log10(2) */
|
||||
val_hi = hi * IVLN10HI;
|
||||
dk = k as f64;
|
||||
y = dk * LOG10_2HI;
|
||||
val_lo = dk * LOG10_2LO + (lo + hi) * IVLN10LO + lo * IVLN10HI;
|
||||
|
||||
/*
|
||||
* Extra precision in for adding y is not strictly needed
|
||||
* since there is no very large cancellation near x = sqrt(2) or
|
||||
* x = 1/sqrt(2), but we do it anyway since it costs little on CPUs
|
||||
* with some parallelism and it reduces the error for many args.
|
||||
*/
|
||||
w = y + val_hi;
|
||||
val_lo += (y - w) + val_hi;
|
||||
val_hi = w;
|
||||
|
||||
val_lo + val_hi
|
||||
}
|
91
mikros_std_deps/libm-0.2.8/src/math/log10f.rs
Normal file
91
mikros_std_deps/libm-0.2.8/src/math/log10f.rs
Normal file
@ -0,0 +1,91 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_log10f.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/*
|
||||
* See comments in log10.c.
|
||||
*/
|
||||
|
||||
use core::f32;
|
||||
|
||||
const IVLN10HI: f32 = 4.3432617188e-01; /* 0x3ede6000 */
|
||||
const IVLN10LO: f32 = -3.1689971365e-05; /* 0xb804ead9 */
|
||||
const LOG10_2HI: f32 = 3.0102920532e-01; /* 0x3e9a2080 */
|
||||
const LOG10_2LO: f32 = 7.9034151668e-07; /* 0x355427db */
|
||||
/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
|
||||
const LG1: f32 = 0.66666662693; /* 0xaaaaaa.0p-24 */
|
||||
const LG2: f32 = 0.40000972152; /* 0xccce13.0p-25 */
|
||||
const LG3: f32 = 0.28498786688; /* 0x91e9ee.0p-25 */
|
||||
const LG4: f32 = 0.24279078841; /* 0xf89e26.0p-26 */
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn log10f(mut x: f32) -> f32 {
|
||||
let x1p25f = f32::from_bits(0x4c000000); // 0x1p25f === 2 ^ 25
|
||||
|
||||
let mut ui: u32 = x.to_bits();
|
||||
let hfsq: f32;
|
||||
let f: f32;
|
||||
let s: f32;
|
||||
let z: f32;
|
||||
let r: f32;
|
||||
let w: f32;
|
||||
let t1: f32;
|
||||
let t2: f32;
|
||||
let dk: f32;
|
||||
let mut hi: f32;
|
||||
let lo: f32;
|
||||
let mut ix: u32;
|
||||
let mut k: i32;
|
||||
|
||||
ix = ui;
|
||||
k = 0;
|
||||
if ix < 0x00800000 || (ix >> 31) > 0 {
|
||||
/* x < 2**-126 */
|
||||
if ix << 1 == 0 {
|
||||
return -1. / (x * x); /* log(+-0)=-inf */
|
||||
}
|
||||
if (ix >> 31) > 0 {
|
||||
return (x - x) / 0.0; /* log(-#) = NaN */
|
||||
}
|
||||
/* subnormal number, scale up x */
|
||||
k -= 25;
|
||||
x *= x1p25f;
|
||||
ui = x.to_bits();
|
||||
ix = ui;
|
||||
} else if ix >= 0x7f800000 {
|
||||
return x;
|
||||
} else if ix == 0x3f800000 {
|
||||
return 0.;
|
||||
}
|
||||
|
||||
/* reduce x into [sqrt(2)/2, sqrt(2)] */
|
||||
ix += 0x3f800000 - 0x3f3504f3;
|
||||
k += (ix >> 23) as i32 - 0x7f;
|
||||
ix = (ix & 0x007fffff) + 0x3f3504f3;
|
||||
ui = ix;
|
||||
x = f32::from_bits(ui);
|
||||
|
||||
f = x - 1.0;
|
||||
s = f / (2.0 + f);
|
||||
z = s * s;
|
||||
w = z * z;
|
||||
t1 = w * (LG2 + w * LG4);
|
||||
t2 = z * (LG1 + w * LG3);
|
||||
r = t2 + t1;
|
||||
hfsq = 0.5 * f * f;
|
||||
|
||||
hi = f - hfsq;
|
||||
ui = hi.to_bits();
|
||||
ui &= 0xfffff000;
|
||||
hi = f32::from_bits(ui);
|
||||
lo = f - hi - hfsq + s * (hfsq + r);
|
||||
dk = k as f32;
|
||||
dk * LOG10_2LO + (lo + hi) * IVLN10LO + lo * IVLN10HI + hi * IVLN10HI + dk * LOG10_2HI
|
||||
}
|
139
mikros_std_deps/libm-0.2.8/src/math/log1p.rs
Normal file
139
mikros_std_deps/libm-0.2.8/src/math/log1p.rs
Normal file
@ -0,0 +1,139 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* double log1p(double x)
|
||||
* Return the natural logarithm of 1+x.
|
||||
*
|
||||
* Method :
|
||||
* 1. Argument Reduction: find k and f such that
|
||||
* 1+x = 2^k * (1+f),
|
||||
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
||||
*
|
||||
* Note. If k=0, then f=x is exact. However, if k!=0, then f
|
||||
* may not be representable exactly. In that case, a correction
|
||||
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
|
||||
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
|
||||
* and add back the correction term c/u.
|
||||
* (Note: when x > 2**53, one can simply return log(x))
|
||||
*
|
||||
* 2. Approximation of log(1+f): See log.c
|
||||
*
|
||||
* 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
|
||||
*
|
||||
* Special cases:
|
||||
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
|
||||
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
|
||||
* log1p(NaN) is that NaN with no signal.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*
|
||||
* Note: Assuming log() return accurate answer, the following
|
||||
* algorithm can be used to compute log1p(x) to within a few ULP:
|
||||
*
|
||||
* u = 1+x;
|
||||
* if(u==1.0) return x ; else
|
||||
* return log(u)*(x/(u-1.0));
|
||||
*
|
||||
* See HP-15C Advanced Functions Handbook, p.193.
|
||||
*/
|
||||
|
||||
use core::f64;
|
||||
|
||||
const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
|
||||
const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
|
||||
const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
|
||||
const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
|
||||
const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
|
||||
const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
|
||||
const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
|
||||
const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
|
||||
const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn log1p(x: f64) -> f64 {
|
||||
let mut ui: u64 = x.to_bits();
|
||||
let hfsq: f64;
|
||||
let mut f: f64 = 0.;
|
||||
let mut c: f64 = 0.;
|
||||
let s: f64;
|
||||
let z: f64;
|
||||
let r: f64;
|
||||
let w: f64;
|
||||
let t1: f64;
|
||||
let t2: f64;
|
||||
let dk: f64;
|
||||
let hx: u32;
|
||||
let mut hu: u32;
|
||||
let mut k: i32;
|
||||
|
||||
hx = (ui >> 32) as u32;
|
||||
k = 1;
|
||||
if hx < 0x3fda827a || (hx >> 31) > 0 {
|
||||
/* 1+x < sqrt(2)+ */
|
||||
if hx >= 0xbff00000 {
|
||||
/* x <= -1.0 */
|
||||
if x == -1. {
|
||||
return x / 0.0; /* log1p(-1) = -inf */
|
||||
}
|
||||
return (x - x) / 0.0; /* log1p(x<-1) = NaN */
|
||||
}
|
||||
if hx << 1 < 0x3ca00000 << 1 {
|
||||
/* |x| < 2**-53 */
|
||||
/* underflow if subnormal */
|
||||
if (hx & 0x7ff00000) == 0 {
|
||||
force_eval!(x as f32);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
if hx <= 0xbfd2bec4 {
|
||||
/* sqrt(2)/2- <= 1+x < sqrt(2)+ */
|
||||
k = 0;
|
||||
c = 0.;
|
||||
f = x;
|
||||
}
|
||||
} else if hx >= 0x7ff00000 {
|
||||
return x;
|
||||
}
|
||||
if k > 0 {
|
||||
ui = (1. + x).to_bits();
|
||||
hu = (ui >> 32) as u32;
|
||||
hu += 0x3ff00000 - 0x3fe6a09e;
|
||||
k = (hu >> 20) as i32 - 0x3ff;
|
||||
/* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
|
||||
if k < 54 {
|
||||
c = if k >= 2 { 1. - (f64::from_bits(ui) - x) } else { x - (f64::from_bits(ui) - 1.) };
|
||||
c /= f64::from_bits(ui);
|
||||
} else {
|
||||
c = 0.;
|
||||
}
|
||||
/* reduce u into [sqrt(2)/2, sqrt(2)] */
|
||||
hu = (hu & 0x000fffff) + 0x3fe6a09e;
|
||||
ui = (hu as u64) << 32 | (ui & 0xffffffff);
|
||||
f = f64::from_bits(ui) - 1.;
|
||||
}
|
||||
hfsq = 0.5 * f * f;
|
||||
s = f / (2.0 + f);
|
||||
z = s * s;
|
||||
w = z * z;
|
||||
t1 = w * (LG2 + w * (LG4 + w * LG6));
|
||||
t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
|
||||
r = t2 + t1;
|
||||
dk = k as f64;
|
||||
s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI
|
||||
}
|
94
mikros_std_deps/libm-0.2.8/src/math/log1pf.rs
Normal file
94
mikros_std_deps/libm-0.2.8/src/math/log1pf.rs
Normal file
@ -0,0 +1,94 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/s_log1pf.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
use core::f32;
|
||||
|
||||
const LN2_HI: f32 = 6.9313812256e-01; /* 0x3f317180 */
|
||||
const LN2_LO: f32 = 9.0580006145e-06; /* 0x3717f7d1 */
|
||||
/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
|
||||
const LG1: f32 = 0.66666662693; /* 0xaaaaaa.0p-24 */
|
||||
const LG2: f32 = 0.40000972152; /* 0xccce13.0p-25 */
|
||||
const LG3: f32 = 0.28498786688; /* 0x91e9ee.0p-25 */
|
||||
const LG4: f32 = 0.24279078841; /* 0xf89e26.0p-26 */
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn log1pf(x: f32) -> f32 {
|
||||
let mut ui: u32 = x.to_bits();
|
||||
let hfsq: f32;
|
||||
let mut f: f32 = 0.;
|
||||
let mut c: f32 = 0.;
|
||||
let s: f32;
|
||||
let z: f32;
|
||||
let r: f32;
|
||||
let w: f32;
|
||||
let t1: f32;
|
||||
let t2: f32;
|
||||
let dk: f32;
|
||||
let ix: u32;
|
||||
let mut iu: u32;
|
||||
let mut k: i32;
|
||||
|
||||
ix = ui;
|
||||
k = 1;
|
||||
if ix < 0x3ed413d0 || (ix >> 31) > 0 {
|
||||
/* 1+x < sqrt(2)+ */
|
||||
if ix >= 0xbf800000 {
|
||||
/* x <= -1.0 */
|
||||
if x == -1. {
|
||||
return x / 0.0; /* log1p(-1)=+inf */
|
||||
}
|
||||
return (x - x) / 0.0; /* log1p(x<-1)=NaN */
|
||||
}
|
||||
if ix << 1 < 0x33800000 << 1 {
|
||||
/* |x| < 2**-24 */
|
||||
/* underflow if subnormal */
|
||||
if (ix & 0x7f800000) == 0 {
|
||||
force_eval!(x * x);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
if ix <= 0xbe95f619 {
|
||||
/* sqrt(2)/2- <= 1+x < sqrt(2)+ */
|
||||
k = 0;
|
||||
c = 0.;
|
||||
f = x;
|
||||
}
|
||||
} else if ix >= 0x7f800000 {
|
||||
return x;
|
||||
}
|
||||
if k > 0 {
|
||||
ui = (1. + x).to_bits();
|
||||
iu = ui;
|
||||
iu += 0x3f800000 - 0x3f3504f3;
|
||||
k = (iu >> 23) as i32 - 0x7f;
|
||||
/* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
|
||||
if k < 25 {
|
||||
c = if k >= 2 { 1. - (f32::from_bits(ui) - x) } else { x - (f32::from_bits(ui) - 1.) };
|
||||
c /= f32::from_bits(ui);
|
||||
} else {
|
||||
c = 0.;
|
||||
}
|
||||
/* reduce u into [sqrt(2)/2, sqrt(2)] */
|
||||
iu = (iu & 0x007fffff) + 0x3f3504f3;
|
||||
ui = iu;
|
||||
f = f32::from_bits(ui) - 1.;
|
||||
}
|
||||
s = f / (2.0 + f);
|
||||
z = s * s;
|
||||
w = z * z;
|
||||
t1 = w * (LG2 + w * LG4);
|
||||
t2 = z * (LG1 + w * LG3);
|
||||
r = t2 + t1;
|
||||
hfsq = 0.5 * f * f;
|
||||
dk = k as f32;
|
||||
s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI
|
||||
}
|
106
mikros_std_deps/libm-0.2.8/src/math/log2.rs
Normal file
106
mikros_std_deps/libm-0.2.8/src/math/log2.rs
Normal file
@ -0,0 +1,106 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_log2.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/*
|
||||
* Return the base 2 logarithm of x. See log.c for most comments.
|
||||
*
|
||||
* Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2
|
||||
* as in log.c, then combine and scale in extra precision:
|
||||
* log2(x) = (f - f*f/2 + r)/log(2) + k
|
||||
*/
|
||||
|
||||
use core::f64;
|
||||
|
||||
const IVLN2HI: f64 = 1.44269504072144627571e+00; /* 0x3ff71547, 0x65200000 */
|
||||
const IVLN2LO: f64 = 1.67517131648865118353e-10; /* 0x3de705fc, 0x2eefa200 */
|
||||
const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
|
||||
const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
|
||||
const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
|
||||
const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
|
||||
const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
|
||||
const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
|
||||
const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn log2(mut x: f64) -> f64 {
|
||||
let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54
|
||||
|
||||
let mut ui: u64 = x.to_bits();
|
||||
let hfsq: f64;
|
||||
let f: f64;
|
||||
let s: f64;
|
||||
let z: f64;
|
||||
let r: f64;
|
||||
let mut w: f64;
|
||||
let t1: f64;
|
||||
let t2: f64;
|
||||
let y: f64;
|
||||
let mut hi: f64;
|
||||
let lo: f64;
|
||||
let mut val_hi: f64;
|
||||
let mut val_lo: f64;
|
||||
let mut hx: u32;
|
||||
let mut k: i32;
|
||||
|
||||
hx = (ui >> 32) as u32;
|
||||
k = 0;
|
||||
if hx < 0x00100000 || (hx >> 31) > 0 {
|
||||
if ui << 1 == 0 {
|
||||
return -1. / (x * x); /* log(+-0)=-inf */
|
||||
}
|
||||
if (hx >> 31) > 0 {
|
||||
return (x - x) / 0.0; /* log(-#) = NaN */
|
||||
}
|
||||
/* subnormal number, scale x up */
|
||||
k -= 54;
|
||||
x *= x1p54;
|
||||
ui = x.to_bits();
|
||||
hx = (ui >> 32) as u32;
|
||||
} else if hx >= 0x7ff00000 {
|
||||
return x;
|
||||
} else if hx == 0x3ff00000 && ui << 32 == 0 {
|
||||
return 0.;
|
||||
}
|
||||
|
||||
/* reduce x into [sqrt(2)/2, sqrt(2)] */
|
||||
hx += 0x3ff00000 - 0x3fe6a09e;
|
||||
k += (hx >> 20) as i32 - 0x3ff;
|
||||
hx = (hx & 0x000fffff) + 0x3fe6a09e;
|
||||
ui = (hx as u64) << 32 | (ui & 0xffffffff);
|
||||
x = f64::from_bits(ui);
|
||||
|
||||
f = x - 1.0;
|
||||
hfsq = 0.5 * f * f;
|
||||
s = f / (2.0 + f);
|
||||
z = s * s;
|
||||
w = z * z;
|
||||
t1 = w * (LG2 + w * (LG4 + w * LG6));
|
||||
t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
|
||||
r = t2 + t1;
|
||||
|
||||
/* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
|
||||
hi = f - hfsq;
|
||||
ui = hi.to_bits();
|
||||
ui &= (-1i64 as u64) << 32;
|
||||
hi = f64::from_bits(ui);
|
||||
lo = f - hi - hfsq + s * (hfsq + r);
|
||||
|
||||
val_hi = hi * IVLN2HI;
|
||||
val_lo = (lo + hi) * IVLN2LO + lo * IVLN2HI;
|
||||
|
||||
/* spadd(val_hi, val_lo, y), except for not using double_t: */
|
||||
y = k.into();
|
||||
w = y + val_hi;
|
||||
val_lo += (y - w) + val_hi;
|
||||
val_hi = w;
|
||||
|
||||
val_lo + val_hi
|
||||
}
|
87
mikros_std_deps/libm-0.2.8/src/math/log2f.rs
Normal file
87
mikros_std_deps/libm-0.2.8/src/math/log2f.rs
Normal file
@ -0,0 +1,87 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/e_log2f.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/*
|
||||
* See comments in log2.c.
|
||||
*/
|
||||
|
||||
use core::f32;
|
||||
|
||||
const IVLN2HI: f32 = 1.4428710938e+00; /* 0x3fb8b000 */
|
||||
const IVLN2LO: f32 = -1.7605285393e-04; /* 0xb9389ad4 */
|
||||
/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
|
||||
const LG1: f32 = 0.66666662693; /* 0xaaaaaa.0p-24 */
|
||||
const LG2: f32 = 0.40000972152; /* 0xccce13.0p-25 */
|
||||
const LG3: f32 = 0.28498786688; /* 0x91e9ee.0p-25 */
|
||||
const LG4: f32 = 0.24279078841; /* 0xf89e26.0p-26 */
|
||||
|
||||
#[cfg_attr(all(test), no_panic::no_panic)]
|
||||
pub fn log2f(mut x: f32) -> f32 {
|
||||
let x1p25f = f32::from_bits(0x4c000000); // 0x1p25f === 2 ^ 25
|
||||
|
||||
let mut ui: u32 = x.to_bits();
|
||||
let hfsq: f32;
|
||||
let f: f32;
|
||||
let s: f32;
|
||||
let z: f32;
|
||||
let r: f32;
|
||||
let w: f32;
|
||||
let t1: f32;
|
||||
let t2: f32;
|
||||
let mut hi: f32;
|
||||
let lo: f32;
|
||||
let mut ix: u32;
|
||||
let mut k: i32;
|
||||
|
||||
ix = ui;
|
||||
k = 0;
|
||||
if ix < 0x00800000 || (ix >> 31) > 0 {
|
||||
/* x < 2**-126 */
|
||||
if ix << 1 == 0 {
|
||||
return -1. / (x * x); /* log(+-0)=-inf */
|
||||
}
|
||||
if (ix >> 31) > 0 {
|
||||
return (x - x) / 0.0; /* log(-#) = NaN */
|
||||
}
|
||||
/* subnormal number, scale up x */
|
||||
k -= 25;
|
||||
x *= x1p25f;
|
||||
ui = x.to_bits();
|
||||
ix = ui;
|
||||
} else if ix >= 0x7f800000 {
|
||||
return x;
|
||||
} else if ix == 0x3f800000 {
|
||||
return 0.;
|
||||
}
|
||||
|
||||
/* reduce x into [sqrt(2)/2, sqrt(2)] */
|
||||
ix += 0x3f800000 - 0x3f3504f3;
|
||||
k += (ix >> 23) as i32 - 0x7f;
|
||||
ix = (ix & 0x007fffff) + 0x3f3504f3;
|
||||
ui = ix;
|
||||
x = f32::from_bits(ui);
|
||||
|
||||
f = x - 1.0;
|
||||
s = f / (2.0 + f);
|
||||
z = s * s;
|
||||
w = z * z;
|
||||
t1 = w * (LG2 + w * LG4);
|
||||
t2 = z * (LG1 + w * LG3);
|
||||
r = t2 + t1;
|
||||
hfsq = 0.5 * f * f;
|
||||
|
||||
hi = f - hfsq;
|
||||
ui = hi.to_bits();
|
||||
ui &= 0xfffff000;
|
||||
hi = f32::from_bits(ui);
|
||||
lo = f - hi - hfsq + s * (hfsq + r);
|
||||
(lo + hi) * IVLN2LO + lo * IVLN2HI + hi * IVLN2HI + k as f32
|
||||
}
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user